Carotenoids dispersed in gypsum rock as a result of algae adaptation to the extreme conditions of the Atacama Desert

. 2024 Oct 13 ; 14 (1) : 23939. [epub] 20241013

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39397059

Grantová podpora
22-29315S Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004635 Ministerstvo Školství, Mládeže a Tělovýchovy
PID2021-124362NB-I00 MCIN/AEI/10.13039/501100011033/FEDER, UE
PID2021-124362NB-I00 MCIN/AEI/10.13039/501100011033/FEDER, UE
PID2021-124362NB-I00 MCIN/AEI/10.13039/501100011033/FEDER, UE
PID2021-124362NB-I00 MCIN/AEI/10.13039/501100011033/FEDER, UE

Odkazy

PubMed 39397059
PubMed Central PMC11471754
DOI 10.1038/s41598-024-75526-7
PII: 10.1038/s41598-024-75526-7
Knihovny.cz E-zdroje

The high-altitude pre-Andean region of the Atacama Desert is characterized by its stark volcanic rock formations and unique hydrothermal gypsum outcrops (gypcrete) that it hosts. This study delves into the biomolecular composition of the endolithic phototrophic microbes that thrive within these gypcretes. Using advanced Raman spectroscopy techniques, including Raman imaging (complemented by microscopic and 3D microscopic observations), herein we unveil new insights into the adaptive strategies of these gypsum-inhabiting algae. Our Raman imaging results provide a detailed chemical map of carotenoids associated with microbial colonization. This map reveals a significant gradient in pigment content, highlighting a critical survival mechanism for algae and cyanobacteria in this polyextreme environment. Intriguingly, we detected signals for carotenoids not only in the algae-colonized layer, but also deeper within the gypsum matrix - indicating pigment migration following cell disruption. In addition, we conducted an in-depth analysis of individual algal cells from the Trebouxiaceae family, noting their color variations from green to orange, plus describing the spectral differences in detail. This investigation identified in-vivo pigments (carotenoids, chlorophyll) and lipids at the cellular level, offering a comprehensive view of the molecular adaptations enabling life in one of the Earth's most extreme habitats.

Zobrazit více v PubMed

Rondanelli, R., Molina, A. & Falvey, M. The Atacama surface solar maximum. Bull. Am. Meteorol. Soc.96, 405–418 (2015).

Cabrol, N. A. et al. Record solar UV irradiance in the tropical Andes. Front. Environ. Sci.2, 19 (2014).

Morillas, H. et al. Characterization of the main colonizer and biogenic pigments present in the red biofilm from La Galea Fortress sandstone by means of microscopic observations and Raman imaging. Microchem. J.121, 48–55 (2015).

Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol.6, 934 (2015). PubMed PMC

Azua-Bústos, A., Caro-Lara, L. & Vicuňa, R. Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environ. Microbiol. Rep.7, 388–394 (2015). PubMed

Edwards, H. G. M., Moody, C. D., Villar, S. E. J. & Wynn-Williams, D. D. Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander missions. Icarus. 174, 560–571 (2005).

Villar, S. E. J., Edwards, H. G. M. & Worland, M. R. Comparative evaluation of Raman spectroscopy at different wavelengths for extremophile exemplars. Orig. Life Evol. Biosph. 35, 489–506 (2005). PubMed

Marshall, C. P. et al. Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. Astrobiology. 7, 631–643 (2007). PubMed

Vítek, P. et al. Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos. Trans. Roy Soc. A. 368, 3205–3221 (2010). PubMed

Jehlička, J., Edwards, H. G. M. & Oren, A. Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol.80, 3286–3295 (2014). PubMed PMC

Vítek, P. et al. Phototrophlic community in gypsum crust from the Atacama Desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol. J.30, 399–410 (2013).

Vítek, P., Ascaso, C., Artieda, O. & Wierzchos, J. Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert. Anal. Bioanal. Chem.408, 4083–4092 (2016). PubMed

Samek, O. et al. Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors. 10, 8635–8651 (2010). PubMed PMC

Schenk, P. M. et al. Second generation of biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res.1, 20–43 (2008).

Cavonius, L. et al. Imaging of lipids in microalgae with coherent anti-stokes Raman scattering microscopy. Plant Physiol.167, 603–616 (2015). PubMed PMC

Gill, D., Kilponen, R. G. & Rimai, L. Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature. 227, 743 (1970). PubMed

Merlin, J. C. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem.57, 785–792 (1985).

Czamara, K. et al. Raman spectroscopy of lipids: a review. J. Raman Spectrosc.46, 4–20 (2015).

Samek, O., Zemánek, P., Jonáš, A. & Telle, H. H. Characterization of oil-producing microalgae using Raman spectroscopy. Laser Phys. Lett.8, 701–709 (2011).

Wu, H. et al. In vivo lipidomics using single-cell Raman spectroscopy. Proc. Nat. Acad. Sci.108, 3809–3814 (2011). PubMed PMC

Vítek, P., Ascaso, C., Artieda, O., Casero, M. C. & Wierzchos, J. Raman imaging of microbial colonization in rock – some analytical aspects. Anal. Bioanal. Chem.412, 3717–3726 (2020). PubMed

Oren, A., Kühl, M. & Karsten, U. An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser.128, 151–159 (1995).

Vítek, P. & Wierzchos, J. Desert biosignatures. In: Microbial ecosystems in central Andes extreme environments (ed. Farías, M. E.) 73–85, Springer, (2020).

Huang, A. H. C. Oleosins and oil bodies in seeds and other organs. Plant Physiol.110, 1055–1061 (1996). PubMed PMC

Murphy, D. J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res.40, 325–438 (2001). PubMed

Arakawa-Kobayashi, S. & Kanaseki, T. A study of lipid secretion from the lichen symbionts, ascomycetous fungus myelochroa leucotyliza and green alga Trebouxia Sp. J. Struct. Biol.146, 401–415 (2004). PubMed

Hu, Q. et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J.54, 621–639 (2008). PubMed

Goold, H., Beisson, F., Peltier, G. & Li-Beisson, Y. Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Rep.34, 545–555 (2015). PubMed

Li, X. B. et al. A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Plant Cell.24, 4670–4686 (2012). PubMed PMC

Goncalves, E. C., Johnson, J. V. & Rathinasabapathi, B. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta. 238, 895–906 (2013). PubMed

Legeret, B. et al. Lipidomics and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. Plant Cell Environ.39, 834–847 (2016). PubMed

Moellering, E. R. & Benning, C. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell.9, 97–106 (2010). PubMed PMC

Nguyen, H. M. et al. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics. 11, 4266–4273 (2011). PubMed

Seo, Y. H., Cho, C., Lee, J. Y. & Han, J. I. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation. Bioresour. Technol.173, 193–197 (2014). PubMed

Ramanna, L., Rawat, I. & Bux, F. Light enhancement strategies improve microalgal biomass productivity. Renew. Sust. Energ. Rev.80, 765–773 (2017).

Adams, W. W. III & Demmig-Adams, B. Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta. 186, 390–398 (1992). PubMed

Lunch, C. K. et al. The xanthophyll cycle and NPQ in diverse desert and aquatic green algae. Photosynth. Res.115, 139–151 (2013). PubMed

Anderson, I. C. & Robertson, D. S. Role of carotenoids in protecting chlorophyll from photodestruction. Plant. Physiol.35, 531–534 (1960). PubMed PMC

Krinsky, N. I. Carotenoid protection against oxidation. Pure Appl. Chem.51, 649–660 (1979).

Siefermann-Harms, D. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Phisiol. Plant.69, 561–568 (1987).

Telfer, A., Pascal, A. & Gall, A. Carotenoids in Photosynthesis. In: Carotenoids (Eds: Britton, G., Liaaen-Jensen, S., Pfander, H.), Birkhäuser, Basel, vol. 4, pp 265–308 (2008).

Saito, T., Miyabe, Y., Ide, H. & Yamamoto, O. Hydroxyl radical scavenging ability of bacterioruberin. Rad. Phys. Chem.50, 267–269 (1997).

Wierzchos, J. et al. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology. 9, 44–60 (2011). PubMed

Horta, J.-C. De O. S. Calcrete Gypcrete and soil classification in Algeria. Eng. Geol.15, 15–52 (1980).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...