Integrated Electrochemical Biosensors for Detection of Waterborne Pathogens in Low-Resource Settings
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
GW4 FRESH CDT
Natural Environment Research Council
EP/P028403/1
Engineering and Physical Sciences Research Council
CEITEC 2020 (LQ1601)
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
32294961
PubMed Central
PMC7236604
DOI
10.3390/bios10040036
PII: bios10040036
Knihovny.cz E-zdroje
- Klíčová slova
- electrochemical biosensors, in-situ monitoring, low and middle-income countries (LMICs), low-resource settings, microbial pollution, point-of-care,
- MeSH
- biosenzitivní techniky metody MeSH
- elektrochemické techniky metody MeSH
- lidé MeSH
- mikrobiologie vody * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
More than 783 million people worldwide are currently without access to clean and safe water. Approximately 1 in 5 cases of mortality due to waterborne diseases involve children, and over 1.5 million cases of waterborne disease occur every year. In the developing world, this makes waterborne diseases the second highest cause of mortality. Such cases of waterborne disease are thought to be caused by poor sanitation, water infrastructure, public knowledge, and lack of suitable water monitoring systems. Conventional laboratory-based techniques are inadequate for effective on-site water quality monitoring purposes. This is due to their need for excessive equipment, operational complexity, lack of affordability, and long sample collection to data analysis times. In this review, we discuss the conventional techniques used in modern-day water quality testing. We discuss the future challenges of water quality testing in the developing world and how conventional techniques fall short of these challenges. Finally, we discuss the development of electrochemical biosensors and current research on the integration of these devices with microfluidic components to develop truly integrated, portable, simple to use and cost-effective devices for use by local environmental agencies, NGOs, and local communities in low-resource settings.
Zobrazit více v PubMed
How Much Water is there on Earth? [(accessed on 28 October 2019)]; Available online: https://www.usgs.gov/special-topic/water-science-school/science/how-much-water-there-earth?qt-science_center_objects=0#qt-science_center_objects.
Where is All of the Earth’s Water? [(accessed on 28 October 2019)]; Available online: https://oceanservice.noaa.gov/facts/wherewater.html.
Use of Freshwater Resources. [(accessed on 28 October 2019)]; Available online: https://www.eea.europa.eu/data-and-maps/indicators/use-of-freshwater-resources/use-of-freshwater-resources-assessment-2.
de Bell S., Graham H., Jarvis S., White P. The importance of nature in mediating social and psychological benefits associated with visits to freshwater blue space. Landsc. Urban Plan. 2017;167:118–127. doi: 10.1016/j.landurbplan.2017.06.003. DOI
The Top 10 Causes of Death. [(accessed on 29 October 2019)]; Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
Childhood Diseases. [(accessed on 29 October 2019)]; Available online: https://www.unicef.org/health/index_51412.html.
Ashipala N., Armitage N.P. Impediments to the adoption of alternative sewerage in South African urban informal settlements. Water Sci. Technol. 2011;64:1781–1789. doi: 10.2166/wst.2011.746. PubMed DOI
Chirisa I., Bandauko E., Matamanda A., Mandisvika G. Decentralized domestic wastewater systems in developing countries: The case study of Harare (Zimbabwe) Appl. Water Sci. 2017;7:1069–1078. doi: 10.1007/s13201-016-0377-4. DOI
Palanca-Tan R. Health and water quality benefits of alternative sewerage systems in Metro Manila, Philippines. Environ. Urban. 2017;29:567–580. doi: 10.1177/0956247817718402. DOI
Karpouzoglou T., Zimmer A. Ways of knowing the wastewaterscape: Urban political ecology and the politics of wastewater in Delhi, India. Habitat Int. 2016;54:150–160. doi: 10.1016/j.habitatint.2015.12.024. DOI
Raschid-Sally L. The role and place of global surveys for assessing wastewater irrigation. Irrig. Drain. Syst. 2010;24:5–21. doi: 10.1007/s10795-009-9092-8. DOI
World Health Organization . Guidelines for the Safe Use of Wastewater, Excreta, Greywater. Volume IV. World Health Organization; Geneva, Switzerland: 2006. Excreta and greywater in agriculture; p. 204.
Ejeian F., Etedali P., Mansouri-Tehrani H.A., Soozanipour A., Low Z.X., Asadnia M., Taheri-Kafrani A., Razmjou A. Biosensors for wastewater monitoring: A review. Biosens. Bioelectron. 2018;118:66–79. doi: 10.1016/j.bios.2018.07.019. PubMed DOI
Water, Sanitation and Hygiene: Fact Sheet March 2016. [(accessed on 29 October 2019)]; Available online: http://www.wpro.who.int/entity/apac_rfhe/wash_factsheet_rfhe.pdf.
World Health Organization. UNICEF . Progress on Drinking Water and Sanitation. World Health Organization; Geneva, Switzerland: 2014.
Osiemo M., Ogendi G., M’Erimba C. Microbial quality of drinking water and prevalence of water-related diseases in Marigat Urban Centre, Kenya. Environ. Health Insights. 2019;13:117863021983698. doi: 10.1177/1178630219836988. PubMed DOI PMC
Van Derslice J. Drinking water infrastructure and environmental disparities: Evidence and methodological considerations. Am. J. Public Health. 2011;101:S109–S114. doi: 10.2105/AJPH.2011.300189. PubMed DOI PMC
Qin H., Su Q., Khu S., Tang N. Water quality changes during rapid urbanization in the Shenzhen River catchment: An integrated view of socio-economic and infrastructure development. Sustainability. 2014;6:7433–7451. doi: 10.3390/su6107433. DOI
Cabral J. Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health. 2010;7:3657–3703. doi: 10.3390/ijerph7103657. PubMed DOI PMC
Pandey P., Kass P., Soupir M., Biswas S., Singh V. Contamination of water resources by pathogenic bacteria. AMB Express. 2014;4:51. doi: 10.1186/s13568-014-0051-x. PubMed DOI PMC
Ellis K., Gowdy C., Jakomis N., Ryan B., Thom C., Biggs C., Speight V. Understanding the costs of investigating coliform and E. Coli detections during routine drinking water quality monitoring. Urban Water J. 2017;15:101–108. doi: 10.1080/1573062X.2017.1398762. DOI
Drinking-Water. [(accessed on 4 January 2020)]; Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water.
Bridle H. Waterborne Pathogens: Detection Methods and Applications. Academic Press; London, UK: 2013.
Maynard C., Berthiaume F., Lemarchand K., Harel J., Payment P., Bayardelle P., Masson L., Brousseau R.J.A.E.M. Waterborne pathogen detection by use of oligonucleotide-based microarrays. Appl. Environ. Microbiol. 2005;71:8548–8557. doi: 10.1128/AEM.71.12.8548-8557.2005. PubMed DOI PMC
Hurst G.B., Doktycz M.J., Vass A.A., Buchanan M.V. Detection of bacterial DNA polymerase chain reaction products by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1996;10:377–382. doi: 10.1002/(SICI)1097-0231(199602)10:3<377::AID-RCM481>3.0.CO;2-X. PubMed DOI
He Y., Chang T.C., Li H., Shi G., Tang Y.-W. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and database for identification of Legionella species. Can. J. Microbiol. 2011;57:533–538. doi: 10.1139/w11-039. PubMed DOI
Donohue M.J., Smallwood A.W., Pfaller S., Rodgers M., Shoemaker J.A. The development of a matrix-assisted laser desorption/ionization mass spectrometry-based method for the protein fingerprinting and identification of Aeromonas species using whole cells. J. Microbiol. Methods. 2006;65:380–389. doi: 10.1016/j.mimet.2005.08.005. PubMed DOI
Erler R., Wichels A., Heinemeyer E.-A., Hauk G., Hippelein M., Reyes N.T., Gerdts G. VibrioBase: A MALDI-TOF MS database for fast identification of Vibrio spp. that are potentially pathogenic in humans. Syst. Appl. Microbiol. 2015;38:16–25. doi: 10.1016/j.syapm.2014.10.009. PubMed DOI
Toze S.J.W.R. PCR and the detection of microbial pathogens in water and wastewater. Water Res. 1999;33:3545–3556. doi: 10.1016/S0043-1354(99)00071-8. DOI
Kong R.Y.C., Lee S.K.Y., Law T.W.F., Law S.H.W., Wu R.S.S. Rapid detection of six types of bacterial pathogens in marine waters by multiplex PCR. Water Res. 2002;36:2802–2812. doi: 10.1016/S0043-1354(01)00503-6. PubMed DOI
Marangi M., Giangaspero A., Lacasella V., Lonigro A., Gasser R.B. Multiplex PCR for the detection and quantification of zoonotic taxa of Giardia, Cryptosporidium and Toxoplasma in wastewater and mussels. Mol. Cell. Probes. 2015;29:122–125. doi: 10.1016/j.mcp.2015.01.001. PubMed DOI
Parshionikar S.U., Cashdollar J., Fout G.S. Development of homologous viral internal controls for use in RT-PCR assays of waterborne enteric viruses. J. Virol. Methods. 2004;121:39–48. doi: 10.1016/j.jviromet.2004.05.015. PubMed DOI
Shannon K., Lee D.-Y., Trevors J., Beaudette L.J. Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Sci. Total Environ. 2007;382:121–129. doi: 10.1016/j.scitotenv.2007.02.039. PubMed DOI
Bhagwat A.A. Simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains by real-time PCR. Int. J. Food Microbiol. 2003;84:217–224. doi: 10.1016/S0168-1605(02)00481-6. PubMed DOI
Saxena G., Bharagava R.N., Kaithwas G., Raj A. Microbial indicators, pathogens and methods for their monitoring in water environment. J. Water Health. 2014;13:319–339. doi: 10.2166/wh.2014.275. PubMed DOI
Walker J.T., Keevil C.W. Study of microbial biofilms using light microscope techniques. Int. Biodeterior. Biodegrad. 1994;34:223–236. doi: 10.1016/0964-8305(94)90084-1. DOI
Mazumder S., Sarkar J., Dey R., Mitra M.K., Mukherjee S., Das G.C. Biofunctionalised quantum dots for sensing and identification of waterborne bacterial pathogens. J. Exp. Nanosci. 2010;5:438–446. doi: 10.1080/17458081003588010. DOI
Aw T.G., Rose J.B. Detection of pathogens in water: From phylochips to qPCR to pyrosequencing. Curr. Opin. Biotechnol. 2012;23:422–430. doi: 10.1016/j.copbio.2011.11.016. PubMed DOI PMC
Shen S., Qin D. Pyrosequencing data analysis software: A useful tool for EGFR, KRAS, and BRAF mutation analysis. Diagn. Pathol. 2012;7:56. doi: 10.1186/1746-1596-7-56. PubMed DOI PMC
Brinkman N., Francisco R., Nichols T., Robinson D., Schaefer F., III, Schaudies R., Villegas E.N. Detection of multiple waterborne pathogens using microsequencing arrays. J. Appl. Microbiol. 2013;114:564–573. doi: 10.1111/jam.12073. PubMed DOI
Lee D.-Y., Seto P., Korczak R. DNA microarray-based detection and identification of waterborne protozoan pathogens. J. Microbiol. Methods. 2010;80:129–133. doi: 10.1016/j.mimet.2009.11.015. PubMed DOI
Zhou G., Wen S., Liu Y., Li R., Zhong X., Feng L., Wang L., Cao B. Development of a DNA microarray for detection and identification of Legionella pneumophila and ten other pathogens in drinking water. Int. J. Food Microbiol. 2011;145:293–300. doi: 10.1016/j.ijfoodmicro.2011.01.014. PubMed DOI
Shah J., Weltman H., Narciso P., Murphy C., Poruri A., Baliga S., Sharon L., York M., Cunningham G., Miller S., et al. Dual color fluorescence in situ hybridization (FISH) assays for detecting Mycobacterium tuberculosis and Mycobacterium avium complexes and related pathogens in cultures. PLoS ONE. 2017;12:e0174989. doi: 10.1371/journal.pone.0174989. PubMed DOI PMC
Almeida C., Azevedo N.F., Fernandes R., Keevil C.W., Vieira M.J. Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Salmonella spp. in a broad spectrum of samples. Appl. Environ. Microbiol. 2010;76:4476–4485. doi: 10.1128/AEM.01678-09. PubMed DOI PMC
Jain S., Chattopadhyay S., Jackeray R., Abid C.K.V.Z., Kohli G.S., Singh H. Highly sensitive detection of Salmonella typhi using surface aminated polycarbonate membrane enhanced-ELISA. Biosens. Bioelectron. 2012;31:37–43. doi: 10.1016/j.bios.2011.09.031. PubMed DOI
Roser M., Ritchie H., Ortiz-Ospina E. Internet. [(accessed on 28 November 2019)]; Available online: https://ourworldindata.org/internet#internet-access.
Yetisen A., Akram M., Lowe C. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13:2210. doi: 10.1039/c3lc50169h. PubMed DOI
Jolly P., Rainbow J., Regoutz A., Estrela P., Moschou D. A PNA-based Lab-on-PCB diagnostic platform for rapid and high sensitivity DNA quantification. Biosens. Bioelectron. 2019;123:244–250. doi: 10.1016/j.bios.2018.09.006. PubMed DOI
Ramírez-Castillo F., Loera-Muro A., Jacques M., Garneau P., Avelar-González F., Harel J., Guerrero-Barrera A. Waterborne pathogens: Detection methods and challenges. Pathogens. 2015;4:307–334. doi: 10.3390/pathogens4020307. PubMed DOI PMC
Alhamlan F., Al-Qahtani A., Al-Ahdal M. Recommended advanced techniques for waterborne pathogen detection in developing countries. J. Infect. Dev. Ctries. 2015;9:128–135. doi: 10.3855/jidc.6101. PubMed DOI
Turle R. Expensive equipment—A guide to purchasing. Anal. Bioanal. Chem. 2008;393:13–14. doi: 10.1007/s00216-008-2392-2. PubMed DOI
Chouler J., Di Lorenzo M. Water quality monitoring in developing countries; Can microbial fuel cells be the answer? Biosensors. 2015;5:450–470. doi: 10.3390/bios5030450. PubMed DOI PMC
Soleymani L., Li F. Mechanistic challenges and advantages of biosensor miniaturization into the nanoscale. ACS Sens. 2017;2:458–467. doi: 10.1021/acssensors.7b00069. PubMed DOI
Sinha A., Dhanjai, Mugo S., Zhao H., Chen J., Jain R. Electrochemical Immunosensors for Rapid Detection of Breast Cancer Biomarkers. Adv. Biosens. Health Care Appl. 2019:147–169.
Hammond J., Gross A., Giroud F., Travelet C., Borsali R., Cosnier S. Solubilized Enzymatic Fuel Cell (SEFC) for quasi-continuous operation exploiting carbohydrate block copolymer glyconanoparticle mediators. Acs Energy Lett. 2018;4:142–148. doi: 10.1021/acsenergylett.8b01972. DOI
Martinez S., Di Lorenzo M. Electricity generation from untreated fresh digestate with a cost-effective array of floating microbial fuel cells. Chem. Eng. Sci. 2019;198:108–116. doi: 10.1016/j.ces.2018.12.039. DOI
Moschou D., Tserepi A. The lab-on-PCB approach: Tackling the μTAS commercial upscaling bottleneck. Lab Chip. 2017;17:1388–1405. doi: 10.1039/C7LC00121E. PubMed DOI
Jang A., Zou Z., Lee K., Ahn C., Bishop P. State-of-the-art lab chip sensors for environmental water monitoring. Meas. Sci. Technol. 2011;22:032001. doi: 10.1088/0957-0233/22/3/032001. DOI
St John A., Price C. Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 2014;35:155–167. PubMed PMC
Sher M., Zhuang R., Demirci U., Asghar W. Paper-based analytical devices for clinical diagnosis: Recent advances in the fabrication techniques and sensing mechanisms. Expert Rev. Mol. Diagn. 2017;17:351–366. doi: 10.1080/14737159.2017.1285228. PubMed DOI PMC
Aracil C., Perdigones F., Moreno J., Luque A., Quero J. Portable Lab-on-PCB platform for autonomous micromixing. Microelectron. Eng. 2015;131:13–18. doi: 10.1016/j.mee.2014.10.018. DOI
Aniyikaiye T., Oluseyi T., Odiyo J., Edokpayi J. Physico-chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria. Int. J. Environ. Res. Public Health. 2019;16:1235. doi: 10.3390/ijerph16071235. PubMed DOI PMC
Tran N., Reinhard M., Khan E., Chen H., Nguyen V., Li Y., Goh S., Nguyen Q., Saeidi N., Gin K. Emerging contaminants in wastewater, stormwater runoff, and surface water: Application as chemical markers for diffuse sources. Sci. Total Environ. 2019;676:252–267. doi: 10.1016/j.scitotenv.2019.04.160. PubMed DOI
Lew S., Lew M., Biedunkiewicz A., Szarek J. Impact of pesticide contamination on aquatic microorganism populations in the littoral zone. Arch. Environ. Contam. Toxicol. 2012;64:399–409. doi: 10.1007/s00244-012-9852-6. PubMed DOI PMC
Blettler M., Ulla M., Rabuffetti A., Garello N. Plastic pollution in freshwater ecosystems: Macro-, meso-, and microplastic debris in a floodplain lake. Environ. Monit. Assess. 2017;189:581. doi: 10.1007/s10661-017-6305-8. PubMed DOI
Crocker J., Bartram J. Comparison and cost analysis of drinking water quality monitoring requirements versus practice in seven developing countries. Int. J. Environ. Res. Public Health. 2014;11:7333–7346. doi: 10.3390/ijerph110707333. PubMed DOI PMC
Farkas K., McDonald J., Malham S., Jones D. Two-step concentration of complex water samples for the detection of viruses. Methods Protoc. 2018;1:35. doi: 10.3390/mps1030035. PubMed DOI PMC
Dhar B., Lee N. Lab-on-a-Chip technology for environmental monitoring of microorganisms. BioChip J. 2018;12:173–183. doi: 10.1007/s13206-018-2301-5. DOI
Worako A. Physicochemical and biological water quality assessment of lake hawassa for multiple designated water uses. J. Urban Environ. Eng. 2015;9:146–157. doi: 10.4090/juee.2015.v9n2.146157. DOI
Rahmanian N., Ali S., Homayoonfard M., Ali N., Rehan M., Sadef Y., Nizami A. Analysis of physiochemical parameters to evaluate the drinking water quality in the state of Perak, Malaysia. J. Chem. 2015;2015:1–10. doi: 10.1155/2015/716125. DOI
Hamaidi-Chergui F., Brahim Errahmani M. Water quality and physicochemical parameters of outgoing waters in a pharmaceutical plant. Appl. Water Sci. 2019;9:165. doi: 10.1007/s13201-019-1046-1. DOI
Domínguez I., Oviedo-Ocaña E., Hurtado K., Barón A., Hall R. Assessing sustainability in rural water supply systems in developing countries using a novel tool based on multi-criteria analysis. Sustainability. 2019;11:5363. doi: 10.3390/su11195363. DOI
Mabey D., Peeling R., Ustianowski A., Perkins M. Diagnostics for the developing world. Nat. Rev. Microbiol. 2004;2:231–240. doi: 10.1038/nrmicro841. PubMed DOI
Land K., Boeras D., Chen X., Ramsay A., Peeling R. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 2018;4:46–54. doi: 10.1038/s41564-018-0295-3. PubMed DOI PMC
Kelly V., Codispoti L., Suttles S. Autonomous Device with Biofouling Control and Method for Monitoring Aquatic Environment; United. Application 20090041621. States Patent. 2014
Sabaté del Río J., Henry O., Jolly P., Ingber D. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol. 2019;14:1143–1149. doi: 10.1038/s41565-019-0566-z. PubMed DOI
Leng C., Hung H., Sun S., Wang D., Li Y., Jiang S., Chen Z. Probing the surface hydration of nonfouling Zwitterionic and PEG materials in contact with proteins. ACS Appl. Mater. Interfaces. 2015;7:16881–16888. doi: 10.1021/acsami.5b05627. PubMed DOI
White A., Jiang S. Local and bulk hydration of Zwitterionic glycine and its analogues through molecular simulations. J. Phys. Chem. B. 2011;115:660–667. doi: 10.1021/jp1067654. PubMed DOI
Jolly P., Formisano N., Tkáč J., Kasák P., Frost C., Estrela P. Label-free impedimetric aptasensor with antifouling surface chemistry: A prostate specific antigen case study. Sens. Actuators B Chem. 2015;209:306–312. doi: 10.1016/j.snb.2014.11.083. DOI
Long Y., Yu Y., Yin X., Li J., Carlos C., Du X., Jiang Y., Wang X. Effective anti-biofouling enabled by surface electric disturbance from water wave-driven nanogenerator. Nano Energy. 2019;57:558–565. doi: 10.1016/j.nanoen.2018.12.069. PubMed DOI PMC
Hafer M. Quantity and electricity consumption of plug load equipment on a university campus. Energy Effic. 2016;10:1013–1039. doi: 10.1007/s12053-016-9503-2. DOI
Peixoto L., Min B., Martins G., Brito A., Kroff P., Parpot P., Angelidaki I., Nogueira R. In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry. 2011;81:99–103. doi: 10.1016/j.bioelechem.2011.02.002. PubMed DOI
Jiang Y., Liang P., Liu P., Wang D., Miao B., Huang X. A novel microbial fuel cell sensor with biocathode sensing element. Biosens. Bioelectron. 2017;94:344–350. doi: 10.1016/j.bios.2017.02.052. PubMed DOI
Chouler J., Cruz-Izquierdo Á., Rengaraj S., Scott J., Di Lorenzo M. A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water. Biosens. Bioelectron. 2018;102:49–56. doi: 10.1016/j.bios.2017.11.018. PubMed DOI
Cheng B., Cunningham B., Boeras D., Mafaune P., Simbi R., Peeling R. Data connectivity: A critical tool for external quality assessment. Afr. J. Lab. Med. 2016;5:535. doi: 10.4102/ajlm.v5i2.535. PubMed DOI PMC
Smith S., Oberholzer A., Land K., Korvink J., Mager D. Functional screen-printed radio frequency identification tags on flexible substrates, facilitating low-cost and integrated point-of-care diagnostics. Flex. Print. Electron. 2018;3:025002. doi: 10.1088/2058-8585/aabc8c. DOI
Aboul-Enein Y., Zuhur S. Islamic Rulings on Warfare. U.S. Army War College; Carlisle Barracks, PA, USA: 2004.
Vallero D., Letcher T. Waste: A Handbook for Management. Academic Press; London, UK: 2011. Regulation of wastes; pp. 23–59.
Bhalla N., Jolly P., Formisano N., Estrela P. Introduction to biosensors. Essays Biochem. 2016;60:1–8. PubMed PMC
Faridbod F., Gupta V., Zamani H. Electrochemical sensors and biosensors. Int. J. Electrochem. 2011;2011:1–2. doi: 10.4061/2011/352546. DOI
Abdalla N.S., Amr A.E.G.E., El-Tantawy A.S.M., Al-Omar M.A., Kamel A.H., Khalifa N.M. Tailor-made specific recognition of cyromazine pesticide integrated in a potentiometric strip cell for environmental and food analysis. Polym. (Basel) 2019;11:1526. doi: 10.3390/polym11091526. PubMed DOI PMC
Fiel W.A., de Freitas Borges P.A., Lins F.C., de Faria R.A.D. Recent advances on the electrochemical transduction techniques for the biosensing of pharmaceuticals in aquatic environments. Int. J. Biosens. Bioelectron. 2019;5:119–123. doi: 10.15406/ijbsbe.2019.05.00164. DOI
Chinnappan R., Eissa S., Alotaibi A., Siddiqua A., Alsager O.A., Zourob M. In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for azlocillin determination in waste water. Anal. Chim. Acta. 2020;1101:149–156. doi: 10.1016/j.aca.2019.12.023. PubMed DOI
Fekry A.M., Shehata M., Azab S.M., Walcarius A. Voltammetric detection of caffeine in pharmacological and beverages samples based on simple nano- Co (II, III) oxide modified carbon paste electrode in aqueous and micellar media. Sens. Actuators B Chem. 2020;302:127172. doi: 10.1016/j.snb.2019.127172. DOI
Yang Z., Castrignanò E., Estrela P., Frost C.G., Kasprzyk-Hordern B. Community sewage sensors towards evaluation of drug use trends: Detection of cocaine in wastewater with DNA-directed immobilization aptamer sensors. Sci. Rep. 2016;6:1–10. doi: 10.1038/srep21024. PubMed DOI PMC
Mayedwa N., Ajayi R.F., Mongwaketsi N., Matinise N., Mulaudzi-Masuku T., Hendricks K., Maaza M. Development of a novel tyrosinase amperometric biosensor based on tin nanoparticles for the detection of bisphenol A (4.4-isopropylidenediphenol) in water. J. Phys. Conf. Ser. 2019;1310:12005. doi: 10.1088/1742-6596/1310/1/012005. DOI
Ding R., Lisak G. Sponge-based microfluidic sampling for potentiometric ion sensing. Anal. Chim. Acta. 2019;1091:103–111. doi: 10.1016/j.aca.2019.09.024. PubMed DOI
Senta I., Gracia-Lor E., Borsotti A., Zuccato E., Castiglioni S. Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment. Water Res. 2015;74:23–33. doi: 10.1016/j.watres.2015.02.002. PubMed DOI
Gracia-Lor E., Castiglioni S., Bade R., Been F., Castrignanò E., Covaci A., González-Mariño I., Hapeshi E., Kasprzyk-Hordern B., Kinyua J., et al. Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives. Environ. Int. 2017;99:131–150. doi: 10.1016/j.envint.2016.12.016. PubMed DOI
Khalil M.M., Moaty S.A.A., Korany M.A. Carbon nanotubes based potentiometric sensor for determination of bambuterol hydrochloride: Electrochemical and morphology study. Sens. Actuators B Chem. 2018;273:429–438. doi: 10.1016/j.snb.2018.06.060. DOI
Tran T.B., Son S.J., Min J. Nanomaterials in label-free impedimetric biosensor: Current process and future perspectives. Biochip J. 2016;10:318–330. doi: 10.1007/s13206-016-0408-0. DOI
Li F., Yu Z., Han X., Lai R.Y. Electrochemical aptamer-based sensors for food and water analysis: A review. Anal. Chim. Acta. 2019;1051:1–23. doi: 10.1016/j.aca.2018.10.058. PubMed DOI
Evans R.J. Encyclopedia of Biophysics. Springer; Berlin, Germany: 2013.
Gaiji H., Jolly P., Ustuner S., Goggins S., Abderrabba M., Frost C.G., Estrela P. A Peptide Nucleic Acid (PNA)-DNA ferrocenyl intercalator for electrochemical sensing. Electroanalysis. 2017;29:917–922. doi: 10.1002/elan.201600576. DOI
Singh A., Sinsinbar G., Choudhary M., Kumar V., Pasricha R., Verma H., Singh S., Arora K. Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens. Actuators B Chem. 2013;185:675–684. doi: 10.1016/j.snb.2013.05.014. DOI
Altintas Z., Akgun M., Kokturk G., Uludag Y. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens. Bioelectron. 2018;100:541–548. doi: 10.1016/j.bios.2017.09.046. PubMed DOI
Wang Z., Zhang J., Chen P., Zhou X., Yang Y., Wu S., Niu L., Han Y., Wang L., Chen P., et al. Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosens. Bioelectron. 2011;26:3881–3886. doi: 10.1016/j.bios.2011.03.002. PubMed DOI
Jaiswal N., Pandey C., Soni A., Tiwari I., Rosillo-Lopez M., Salzmann C., Malhotra B., Sumana G. Electrochemical genosensor based on carboxylated graphene for detection of water-borne pathogen. Sens. Actuators B Chem. 2018;275:312–321. doi: 10.1016/j.snb.2018.07.055. DOI
Liang R., Ding J., Gao S., Qin W. Mussel-inspired surface-imprinted sensors for potentiometric label-free detection of biological species. Angew. Chem. Int. Ed. Engl. 2017;56:6833–6837. doi: 10.1002/anie.201701892. PubMed DOI
Choi J., Seong T., Jeun M., Lee K. Field-effect biosensors for on-site detection: Recent advances and promising targets. Adv. Healthc. Mater. 2017;6:1700796. doi: 10.1002/adhm.201700796. PubMed DOI
Primiceri E., Chiriacò M., Rinaldi R., Maruccio G. Cell chips as new tools for cell biology—Results, perspectives and opportunities. Lab Chip. 2013;13:3789. doi: 10.1039/c3lc50550b. PubMed DOI
Chiriacò M., Parlangeli I., Sirsi F., Poltronieri P., Primiceri E. Impedance sensing platform for detection of the food pathogen listeria monocytogenes. Electronics. 2018;7:347. doi: 10.3390/electronics7120347. DOI
Shoute L., Anwar A., MacKay S., Abdelrasoul G., Lin D., Yan Z., Nguyen A., McDermott M., Shah M., Yang J., et al. Immuno-impedimetric biosensor for onsite monitoring of ascospores and forecasting of sclerotinia stem rot of canola. Sci. Rep. 2018;8:12396. doi: 10.1038/s41598-018-30167-5. PubMed DOI PMC
Smith J.P., Foster C.W., Metters J.P., Sutcliffe O.B., Banks C.E. Metallic impurities in graphene screen-printed electrodes can influence their electrochemical properties. Electroanalysis. 2014;26:2429–2433. doi: 10.1002/elan.201400320. DOI
Grant N. Master’s Thesis. Colorado State University; Fort Collins, CO, USA: 2018. Automated Sample Preparation Using Adaptive Digital Microfluidics for Lab-on-Chip Devices.
Lee H., Xu L., Koh D., Nyayapathi N., Oh K. Various on-chip sensors with microfluidics for biological applications. Sensors. 2014;14:17008–17036. doi: 10.3390/s140917008. PubMed DOI PMC
Lee M., Lee K., Kim K., Oh K., Choo J. SERS-based immunoassay using a gold array-embedded gradient microfluidic chip. Lab Chip. 2012;12:3720. doi: 10.1039/c2lc40353f. PubMed DOI
Shanko E., van de Burgt Y., Anderson P., den Toonder J. Microfluidic magnetic mixing at low reynolds numbers and in stagnant fluids. Micromachines. 2019;10:731. doi: 10.3390/mi10110731. PubMed DOI PMC
Owen D., Mao W., Alexeev A., Cannon J., Hesketh P. Microbeads for sampling and mixing in a complex sample. Micromachines. 2013;4:103–115. doi: 10.3390/mi4010103. DOI
Salafi T., Zeming K., Zhang Y. Advancements in microfluidics for nanoparticle separation. Lab Chip. 2017;17:11–33. doi: 10.1039/C6LC01045H. PubMed DOI
Qiu X., Lombardo J., Westerhof T., Pennell M., Ng A., Alshetaiwi H., Luna B., Nelson E., Kessenbrock K., Hui E., et al. Microfluidic filter device with nylon mesh membranes efficiently dissociates cell aggregates and digested tissue into single cells. Lab Chip. 2018;18:2776–2786. doi: 10.1039/C8LC00507A. PubMed DOI PMC
Zhou Y., Wang Y., Lin Q. A microfluidic device for continuous-flow magnetically controlled capture and isolation of microparticles. J. Microelectromechanical Syst. 2010;19:743–751. doi: 10.1109/JMEMS.2010.2050194. PubMed DOI PMC
Ou X., Chen P., Huang X., Li S., Liu B. Microfluidic chip electrophoresis for biochemical analysis. J. Sep. Sci. 2019;43:258–270. doi: 10.1002/jssc.201900758. PubMed DOI
Yu S., Xu J., Huang K., Chen J., Duan J., Xu Y., Qing H., Geng L., Deng Y. A novel method to predict protein aggregations using two-dimensional native protein microfluidic chip electrophoresis. Anal. Methods. 2016;8:8306–8313. doi: 10.1039/C6AY02011A. DOI
Zhang H., Chang H., Neuzil P. DEP-on-a-Chip: Dielectrophoresis applied to microfluidic platforms. Micromachines. 2019;10:423. doi: 10.3390/mi10060423. PubMed DOI PMC
Ali N., Rampazzo R., Costa A., Krieger M. Current nucleic acid extraction methods and their implications to point-of-care diagnostics. BioMed Res. Int. 2017;2017:9306564. doi: 10.1155/2017/9306564. PubMed DOI PMC
Dutta G., Rainbow J., Zupancic U., Papamatthaiou S., Estrela P., Moschou D. Microfluidic devices for label-free dna detection. Chemosensors. 2018;6:43. doi: 10.3390/chemosensors6040043. DOI
Bhattacharyya A., Klapperich C. Encyclopedia of Microfluidics and Nanofluidics. Springer; Berlin, Germany: 2008. On-chip cell lysis; pp. 1513–1515.
Nan L., Jiang Z., Wei X. Emerging microfluidic devices for cell lysis: A review. Lab Chip. 2014;14:1060. doi: 10.1039/c3lc51133b. PubMed DOI
Seo M., Yoo J. Lab-on-a-disc platform for automated chemical cell lysis. Sensors. 2018;18:687. PubMed PMC
Church C., Zhu J., Huang G., Tzeng T., Xuan X. Integrated electrical concentration and lysis of cells in a microfluidic chip. Biomicrofluidics. 2010;4:044101. doi: 10.1063/1.3496358. PubMed DOI PMC
Zhang X., Wu X., Peng R., Li D. Electromagnetically controlled microfluidic chip for DNA extraction. Measurement. 2015;75:23–28. doi: 10.1016/j.measurement.2015.06.017. DOI
Hook S., Gallagher E., Batley G. The role of biomarkers in the assessment of aquatic ecosystem health. Integr. Environ. Assess. Manag. 2014;10:327–341. doi: 10.1002/ieam.1530. PubMed DOI PMC
Contreras-Naranjo J., Aguilar O. Suppressing non-specific binding of proteins onto electrode surfaces in the development of electrochemical immunosensors. Biosensors. 2019;9:15. doi: 10.3390/bios9010015. PubMed DOI PMC
Lichtenberg J., Ling Y., Kim S. Non-specific adsorption reduction methods in biosensing. Sensors. 2019;19:2488. doi: 10.3390/s19112488. PubMed DOI PMC
Whiteaker J.R., Zhao L., Zhang H.Y., Feng L.C., Piening B.D., Anderson L., Paulovich A.G. Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Anal. Biochem. 2007;362:44–54. doi: 10.1016/j.ab.2006.12.023. PubMed DOI PMC
Katoba J., Kuupiel D., Mashamba-Thompson T.P. Toward improving accessibility of point-of-care diagnostic services for maternal and child health in low-and middle-income countries. Point Care. 2019;18:17–25. doi: 10.1097/POC.0000000000000180. PubMed DOI PMC
Sommer G.J., Hatch A.V. IEF in microfluidic devices. Electrophoresis. 2009;30:742–757. doi: 10.1002/elps.200800598. PubMed DOI
Fakruddin M., Mannan K., Hossain M., Islam S., Mazumdar R., Chowdhury A., Chowdhury M. Nucleic acid amplification: Alternative methods of polymerase chain reaction. J. Pharm. Bioallied Sci. 2013;5:245. doi: 10.4103/0975-7406.120066. PubMed DOI PMC
Wang Q., Jin H., Xia D., Shao H., Peng K., Liu X., Huang H., Zhang Q., Guo J., Wang Y., et al. Biomimetic polymer-based method for selective capture of C-reactive protein in biological fluids. ACS Appl. Mater. Interfaces. 2018;10:41999–42008. doi: 10.1021/acsami.8b15581. PubMed DOI
Płotka-Wasylka J., Szczepańska N., de la Guardia M., Namieśnik J. Modern trends in solid phase extraction: New sorbent media. TrAC Trends Anal. Chem. 2016;77:23–43. doi: 10.1016/j.trac.2015.10.010. DOI
Zhou Y., Yan D., Yuan S., Chen Y., Fletcher E.E., Shi H., Han B. Selective binding, magnetic separation and purification of histidine-tagged protein using biopolymer magnetic core-shell nanoparticles. Protein Expr. Purif. 2018;144:5–11. doi: 10.1016/j.pep.2017.11.004. PubMed DOI
Safarik I., Safarikova M. Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn. Res. Technol. 2004;2:1–17. doi: 10.1186/1477-044X-2-7. PubMed DOI PMC
Lin C.-C., Hsu J.-L., Lee G.-B. Sample preconcentration in microfluidic devices. Microfluid. Nanofluidics. 2011;10:481–511. doi: 10.1007/s10404-010-0661-9. DOI
Wang Z., Ivory C., Minerick A.R. Surface isoelectric focusing (sIEF) with carrier ampholyte pH gradient. Electrophoresis. 2017;38:2565–2575. doi: 10.1002/elps.201600565. PubMed DOI
Taylor J., Triggle D. Comprehensive Medicinal Chemistry 2. 5th ed. Elsevier; Amsterdam, The Netherlands: 2007. pp. 357–397.
Yu S., Yan C., Hu X., He B., Jiang Y., He Q. Isoelectric focusing on microfluidic paper-based chips. Anal. Bioanal. Chem. 2019;411:5415–5422. doi: 10.1007/s00216-019-02008-5. PubMed DOI
Zhang Y., Ozdemir P. Microfluidic DNA amplification—A review. Anal. Chim. Acta. 2009;638:115–125. doi: 10.1016/j.aca.2009.02.038. PubMed DOI
Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 1986;51:263–273. doi: 10.1101/SQB.1986.051.01.032. PubMed DOI
Lui C., Cady N., Batt C. Nucleic acid-based detection of bacterial pathogens using integrated microfluidic platform systems. Sensors. 2009;9:3713–3744. doi: 10.3390/s90503713. PubMed DOI PMC
Wu J., Kodzius R., Cao W., Wen W. Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchim. Acta. 2013;181:1611–1631. doi: 10.1007/s00604-013-1140-2. DOI
Ahrberg C., Manz A., Chung B. Polymerase chain reaction in microfluidic devices. Lab Chip. 2016;16:3866–3884. doi: 10.1039/C6LC00984K. PubMed DOI
Park C., Kim J., Ku J., Kim Y., Song H., Kim J. Printed circuit board-based polymerase chain reaction chip. Sens. Lett. 2012;10:1197–1202. doi: 10.1166/sl.2012.2277. DOI
Moschou D., Vourdas N., Filippidou M., Tsouti V., Kokkoris G., Tsekenis G., Zergioti I., Chatzandroulis S., Tserepi A. Integrated biochip for PCR-based DNA amplification and detection on capacitive biosensors. SPIE Proc. 2013;8765
Hwang J., Kim S., Kim Y., Song H., Park C., Kim J. Implementation of PCB-based PCR chip using double-sided tape. Int. J. Control Autom. 2015;8:117–124. doi: 10.14257/ijca.2015.8.2.12. DOI
Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:E63. doi: 10.1093/nar/28.12.e63. PubMed DOI PMC
Itou T., Markotter W., Nel L. Current Laboratory Techniques in Rabies Diagnosis, Research and Prevention. Academic Press; London, UK: 2014. Reverse transcription-loop-mediated isothermal amplification system for the detection of rabies virus; pp. 85–95.
Zhang H., Xu Y., Fohlerova Z., Chang H., Iliescu C., Neuzil P. LAMP-on-a-chip: Revising microfluidic platforms for loop-mediated DNA amplification. TrAC Trends Anal. Chem. 2019;113:44–53. doi: 10.1016/j.trac.2019.01.015. PubMed DOI PMC
Ma Y., Li K., Chen Y., Lee Y., Chou S., Lai Y., Huang P., Ma H., Lee G. A sample-to-answer, portable platform for rapid detection of pathogens with a smartphone interface. Lab Chip. 2019;19:3804–3814. doi: 10.1039/C9LC00797K. PubMed DOI