Diagnostic and therapeutic strategies in combating implanted medical device-associated bacterial biofilm infections

. 2025 Jan 27 ; () : . [epub] 20250127

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39865215
Odkazy

PubMed 39865215
DOI 10.1007/s12223-025-01242-y
PII: 10.1007/s12223-025-01242-y
Knihovny.cz E-zdroje

Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide. Therefore, early and precise diagnosis of bacterial biofilms on implanted medical devices is essential to prevent their failure and associated complications. Culture-based methods are time consuming, more prone to contamination and often exhibit low sensitivity. Different molecular, imaging, and physical methods can aid in more accurate and faster detection of implant-associated bacterial biofilms. Biofilm growth on implant surface can be prevented either through modification of the implant material or by application of different antibacterial coatings on implant surface. Experimental studies have shown that pre-existing biofilms from medical implants can be removed by breaking down biofilm matrix, utilizing physical methods, nanomaterials and antimicrobial peptides. The current review delves into mechanism of biofilm formation on implanted medical devices and the subsequent host immune response. Much emphasis has been laid on different ongoing diagnostic and therapeutic strategies to achieve improved patient outcomes and reduced socio-economic burden.

Zobrazit více v PubMed

Abdulkareem EH, Memarzadeh K, Allaker RP et al (2015) Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J Dent 43:1462–1469. https://doi.org/10.1016/j.jdent.2015.10.010 PubMed DOI

Ahmed W, Zhai Z, Gao C (2019) Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio 2. https://doi.org/10.1016/j.mtbio.2019.100017 PubMed DOI PMC

Alessandri-Bonetti M, Jeong T, Vaienti L et al (2023) The role of microorganisms in the development of breast implant-associated anaplastic large cell lymphoma. Pathogens 12:313. https://doi.org/10.3390/pathogens12020313 PubMed DOI PMC

Allkja J, Goeres DM, Azevedo AS, Azevedo NF (2023) Interactions of microorganisms within a urinary catheter polymicrobial biofilm model. Biotechnol Bioeng 120:239–249. https://doi.org/10.1002/bit.28241 PubMed DOI

Alqutaibi AY, Aljohani A, Alduri A et al (2023) The effectiveness of cold atmospheric plasma (CAP) on bacterial reduction in dental implants: a systematic review. Biomolecules 13:1528. https://doi.org/10.3390/biom13101528 PubMed DOI PMC

Alshammari M, Ahmad A, AlKhulaifi M et al (2023) Reduction of biofilm formation of Escherichia coli by targeting quorum sensing and adhesion genes using the CRISPR/Cas9-HDR approach, and its clinical application on urinary catheter. JIPHP 16:1174–1183. https://doi.org/10.1016/j.jiph.2023.05.026 DOI

Ameer S, Ibrahim H, Yaseen MU et al (2023) Electrochemical impedance spectroscopy-based sensing of biofilms: a comprehensive review. Biosensors 13:777. https://doi.org/10.3390/bios13080777 PubMed DOI PMC

Amulic B, Cazalet C, Hayes GL et al (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. https://doi.org/10.1146/annurev-immunol-020711-074942 PubMed DOI

Andersen MJ, Fong C, La Bella AA et al (2022) Inhibiting host-protein deposition on urinary catheters reduces associated urinary tract infections. Elife 11. https://doi.org/10.7554/eLife.75798 PubMed DOI PMC

Anjum S, Singh S, Benedicte L et al (2018) Biomodification strategies for the development of antimicrobial urinary catheters: overview and advances. Global Chall 2:1700068. https://doi.org/10.1002/gch2.201700068 DOI

Anurag Anand A, Amod A, Anwar S, et al (2023) A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria. Crit Rev Microbiol 1–20. https://doi.org/10.1080/1040841X.2023.2293019

Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16:397–409. https://doi.org/10.1038/s41579-018-0019-y PubMed DOI

Asfour L, Smyth D, Whitchurch CB et al (2022) Fluorescence in situ hybridization and microbial community profiling analysis of explanted cochlear implants. Acta Otolaryngol 142:395–401. https://doi.org/10.1080/00016489.2022.2070931 PubMed DOI

Asker D, Awad TS, Raju D et al (2021) Preventing Pseudomonas aeruginosa biofilms on indwelling catheters by surface-bound enzymes. ACS Appl Bio Mater 4:8248–8258. https://doi.org/10.1021/acsabm.1c00794 PubMed DOI PMC

Auletta S, Varani M, Horvat R et al (2019) PET radiopharmaceuticals for specific bacteria imaging: a systematic review. JCM 8:197. https://doi.org/10.3390/jcm8020197 PubMed DOI PMC

Banerjee D, Shivapriya PM, Gautam PK et al (2020) A review on basic biology of bacterial biofilm infections and their treatments by nanotechnology-based approaches. Proc Natl Acad Sci, India, Sect B Biol Sci 90:243–259. https://doi.org/10.1007/s40011-018-01065-7 DOI

Bassegoda A, Ivanova K, Ramon E, Tzanov T (2018) Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl Microbiol Biotechnol 102:2075–2089. https://doi.org/10.1007/s00253-018-8776-0 PubMed DOI

Bennett AN, Woolard KJ, Sorge A et al (2023) Spectrum of activity of Salmonella anti-biofilm compounds: evaluation of activity against biofilm-forming ESKAPE pathogens. Biofilm 6. https://doi.org/10.1016/j.bioflm.2023.100158 PubMed DOI PMC

Bera JH, Raj A. LS, Gang S, Patel DN (2023) Biofilm. In: Microbial biofilms. Elsevier, pp 369–390

Berneking L, Haas M, Frielinghaus L et al (2022) Evaluation of a syndromic panel polymerase chain reaction (spPCR) assay for the diagnosis of device-associated bone and joint infections (BJI). IJID 116:283–288. https://doi.org/10.1016/j.ijid.2022.01.013 PubMed DOI

Böll B, Schalk E, Buchheidt D et al (2021) Central venous catheter–related infections in hematology and oncology: 2020 updated guidelines on diagnosis, management, and prevention by the infectious diseases working party (AGIHO) of the German society of hematology and medical oncology (DGHO). Ann Hematol 100:239–259. https://doi.org/10.1007/s00277-020-04286-x PubMed DOI

Bračič M, Potrč S, Finšgar M et al (2023) Amoxicillin doped hyaluronic acid/fucoidan multifunctional coatings for medical grade stainless steel orthopedic implants. Appl Surf Sci 611. https://doi.org/10.1016/j.apsusc.2022.155621 DOI

Brann KR, Fullerton MS, Onyilagha FI et al (2019) Infection of primary human alveolar macrophages alters Staphylococcus aureus toxin production and activity. Infect Immun 87:e00167–e219. https://doi.org/10.1128/IAI.00167-19 PubMed DOI PMC

Breslawec AP, Wang S, Li C, Poulin MB (2021) Anionic amino acids support hydrolysis of poly-β-(1,6)-N-acetylglucosamine exopolysaccharides by the biofilm dispersing glycosidase dispersin B. JBC 296. https://doi.org/10.1074/jbc.RA120.015524 DOI

Buzalewicz I, Kaczorowska A, Fijałkowski W et al (2024) Quantifying the dynamics of bacterial biofilm formation on the surface of soft contact lens materials using digital holographic tomography to advance biofilm research. IJMS 25:2653. https://doi.org/10.3390/ijms25052653 PubMed DOI PMC

Cai Z, Li Y, Wang Y et al (2019) Antimicrobial effects of photodynamic therapy with antiseptics on Staphylococcus aureus biofilm on titanium surface. Photodyn Ther 25:382–388. https://doi.org/10.1016/j.pdpdt.2019.01.024 DOI

Caldara M, Belgiovine C, Secchi E, Rusconi R (2022) Environmental, microbiological, and immunological features of bacterial biofilms associated with implanted medical devices. Clin Microbiol Rev 35:e00221–e320. https://doi.org/10.1128/cmr.00221-20 PubMed DOI PMC

Cámara M, Green W, MacPhee CE, et al (2022) Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge. npj biofilms microbiomes 8:42. https://doi.org/10.1038/s41522-022-00306-y

Capatina D, Feier B, Olah D et al (2024) Biofilm monitoring through the detection of cyclic diguanosine-monophosphate with an easy-to-use electrochemical sensor. Electrochim Acta 489. https://doi.org/10.1016/j.electacta.2024.144231 DOI

Caputo P, Di Martino MC, Perfetto B et al (2018) Use of MALDI-TOF MS to discriminate between biofilm-producer and non-producer strains of Staphylococcus epidermidis. IJERPH 15:1695. https://doi.org/10.3390/ijerph15081695 PubMed DOI PMC

Cara A, Ballet M, Hemery C et al (2021) Antibiotics in bone cements used for prosthesis fixation: an efficient way to prevent Staphylococcus aureus and Staphylococcus epidermidis prosthetic joint infection. Front Med 7. https://doi.org/10.3389/fmed.2020.576231 DOI

Chen Y, Shi T, Li Y et al (2022) Fusobacterium nucleatum: the opportunistic pathogen of periodontal and peri-implant diseases. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.860149 PubMed DOI PMC

Christensen GD, Simpson WA, Anglen JO, Gainor BJ (2000) Methods for evaluating attached bacteria and biofilms. In: An YH, Friedman RJ (eds) Handbook of bacterial adhesion: principles, methods, and applications. Humana Press, Totowa, NJ, pp 213–233

Ciarolla AA, Lapin N, Williams D et al (2022) Physical approaches to prevent and treat bacterial biofilm. Antibiotics 12:54. https://doi.org/10.3390/antibiotics12010054 PubMed DOI PMC

Cole SJ, Records AR, Orr MW et al (2014) Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms. Infect Immun 82:2048–2058. https://doi.org/10.1128/IAI.01652-14 PubMed DOI PMC

Coneski PN, Fulmer PA, Wynne JH (2012) Enhancing the fouling resistance of biocidal urethane coatings via surface chemistry modulation. Langmuir 28:7039–7048. https://doi.org/10.1021/la300749a PubMed DOI

Costa F, Sousa DM, Parreira P et al (2017) N-acetylcysteine-functionalized coating avoids bacterial adhesion and biofilm formation. Sci Rep 7:17374. https://doi.org/10.1038/s41598-017-17310-4 PubMed DOI PMC

Costoya A, Velázquez Becerra LE, Meléndez-Ortiz HI et al (2019) Immobilization of antimicrobial and anti-quorum sensing enzymes onto GMA-grafted poly(vinyl chloride) catheters. Int J Pharm 558:72–81. https://doi.org/10.1016/j.ijpharm.2018.12.075 PubMed DOI

Cruz A, Condinho M, Carvalho B et al (2021) The two weapons against bacterial biofilms: detection and treatment. Antibiotics 10:1482. https://doi.org/10.3390/antibiotics10121482 PubMed DOI PMC

Dadi NCT, Radochová B, Vargová J, Bujdáková H (2021) Impact of healthcare-associated infections connected to medical devices—an update. Microorganisms 9:2332. https://doi.org/10.3390/microorganisms9112332 PubMed DOI PMC

Dell’Acqua G, Giacometti A, Cirioni O et al (2004) Suppression of drug-resistant Staphylococcal infections by the quorum-sensing inhibitor RNAIII-inhibiting peptide. J Infect Dis 190:318–320. https://doi.org/10.1086/386546 PubMed DOI

Demidov VV, Demidova N, Hazem D et al (2024) Optical coherence tomography-based detection of orthopaedic implant biofilms formed by methicillin-resistant S.aureus (MRSA). In: Dai T, Wu MX, Popp J (eds) Photonic diagnosis, monitoring, prevention, and treatment of infections and inflammatory diseases 2024. SPIE, San Francisco, United States, p 12 DOI

Deng C, Chiu KH-Y, Lou N, Xing F (2024) Case report: occult Listeria monocytogenes invasion leading to prosthetic hip joint infection in a patient with rheumatoid arthritis taking tofacitinib. Front Med 10:1322993. https://doi.org/10.3389/fmed.2023.1322993 DOI

Department of Otorhinolaryngology and Head Neck Surgery, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India, Bhattarai S, Luitel SS, et al (2024) Biofilm in cochlear implant: a surgeon’s diagnosis. JASPI 2:29–35. https://doi.org/10.62541/jaspi026

Di Spirito F, Giordano F, Di Palo MP et al (2024) Microbiota of peri-implant healthy tissues, peri-implant mucositis, and peri-implantitis: a comprehensive review. Microorganisms 12:1137. https://doi.org/10.3390/microorganisms12061137 PubMed DOI PMC

Ding C, Hu M, Shangguan Y et al (2022) Epidemic trends in high tuberculosis burden countries during the last three decades and feasibility of achieving the global targets at the country level. Front Med 9. https://doi.org/10.3389/fmed.2022.798465 DOI

Djošić M, Janković A, Stevanović M et al (2023) Hydroxyapatite/poly(vinyl alcohol)/chitosan coating with gentamicin for orthopedic implants. Mater Chem Phys 303. https://doi.org/10.1016/j.matchemphys.2023.127766 DOI

Donelli G, Francolini I, Romoli D et al (2007) Synergistic activity of dispersin B and cefamandole nafate in inhibition of Staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother 51:2733–2740. https://doi.org/10.1128/AAC.01249-06 PubMed DOI PMC

Drago L, Signori V, De Vecchi E et al (2013) Use of dithiothreitol to improve the diagnosis of prosthetic joint infections. J Orthop Res 31:1694–1699. https://doi.org/10.1002/jor.22423 PubMed DOI

Duran Ramirez JM, Gomez J, Hanson BM et al (2023) Staphylococcus aureus breast implant infection isolates display recalcitrance to antibiotic pocket irrigants. Microbiol Spectr 11:e02884–e2922. https://doi.org/10.1128/spectrum.02884-22 PubMed DOI

Duszynska W, Rosenthal VD, Szczesny A et al (2020) Device associated –health care associated infections monitoring, prevention and cost assessment at intensive care unit of university hospital in Poland (2015–2017). BMC Infect Dis 20:761. https://doi.org/10.1186/s12879-020-05482-w PubMed DOI PMC

Elzahaby DA, Farrag HA, Haikal RR et al (2023) Inhibition of adherence and biofilm formation of Pseudomonas aeruginosa by immobilized ZnO nanoparticles on silicone urinary catheter grafted by gamma irradiation. Microorganisms 11:913. https://doi.org/10.3390/microorganisms11040913 PubMed DOI PMC

Escárcega-González CE, Garza-Cervantes JA, Vazquez-Rodríguez A et al (2018) In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. IJN 13:2349–2363. https://doi.org/10.2147/IJN.S160605 PubMed DOI PMC

Esposito S, Purrello SM, Bonnet E et al (2013) Central venous catheter-related biofilm infections: an up-to-date focus on methicillin-resistant Staphylococcus aureus. J Glob Antimicrob Resist 1:71–78. https://doi.org/10.1016/j.jgar.2013.03.002 PubMed DOI

Esteves GM, Esteves J, Resende M et al (2022) Antimicrobial and antibiofilm coating of dental implants—past and new perspectives. Antibiotics 11:235. https://doi.org/10.3390/antibiotics11020235 PubMed DOI PMC

Floyd KA, Eberly AR, Hadjifrangiskou M (2017) Adhesion of bacteria to surfaces and biofilm formation on medical devices. In: Biofilms and implantable medical devices. Elsevier, pp 47–95

Fung WWS, Sze RK-H, Szeto C-C, Chow K-M (2024) Staphylococcus lugdunensis peritoneal dialysis-related peritonitis: a matched comparative analysis. Kidney Medicine 6. https://doi.org/10.1016/j.xkme.2024.100811 PubMed DOI PMC

Garcia DR, Deckey DG, Zega A et al (2020) Analysis of growth and biofilm formation of bacterial pathogens on frequently used spinal implant materials. Spine Deform 8:351–359. https://doi.org/10.1007/s43390-020-00054-z PubMed DOI

Gbejuade HO, Lovering AM, Webb JC (2015) The role of microbial biofilms in prosthetic joint infections: a review. Acta Orthop 86:147–158. https://doi.org/10.3109/17453674.2014.966290 PubMed DOI PMC

Goda RM, El-Baz AM, Khalaf EM et al (2022) Combating bacterial biofilm formation in urinary catheter by green silver nanoparticle. Antibiotics 11:495. https://doi.org/10.3390/antibiotics11040495 PubMed DOI PMC

Gomes Von Borowski R, Chat S, Schneider R et al (2021) Capsicumicine, a new bioinspired peptide from red peppers prevents staphylococcal biofilm in vitro and in vivo via a matrix anti-assembly mechanism of action. Microbiol Spectr 9:e00471–e521. https://doi.org/10.1128/Spectrum.00471-21 PubMed DOI PMC

Gominet M, Compain F, Beloin C, Lebeaux D (2017) Central venous catheters and biofilms: where do we stand in 2017? APMIS 125:365–375. https://doi.org/10.1111/apm.12665 PubMed DOI

Gopal S, Berg D, Hagen N et al (2010) Maltose and maltodextrin utilization by Listeria monocytogenes depend on an inducible ABC transporter which is repressed by glucose. PLoS ONE 5. https://doi.org/10.1371/journal.pone.0010349 PubMed DOI PMC

Gopalakrishnan S, Rana MM, Curry MA et al (2024) Sticker-type remote monitoring system for early risk detection of catheter associated urinary tract infections. IEEE Trans Biomed Eng 71:2070–2079. https://doi.org/10.1109/TBME.2024.3361439 PubMed DOI

Granick MS, Paribathan C, Shanmugam M, Ramasubbu N (2017) Direct-contact low-frequency ultrasound clearance of biofilm from metallic implant materials. Eplasty 17 PubMed PMC

Gupta P, Sarkar S, Das B et al (2016) Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol 198:1–15. https://doi.org/10.1007/s00203-015-1148-6 PubMed DOI

Haddadin Y, Annamaraju P, Regunath H (2024) Central line–associated blood stream infections. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

Hameister R, Lim CT, Lohmann CH et al (2018) What is the role of diagnostic and therapeutic sonication in periprosthetic joint infections? J Arthroplasty 33:2575–2581. https://doi.org/10.1016/j.arth.2018.02.077 PubMed DOI

Hazen JE, Di Venanzio G, Hultgren SJ, Feldman MF (2023) Catheterization of mice triggers resurgent urinary tract infection seeded by a bladder reservoir of Acinetobacter baumannii. Sci Transl Med 15:eabn8134. https://doi.org/10.1126/scitranslmed.abn8134

https://www.futuremarketinsights.com/reports/catheter-associated-urinary-tract-infections-treatment-market

https://www.statista.com/statistics/184594/deaths-by-hiv-disease-in-the-us-since-1990/

Hu X, Huang Y-Y, Wang Y et al (2018) Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front Microbiol 9:1299. https://doi.org/10.3389/fmicb.2018.01299 PubMed DOI PMC

Huiszoon RC, Subramanian S, Ramiah Rajasekaran P et al (2019) Flexible platform for in situ impedimetric detection and bioelectric effect treatment of Escherichia coli biofilms. IEEE Trans Biomed Eng 66:1337–1345. https://doi.org/10.1109/TBME.2018.2872896 PubMed DOI

Ito T, Mori G, Oda Y et al (2021) Clinical evaluation of periodontal pathogen levels by real-time polymerase chain reaction in peri-implantitis patients. Int J Implant Dent 7:105. https://doi.org/10.1186/s40729-021-00385-0 PubMed DOI PMC

Jayakumar J, Vinod V, Arumugam T et al (2024) Efficacy of lysostaphin functionalized silicon catheter for the prevention of Staphylococcus aureus biofilm. Int J Biol Macromol 256. https://doi.org/10.1016/j.ijbiomac.2023.128547 PubMed DOI

Jennings LK, Storek KM, Ledvina HE et al (2015) Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci USA 112:11353–11358. https://doi.org/10.1073/pnas.1503058112 PubMed DOI PMC

Jensen LK, Jensen HE, Blirup-Plum SA et al (2022) Coating of bone implants with silica, hyperbranched polyethyleneimine, and gentamicin prevents development of osteomyelitis in a porcine model. Materialia 24. https://doi.org/10.1016/j.mtla.2022.101473 DOI

Jun Y, Youn CK, Jo E-R, Cho SI (2019) In vitro inhibitory activity of N-acetylcysteine on tympanostomy tube biofilms from methicillin-resistant Staphylococcus aureus and quinolone-resistant Pseudomonas aeruginosa. Int J Pediatr Otorhinolaryngol 126. https://doi.org/10.1016/j.ijporl.2019.109622 PubMed DOI

Just IA, Barthel F, Moter A et al (2023) Fluorescence in situ hybridization and polymerase chain reaction to detect infections of cardiac implantable electronic devices. EP Europace 25:578–585. https://doi.org/10.1093/europace/euac228 DOI

Kadirvelu L, Sivaramalingam SS, Jothivel D et al (2024) A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CRMICR 6. https://doi.org/10.1016/j.crmicr.2024.100231 PubMed DOI PMC

Kalakonda P, Mandal P, Laxmi Mynepally S et al (2024) Comparison of multi-metallic nanoparticles-alternative antibacterial agent: understanding the role of their antibacterial properties. J Inorg Organomet Polym 34:2203–2218. https://doi.org/10.1007/s10904-023-02960-x DOI

Kaplan JB, Ragunath C, Ramasubbu N, Fine DH (2003) Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β-hexosaminidase activity. J Bacteriol 185:4693–4698. https://doi.org/10.1128/JB.185.16.4693-4698.2003 PubMed DOI PMC

Khan N, Aslan H, Büttner H et al (2022) The giant staphylococcal protein Embp facilitates colonization of surfaces through Velcro-like attachment to fibrillated fibronectin. Elife 11. https://doi.org/10.7554/eLife.76164 PubMed DOI PMC

Kiran MD, Giacometti A, Cirioni O, Balaban N (2008) Suppression of biofilm related, device-associated infections by staphylococcal quorum sensing inhibitors. Int J Artif Organs 31:761–770. https://doi.org/10.1177/039139880803100903 PubMed DOI

Kirchhoff L, Arweiler-Harbeck D, Arnolds J et al (2020) Imaging studies of bacterial biofilms on cochlear implants—bioactive glass (BAG) inhibits mature biofilm. PLoS ONE 15. https://doi.org/10.1371/journal.pone.0229198 PubMed DOI PMC

Klink MJ, Laloo N, Leudjo Taka A et al (2022) Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles against selected waterborne bacterial and yeast pathogens. Molecules 27:3532. https://doi.org/10.3390/molecules27113532 PubMed DOI PMC

Kolar SSN, Luca V, Baidouri H et al (2015) Esculentin-1a(1–21)NH2: a frog skin-derived peptide for microbial keratitis. Cell Mol Life Sci 72:617–627. https://doi.org/10.1007/s00018-014-1694-0 PubMed DOI

Kralik P, Ricchi M (2017) A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol 8:. https://doi.org/10.3389/fmicb.2017.00108

Kurmoo Y, Hook AL, Harvey D et al (2020) Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections. Biomater Sci 8:1464–1477. https://doi.org/10.1039/C9BM00875F PubMed DOI PMC

Kwiecinski J, Na M, Jarneborn A et al (2016) Tissue plasminogen activator coating on implant surfaces reduces Staphylococcus aureus biofilm formation. Appl Environ Microbiol 82:394–401. https://doi.org/10.1128/AEM.02803-15 PubMed DOI

Lee DU, Kayumov M, Park J et al (2024) Antibiofilm and antithrombotic hydrogel coating based on superhydrophilic zwitterionic carboxymethyl chitosan for blood-contacting devices. Bioact Mater 34:112–124. https://doi.org/10.1016/j.bioactmat.2023.12.009 PubMed DOI

Li C, Renz N, Thies CO, Trampuz A (2018) Meta-analysis of sonicate fluid in blood culture bottles for diagnosing periprosthetic joint infection. J Bone Joint Infect 3:273–279. https://doi.org/10.7150/jbji.29731 DOI

Li X, Li P, Saravanan R et al (2014) Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater 10:258–266. https://doi.org/10.1016/j.actbio.2013.09.009 PubMed DOI

Lim D, Skinner D, Mclemore J et al (2020) In vitro evaluation of a ciprofloxacin and azithromycin sinus stent for Pseudomonas aeruginosa biofilms. Int Forum Allergy Rh 10:121–127. https://doi.org/10.1002/alr.22475 DOI

Lim K, Chua RRY, Saravanan R et al (2013) Immobilization studies of an engineered arginine–tryptophan rich peptide on a silicone surface with antimicrobial and antibiofilm activity. ACS Appl Mater Interfaces 5:6412–6422. https://doi.org/10.1021/am401629p PubMed DOI

Lim K, Chua RRY, Ho B et al (2015) Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties. Acta Biomater 15:127–138. https://doi.org/10.1016/j.actbio.2014.12.015 PubMed DOI

Litzler P-Y, Benard L, Barbier-Frebourg N et al (2007) Biofilm formation on pyrolytic carbon heart valves: influence of surface free energy, roughness, and bacterial species. J Thorac Cardiovasc Surg 134:1025–1032. https://doi.org/10.1016/j.jtcvs.2007.06.013 PubMed DOI

Liu L, Shi H, Yu H et al (2019) One-step hydrophobization of tannic acid for antibacterial coating on catheters to prevent catheter-associated infections. Biomater Sci 7:5035–5043. https://doi.org/10.1039/C9BM01223K PubMed DOI

Liu X, Sai F, Li L, et al (2020) Clinical characteristics and risk factors of catheter-associated urinary tract infections caused by Klebsiella pneumoniae. Ann Palliat Med 9:2668–2677. https://doi.org/10.21037/apm-20-1052

Ma X, Zhou S, Xu X, Du Q (2022) Copper-containing nanoparticles: mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg 9. https://doi.org/10.3389/fsurg.2022.905892 PubMed DOI PMC

Maimaiti Z, Li Z, Xu C et al (2023) Host immune regulation in implant-associated infection (IAI): what does the current evidence provide us to prevent or treat IAI? Bioengineering 10:356. https://doi.org/10.3390/bioengineering10030356 PubMed DOI PMC

Maisetta G, Grassi L, Di Luca M et al (2016) Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters. Biofouling 32:787–800. https://doi.org/10.1080/08927014.2016.1194401 PubMed DOI

Malhotra A, Chauhan SR, Rahaman M et al (2023) Phyto-assisted synthesis of zinc oxide nanoparticles for developing antibiofilm surface coatings on central venous catheters. Front Chem 11:1138333. https://doi.org/10.3389/fchem.2023.1138333 PubMed DOI PMC

Mayorga-Martinez CC, Zelenka J, Klima K et al (2023) Multimodal-driven magnetic microrobots with enhanced bactericidal activity for biofilm eradication and removal from titanium mesh. Adv Mater 35:2300191. https://doi.org/10.1002/adma.202300191 DOI

Mayslich C, Grange PA, Dupin N (2021) Cutibacterium acnes as an opportunistic pathogen: an update of its virulence-associated factors. Microorganisms 9:303. https://doi.org/10.3390/microorganisms9020303 PubMed DOI PMC

Mekonnen SA, El Husseini N, Turdiev A et al (2022) Catheter-associated urinary tract infection by Pseudomonas aeruginosa progresses through acute and chronic phases of infection. Proc Natl Acad Sci USA 119. https://doi.org/10.1073/pnas.2209383119 PubMed DOI PMC

Melvin JA, Montelaro RC, Bomberger JM (2016) Clinical potential of engineered cationic antimicrobial peptides against drug resistant biofilms. Expert Rev Anti-Infect Ther 14:989–991. https://doi.org/10.1080/14787210.2016.1236687 PubMed DOI PMC

Morales AG, Jofre J, Perez-Tijerina E, et al (2021) Effect of titanium coated with 3 different types of copper nanoparticles in the oral biofilm formation. JDHODT 11:1–6. https://doi.org/10.15406/jdhodt.2021.12.00541

Moriarty TF, Zaat SAJ, Busscher HJ (eds) (2013) Biomaterials associated infection: immunological aspects and antimicrobial strategies. Springer, New York, New York, NY

Nandakumar V, Chittaranjan S, Kurian VM, Doble M (2013) Characteristics of bacterial biofilm associated with implant material in clinical practice. Polym J 45:137–152. https://doi.org/10.1038/pj.2012.130 DOI

Neu TR, Lawrence JR (2015) Innovative techniques, sensors, and approaches for imaging biofilms at different scales. TIM 23:233–242. https://doi.org/10.1016/j.tim.2014.12.010 DOI

Nielsen CK, Subbiahdoss G, Zeng G et al (2018) Antibacterial isoeugenol coating on stainless steel and polyethylene surfaces prevents biofilm growth. J Appl Microbiol 124:179–187. https://doi.org/10.1111/jam.13634 PubMed DOI

Nikam SP, Nettleton K, Everitt JI et al (2020) Antibiotic eluting poly(ester urea) films for control of a model cardiac implantable electronic device infection. Acta Biomater 111:65–79. https://doi.org/10.1016/j.actbio.2020.04.025 PubMed DOI

Nowicka J, Janczura A, Pajączkowska M et al (2023) Effect of CAMEL peptide on the biofilm of Staphylococcus epidermidis and Staphylococcus haemolyticus formed on orthopedic implants. Antibiotics 12:1671. https://doi.org/10.3390/antibiotics12121671 PubMed DOI PMC

Oliva A, Miele MC, Al Ismail D et al (2021) Challenges in the microbiological diagnosis of implant-associated infections: a summary of the current knowledge. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.750460 PubMed DOI PMC

Osei KA, Mieher JL, Patel M et al (2022) The Glycoprotein 340’s scavenger receptor cysteine-rich domain promotes adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to contact lens polymers. Infect Immun 90:e00339–e421. https://doi.org/10.1128/IAI.00339-21 PubMed DOI PMC

Pandey DK, Kagdada HL, Sanchora P, Singh DK (2021) Overview of Raman spectroscopy: fundamental to applications. In: Singh DK, Pradhan M, Materny A (eds) Modern techniques of spectroscopy. Springer Singapore, Singapore, pp 145–184

Park J, Chi L, Kwon H-Y et al (2022) Decaffeinated green tea extract as a nature-derived antibiotic alternative: an application in antibacterial nano-thin coating on medical implants. Food Chem 383. https://doi.org/10.1016/j.foodchem.2022.132399 PubMed DOI

Parvizi J, Erkocak OF, Della Valle CJ (2014) Culture-negative periprosthetic joint infection. J Bone J Surg 96:430–436. https://doi.org/10.2106/JBJS.L.01793 DOI

Patra D, Ghosh S, Mukherjee S et al (2024) Antimicrobial nanocomposite coatings for rapid intervention against catheter-associated urinary tract infections. Nanoscale 16:11109–11125. https://doi.org/10.1039/D4NR00653D PubMed DOI

Peel TN, Cole NC, Dylla BL, Patel R (2015) Matrix-assisted laser desorption ionization time of flight mass spectrometry and diagnostic testing for prosthetic joint infection in the clinical microbiology laboratory. Diagn Microbiol Infect Dis 81:163–168. https://doi.org/10.1016/j.diagmicrobio.2014.11.015 PubMed DOI

Perez P, Bush TR, Hong HG et al (2018) Reducing levels of medical device contamination through package redesign and opening technique. PLoS ONE 13. https://doi.org/10.1371/journal.pone.0206892 PubMed DOI PMC

Petain S, Kasnak G, Firatli E et al (2021) Periodontitis and peri-implantitis tissue levels of Treponema denticola-CTLP and its MMP-8 activating ability. Acta Histochem 123. https://doi.org/10.1016/j.acthis.2021.151767 PubMed DOI

Polyak A, Képes Z, Trencsényi G (2023) Implant imaging: perspectives of nuclear imaging in implant, biomaterial, and stem cell research. Bioengineering 10:521. https://doi.org/10.3390/bioengineering10050521 PubMed DOI PMC

Pradhan L, Sah P, Nayak M et al (2024) Biosynthesized silver nanoparticles prevent bacterial infection in chicken egg model and mitigate biofilm formation on medical catheters. J Biol Inorg Chem 29:353–373. https://doi.org/10.1007/s00775-024-02050-4 PubMed DOI

Prestat M, Thierry D (2021) Corrosion of titanium under simulated inflammation conditions: clinical context and in vitro investigations. Acta Biomater 136:72–87. https://doi.org/10.1016/j.actbio.2021.10.002 PubMed DOI

Prinz J, Wink M, Neuhaus S et al (2023) Effective biofilm eradication on orthopedic implants with methylene blue based antimicrobial photodynamic therapy in vitro. Antibiotics 12:118. https://doi.org/10.3390/antibiotics12010118 PubMed DOI PMC

Priyadarshini E, Kumar R, Balakrishnan K et al (2024) Biofilm inhibition on medical devices and implants using carbon dots: an updated review. ACS Appl Bio Mater 7:2604–2619. https://doi.org/10.1021/acsabm.4c00024 PubMed DOI

Rabin N, Zheng Y, Opoku-Temeng C et al (2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 7:493–512. https://doi.org/10.4155/fmc.15.6 PubMed DOI

Ramstedt M, Burmølle M (2022) Can multi-species biofilms defeat antimicrobial surfaces on medical devices? Curr Opin Biomed Eng 22. https://doi.org/10.1016/j.cobme.2022.100370 DOI

Rangel K, Lechuga GC, Provance DW et al (2023) An update on the therapeutic potential of antimicrobial peptides against Acinetobacter baumannii infections. Pharmaceuticals 16:1281. https://doi.org/10.3390/ph16091281 PubMed DOI PMC

Rao TS, Feser R (2024) Biofilm formation by sulphate-reducing bacteria on different metals and their prospective role in titanium corrosion. Environ Technol 45:2575–2588. https://doi.org/10.1080/09593330.2023.2178976 PubMed DOI

Rebrosova K, Samek O, Kizovsky M et al (2022) Raman spectroscopy—a novel method for identification and characterization of microbes on a single-cell level in clinical settings. Front Cell Infect Microbiol 12. https://doi.org/10.3389/fcimb.2022.866463 PubMed DOI PMC

Ribeiro M, Monteiro FJ, Ferraz MP (2012) Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2:176–194. https://doi.org/10.4161/biom.22905 PubMed DOI PMC

Ronin D, Boyer J, Alban N et al (2022) Current and novel diagnostics for orthopedic implant biofilm infections: a review. APMIS 130:59–81. https://doi.org/10.1111/apm.13197 PubMed DOI

Rozis M, Evangelopoulos DS, Pneumaticos SG (2021) Orthopedic implant-related biofilm pathophysiology: a review of the literature. Cureus. https://doi.org/10.7759/cureus.15634 PubMed DOI PMC

Russo A, Gatti A, Felici S et al (2023) Piezoelectric ultrasonic debridement as new tool for biofilm removal from orthopedic implants: a study in vitro. J Orthop Res 41:2749–2755. https://doi.org/10.1002/jor.25599 PubMed DOI

Sahoo J, Sarkhel S, Mukherjee N, Jaiswal A (2022) Nanomaterial-based antimicrobial coating for biomedical implants: new age solution for biofilm-associated infections. ACS Omega 7:45962–45980. https://doi.org/10.1021/acsomega.2c06211 PubMed DOI PMC

Saleem M, Syed Khaja AS, Hossain A et al (2022) Catheter-associated urinary tract infection in intensive care unit patients at a tertiary care hospital, Hail. Kingdom of Saudi Arabia Diagn 12:1695. https://doi.org/10.3390/diagnostics12071695 DOI

Savčić N, Henjaš D, Jezdić M, et al (2022) Porphyromonas gingivalis in different peri-implant conditions: a pilot cross - sectional study. Acta Stomatol Croat 56:387–394. https://doi.org/10.15644/asc56/4/5

Schmitz MGJ, Riool M, De Boer L et al (2023) Development of an antimicrobial peptide SAAP-148-functionalized supramolecular coating on titanium to prevent biomaterial-associated infections. Adv Mater Technol 8:2201846. https://doi.org/10.1002/admt.202201846 DOI

Schoenmakers JWA, Heuker M, López-Álvarez M et al (2021) Image-guided in situ detection of bacterial biofilms in a human prosthetic knee infection model: a feasibility study for clinical diagnosis of prosthetic joint infections. Eur J Nucl Med Mol Imaging 48:757–767. https://doi.org/10.1007/s00259-020-04982-w PubMed DOI

Seebach E, Kubatzky KF (2019) Chronic implant-related bone infections—can immune modulation be a therapeutic strategy? Front Immunol 10:1724. https://doi.org/10.3389/fimmu.2019.01724 PubMed DOI PMC

Shaikh S, Lapin NA, Prasad B et al (2023) Intermittent alternating magnetic fields diminish metal-associated biofilm in vivo. Sci Rep 13:22456. https://doi.org/10.1038/s41598-023-49660-7 PubMed DOI PMC

Shakoori AR (2017) Fluorescence in situ hybridization (FISH) and its applications. In: Bhat TA, Wani AA (eds) Chromosome structure and aberrations. Springer India, New Delhi, pp 343–367

Sharma S, Mohler J, Mahajan SD et al (2023) Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 11:1614. https://doi.org/10.3390/microorganisms11061614 PubMed DOI PMC

Shawky MAE-G, Abd Eltawab AS, Ahmed AA-E (2019) Transient periportal hyperechogenicity in feverish patients: a novel ultrasonographic finding. J Ultrasound 22:179–184. https://doi.org/10.1007/s40477-019-00369-2 PubMed DOI PMC

Shi J, Liu Y, Wang Y et al (2015) Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci Rep 5:16336. https://doi.org/10.1038/srep16336 PubMed DOI PMC

Shi Z, Neoh KG, Kang ET et al (2009) Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. Biomacromol 10:1603–1611. https://doi.org/10.1021/bm900203w DOI

Shihadeh OM, Amin H, Hammadi F (2023) Multiple rare organisms causing ventriculoperitoneal shunt infection and brain abscess. Qatar Med. J. 2023:. https://doi.org/10.5339/qmj.2023.7

Shunmugaperumal T (2010) Biofilm eradication and prevention: a pharmaceutical approach to medical device infections. Wiley, Hoboken, N.J. DOI

Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73:17–48. https://doi.org/10.3322/caac.21763 PubMed DOI

Singh A, Amod A, Mulpuru V et al (2023) Finding novel AMPs secreted from the human microbiome as potent antibacterial and antibiofilm agents and studying their synergistic activity with Ag NCs. ACS Appl Bio Mater 6:3674–3682. https://doi.org/10.1021/acsabm.3c00302 PubMed DOI

Singh A, Amod A, Pandey P et al (2022) Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed Mater 17. https://doi.org/10.1088/1748-605X/ac50f6 DOI

Singh A, Gautam PK, Verma A et al (2020) Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnol Rep 25. https://doi.org/10.1016/j.btre.2020.e00427 DOI

Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:. https://doi.org/10.3389/fmicb.2015.00791

Slobodníková L, Fialová S, Rendeková K et al (2016) Antibiofilm activity of plant polyphenols. Molecules 21:1717. https://doi.org/10.3390/molecules21121717 PubMed DOI PMC

Sopata M, Karpiński TM, Jakubowicz J, Sopata M (2021) Development of tantalum with highly hydrophilic surface and antimicrobial properties obtained by micro-arc oxidation process. J Biomed Mater Res 109:829–840. https://doi.org/10.1002/jbm.b.34748 DOI

Soria-Bustos J, Ares MA, Gómez-Aldapa CA et al (2020) Two type VI secretion systems of Enterobacter cloacae are required for bacterial competition, cell adherence, and intestinal colonization. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.560488 PubMed DOI PMC

Souza JGS, Bertolini MM, Costa RC, et al (2021) Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience 24:102008. https://doi.org/10.1016/j.isci.2020.102008

Staats A, Li D, Sullivan AC, Stoodley P (2021) Biofilm formation in periprosthetic joint infections. Ann Joint 6:43–43. https://doi.org/10.21037/aoj-20-85

Sun H, Chan Y, Li X et al (2022) Multi-omics analysis of oral bacterial biofilm on titanium oxide nanostructure modified implant surface: in vivo sequencing-based pilot study in beagle dogs. Mater Today Bio 15. https://doi.org/10.1016/j.mtbio.2022.100275 PubMed DOI PMC

Suren C, Feihl S, Cabric S et al (2020) Improved pre-operative diagnostic accuracy for low-grade prosthetic joint infections using second-generation multiplex polymerase chain reaction on joint fluid aspirate. Int Orthop 44:1629–1637. https://doi.org/10.1007/s00264-020-04552-7 PubMed DOI

Suri N, Yadav C, Sandilya S, Bhalodia N (2021) Salvaging cochlear implant after suspected biofilm infection: our experience. Indian J Otolaryngol Head Neck Surg 73:499–503. https://doi.org/10.1007/s12070-021-02627-4 PubMed DOI PMC

Taglialegna A, Matilla-Cuenca L, Dorado-Morales P, et al (2020) The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers. npj biofilms microbiomes 6:15. https://doi.org/10.1038/s41522-020-0125-2

Tan Y, Han F, Ma S, Yu W (2011) Carboxymethyl chitosan prevents formation of broad-spectrum biofilm. Carbohydr Polym 84:1365–1370. https://doi.org/10.1016/j.carbpol.2011.01.036 DOI

Tegoulia VA, Cooper SL (2002) Staphylococcus aureus adhesion to self-assembled monolayers: effect of surface chemistry and fibrinogen presence. Colloids Surf B Biointerfaces 24:217–228. https://doi.org/10.1016/S0927-7765(01)00240-5 DOI

Tenke P, Riedl CR, Jones GL et al (2004) Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy. Int J Antimicrob Agents 23:67–74. https://doi.org/10.1016/j.ijantimicag.2003.12.007 DOI

Thallinger B, Brandauer M, Burger P et al (2016) Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm system. J Biomed Mater Res 104:1448–1456. https://doi.org/10.1002/jbm.b.33491 DOI

Thamvasupong P, Viravaidya-Pasuwat K (2022) Controlled release mechanism of vancomycin from double-layer poly-L-lactic acid-coated implants for prevention of bacterial infection. Polymers 14:3493. https://doi.org/10.3390/polym14173493 PubMed DOI PMC

Thoendel M, Kavanaugh JS, Flack CE, Horswill AR (2011) Peptide signaling in the staphylococci. Chem Rev 111:117–151. https://doi.org/10.1021/cr100370n PubMed DOI

Torelli R, Cacaci M, Papi M et al (2017) Different effects of matrix degrading enzymes towards biofilms formed by E. faecalis and E. faecium clinical isolates. Colloids Surf B Biointerfaces 158:349–355. https://doi.org/10.1016/j.colsurfb.2017.07.010 PubMed DOI

Tzeng A, Tzeng TH, Vasdev S et al (2015) Treating periprosthetic joint infections as biofilms: key diagnosis and management strategies. Diagn Microbiol Infect Dis 81:192–200. https://doi.org/10.1016/j.diagmicrobio.2014.08.018 PubMed DOI

Ulloa-Ogaz AL, Piñón-Castillo HA, Muñoz-Castellanos LN et al (2017) Oxidative damage to Pseudomonas aeruginosa ATCC 27833 and Staphylococcus aureus ATCC 24213 induced by CuO-NPs. Environ Sci Pollut Res 24:22048–22060. https://doi.org/10.1007/s11356-017-9718-6 DOI

Vaidya K, Osgood R, Ren D et al (2014) Ultrasound imaging and characterization of biofilms based on wavelet de-noised radiofrequency data. Ultrasound Med Biol 40:583–595. https://doi.org/10.1016/j.ultrasmedbio.2013.11.005 PubMed DOI

Van Duuren JBJH, Müsken M, Karge B et al (2017) Use of single-frequency impedance spectroscopy to characterize the growth dynamics of biofilm formation in Pseudomonas aeruginosa. Sci Rep 7:5223. https://doi.org/10.1038/s41598-017-05273-5 PubMed DOI PMC

Van Kerckhoven M, Hotterbeekx A, Lanckacker E et al (2016) Characterizing the in vitro biofilm phenotype of Staphylococcus epidermidis isolates from central venous catheters. J Microbiol Methods 127:95–101. https://doi.org/10.1016/j.mimet.2016.05.009 PubMed DOI

VanEpps JS, Younger JG (2016) Implantable device-related infection. Shock 46:597–608. https://doi.org/10.1097/SHK.0000000000000692 PubMed DOI PMC

Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK (2014) Bacterial adherence and biofilm formation on medical implants: A review. Proc Inst Mech Eng H 228:1083–1099. https://doi.org/10.1177/0954411914556137 PubMed DOI

Vergidis P, Patel R (2012) Novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. IDCAE 26:173–186. https://doi.org/10.1016/j.idc.2011.09.012 PubMed DOI

Vestby LK, Grønseth T, Simm R, Nesse LL (2020) Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 9:59. https://doi.org/10.3390/antibiotics9020059 PubMed DOI PMC

Vögeling H, Plenagl N, Seitz BS et al (2019) Synergistic effects of ultrasound and photodynamic therapy leading to biofilm eradication on polyurethane catheter surfaces modified with hypericin nanoformulations. Mater Sci Eng C 103. https://doi.org/10.1016/j.msec.2019.109749 DOI

Waldman LJ, Butera T, Boyd JD, Grady ME (2023) Sucrose-mediated formation and adhesion strength of Streptococcus mutans biofilms on titanium. Biofilm 6. https://doi.org/10.1016/j.bioflm.2023.100143 PubMed DOI PMC

Walker JN, Pinkner CL, Lynch AJL et al (2020) Deposition of host matrix proteins on breast implant surfaces facilitates Staphylococcus epidermidis biofilm formation: in vitro analysis. ASJ 40:281–295. https://doi.org/10.1093/asj/sjz099 DOI

Wang J, Ren H, Li X et al (2018) In situ monitoring of wastewater biofilm formation process via ultrasonic time domain reflectometry (UTDR). Chem Eng J 334:2134–2141. https://doi.org/10.1016/j.cej.2017.11.043 DOI

Wang J, Zhang Z, Li J et al (2022) Tranexamic acid protects against implant-associated infection by reducing biofilm formation. Sci Rep 12:4840. https://doi.org/10.1038/s41598-022-08948-w PubMed DOI PMC

Wang W, Cheng X, Liao J et al (2019) Synergistic photothermal and photodynamic therapy for effective implant-related bacterial infection elimination and biofilm disruption using Cu PubMed DOI

Wang X, Chen C, Hu J et al (2024) Current strategies for monitoring and controlling bacterial biofilm formation on medical surfaces. Ecotoxicol Environ Saf 282. https://doi.org/10.1016/j.ecoenv.2024.116709 PubMed DOI

Wassmann T, Kreis S, Behr M, Buergers R (2017) The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int J Implant Dent 3:32. https://doi.org/10.1186/s40729-017-0093-3 PubMed DOI PMC

Wickramasinghe S, Ju M, Milbrandt NB et al (2020) Photoactivated gold nanorod hydrogel composite containing D -amino acids for the complete eradication of bacterial biofilms on metal alloy implant materials. ACS Appl Nano Mater 3:5862–5873. https://doi.org/10.1021/acsanm.0c01018 DOI

Wong P-C, Fan T-E, Lee Y-L et al (2021) Detection and identification of the stages of DH5-alpha Escherichia coli biofilm formation on metal by using an artificial intelligence system. Microsc Microanal 27:1218–1225. https://doi.org/10.1017/S1431927621012472 DOI

Wongsuwan N, Dwivedi A, Tancharoen S, Nasongkla N (2020) Development of dental implant coating with minocycline-loaded niosome for antibacterial application. J Drug Del Sci Tech 56. https://doi.org/10.1016/j.jddst.2020.101555 DOI

Xu Y, Larsen LH, Lorenzen J et al (2017) Microbiological diagnosis of device-related biofilm infections. APMIS 125:289–303. https://doi.org/10.1111/apm.12676 PubMed DOI

Yang T, Xie L, Hu X et al (2023) Residual extracellular polymeric substances (EPS) detected by fluorescence microscopy on dental implants after different decontamination. Mater Chem Phys 296. https://doi.org/10.1016/j.matchemphys.2022.127242 DOI

Yang X, Chen H, Zheng Y, et al (2022) Disease burden and long-term trends of urinary tract infections: a worldwide report. fpubh 10:888205. https://doi.org/10.3389/fpubh.2022.888205

Yu C, Yu Y, Lu Y et al (2024) UiO-66/AgNPs coating for dental implants in preventing bacterial infections. J Dent Res 103:516–525. https://doi.org/10.1177/00220345241229646 PubMed DOI

Yu K, Lo JCY, Yan M et al (2017) Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials 116:69–81. https://doi.org/10.1016/j.biomaterials.2016.11.047 PubMed DOI

Yuan F, Huang Z, Yang T et al (2021) Pathogenesis of Proteus mirabilis in catheter-associated urinary tract infections. Urol Int 105:354–361. https://doi.org/10.1159/000514097 PubMed DOI

Zapka C, Leff J, Henley J, et al (2017) Comparison of standard culture-based method to culture-independent method for evaluation of hygiene effects on the hand microbiome. mBio 8:e00093–17. https://doi.org/10.1128/mBio.00093-17

Zhang H, Li S, Cheng Y (2022) Antibiofilm activity of allicin and quercetin in treating biofilm-associated orthopaedics infection. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-022-03845-4 PubMed DOI PMC

Zhang Y, Fu Y, Yu J et al (2015) Synergy of ambroxol with vancomycin in elimination of catheter-related Staphylococcus epidermidis biofilm in vitro and in vivo. JIC 21:808–815. https://doi.org/10.1016/j.jiac.2015.08.017 DOI

Zhao A, Sun J, Liu Y (2023) Understanding bacterial biofilms: from definition to treatment strategies. Front Cell Infect Microbiol 13:1137947. https://doi.org/10.3389/fcimb.2023.1137947 PubMed DOI PMC

Zheng Y, He L, Asiamah TK, Otto M (2018) Colonization of medical devices by staphylococci. Environ Microbiol 20:3141–3153. https://doi.org/10.1111/1462-2920.14129 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...