Carotenoids dispersed in gypsum rock as a result of algae adaptation to the extreme conditions of the Atacama Desert
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-29315S
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004635
Ministerstvo Školství, Mládeže a Tělovýchovy
PID2021-124362NB-I00
MCIN/AEI/10.13039/501100011033/FEDER, UE
PID2021-124362NB-I00
MCIN/AEI/10.13039/501100011033/FEDER, UE
PID2021-124362NB-I00
MCIN/AEI/10.13039/501100011033/FEDER, UE
PID2021-124362NB-I00
MCIN/AEI/10.13039/501100011033/FEDER, UE
PubMed
39397059
PubMed Central
PMC11471754
DOI
10.1038/s41598-024-75526-7
PII: 10.1038/s41598-024-75526-7
Knihovny.cz E-zdroje
- Klíčová slova
- Astrobiology, Biomarkers, Extremophiles, Geomicrobiology, Photopigments, Raman imaging,
- MeSH
- extrémní prostředí MeSH
- fyziologická adaptace MeSH
- karotenoidy * metabolismus MeSH
- pouštní klima * MeSH
- Ramanova spektroskopie * MeSH
- sinice metabolismus genetika MeSH
- síran vápenatý * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- karotenoidy * MeSH
- síran vápenatý * MeSH
The high-altitude pre-Andean region of the Atacama Desert is characterized by its stark volcanic rock formations and unique hydrothermal gypsum outcrops (gypcrete) that it hosts. This study delves into the biomolecular composition of the endolithic phototrophic microbes that thrive within these gypcretes. Using advanced Raman spectroscopy techniques, including Raman imaging (complemented by microscopic and 3D microscopic observations), herein we unveil new insights into the adaptive strategies of these gypsum-inhabiting algae. Our Raman imaging results provide a detailed chemical map of carotenoids associated with microbial colonization. This map reveals a significant gradient in pigment content, highlighting a critical survival mechanism for algae and cyanobacteria in this polyextreme environment. Intriguingly, we detected signals for carotenoids not only in the algae-colonized layer, but also deeper within the gypsum matrix - indicating pigment migration following cell disruption. In addition, we conducted an in-depth analysis of individual algal cells from the Trebouxiaceae family, noting their color variations from green to orange, plus describing the spectral differences in detail. This investigation identified in-vivo pigments (carotenoids, chlorophyll) and lipids at the cellular level, offering a comprehensive view of the molecular adaptations enabling life in one of the Earth's most extreme habitats.
Zobrazit více v PubMed
Rondanelli, R., Molina, A. & Falvey, M. The Atacama surface solar maximum. Bull. Am. Meteorol. Soc.96, 405–418 (2015).
Cabrol, N. A. et al. Record solar UV irradiance in the tropical Andes. Front. Environ. Sci.2, 19 (2014).
Morillas, H. et al. Characterization of the main colonizer and biogenic pigments present in the red biofilm from La Galea Fortress sandstone by means of microscopic observations and Raman imaging. Microchem. J.121, 48–55 (2015).
Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol.6, 934 (2015). PubMed PMC
Azua-Bústos, A., Caro-Lara, L. & Vicuňa, R. Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environ. Microbiol. Rep.7, 388–394 (2015). PubMed
Edwards, H. G. M., Moody, C. D., Villar, S. E. J. & Wynn-Williams, D. D. Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander missions. Icarus. 174, 560–571 (2005).
Villar, S. E. J., Edwards, H. G. M. & Worland, M. R. Comparative evaluation of Raman spectroscopy at different wavelengths for extremophile exemplars. Orig. Life Evol. Biosph. 35, 489–506 (2005). PubMed
Marshall, C. P. et al. Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. Astrobiology. 7, 631–643 (2007). PubMed
Vítek, P. et al. Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos. Trans. Roy Soc. A. 368, 3205–3221 (2010). PubMed
Jehlička, J., Edwards, H. G. M. & Oren, A. Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol.80, 3286–3295 (2014). PubMed PMC
Vítek, P. et al. Phototrophlic community in gypsum crust from the Atacama Desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol. J.30, 399–410 (2013).
Vítek, P., Ascaso, C., Artieda, O. & Wierzchos, J. Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert. Anal. Bioanal. Chem.408, 4083–4092 (2016). PubMed
Samek, O. et al. Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors. 10, 8635–8651 (2010). PubMed PMC
Schenk, P. M. et al. Second generation of biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res.1, 20–43 (2008).
Cavonius, L. et al. Imaging of lipids in microalgae with coherent anti-stokes Raman scattering microscopy. Plant Physiol.167, 603–616 (2015). PubMed PMC
Gill, D., Kilponen, R. G. & Rimai, L. Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature. 227, 743 (1970). PubMed
Merlin, J. C. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem.57, 785–792 (1985).
Czamara, K. et al. Raman spectroscopy of lipids: a review. J. Raman Spectrosc.46, 4–20 (2015).
Samek, O., Zemánek, P., Jonáš, A. & Telle, H. H. Characterization of oil-producing microalgae using Raman spectroscopy. Laser Phys. Lett.8, 701–709 (2011).
Wu, H. et al. In vivo lipidomics using single-cell Raman spectroscopy. Proc. Nat. Acad. Sci.108, 3809–3814 (2011). PubMed PMC
Vítek, P., Ascaso, C., Artieda, O., Casero, M. C. & Wierzchos, J. Raman imaging of microbial colonization in rock – some analytical aspects. Anal. Bioanal. Chem.412, 3717–3726 (2020). PubMed
Oren, A., Kühl, M. & Karsten, U. An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser.128, 151–159 (1995).
Vítek, P. & Wierzchos, J. Desert biosignatures. In: Microbial ecosystems in central Andes extreme environments (ed. Farías, M. E.) 73–85, Springer, (2020).
Huang, A. H. C. Oleosins and oil bodies in seeds and other organs. Plant Physiol.110, 1055–1061 (1996). PubMed PMC
Murphy, D. J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res.40, 325–438 (2001). PubMed
Arakawa-Kobayashi, S. & Kanaseki, T. A study of lipid secretion from the lichen symbionts, ascomycetous fungus myelochroa leucotyliza and green alga Trebouxia Sp. J. Struct. Biol.146, 401–415 (2004). PubMed
Hu, Q. et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J.54, 621–639 (2008). PubMed
Goold, H., Beisson, F., Peltier, G. & Li-Beisson, Y. Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Rep.34, 545–555 (2015). PubMed
Li, X. B. et al. A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Plant Cell.24, 4670–4686 (2012). PubMed PMC
Goncalves, E. C., Johnson, J. V. & Rathinasabapathi, B. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta. 238, 895–906 (2013). PubMed
Legeret, B. et al. Lipidomics and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. Plant Cell Environ.39, 834–847 (2016). PubMed
Moellering, E. R. & Benning, C. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell.9, 97–106 (2010). PubMed PMC
Nguyen, H. M. et al. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics. 11, 4266–4273 (2011). PubMed
Seo, Y. H., Cho, C., Lee, J. Y. & Han, J. I. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation. Bioresour. Technol.173, 193–197 (2014). PubMed
Ramanna, L., Rawat, I. & Bux, F. Light enhancement strategies improve microalgal biomass productivity. Renew. Sust. Energ. Rev.80, 765–773 (2017).
Adams, W. W. III & Demmig-Adams, B. Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta. 186, 390–398 (1992). PubMed
Lunch, C. K. et al. The xanthophyll cycle and NPQ in diverse desert and aquatic green algae. Photosynth. Res.115, 139–151 (2013). PubMed
Anderson, I. C. & Robertson, D. S. Role of carotenoids in protecting chlorophyll from photodestruction. Plant. Physiol.35, 531–534 (1960). PubMed PMC
Krinsky, N. I. Carotenoid protection against oxidation. Pure Appl. Chem.51, 649–660 (1979).
Siefermann-Harms, D. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Phisiol. Plant.69, 561–568 (1987).
Telfer, A., Pascal, A. & Gall, A. Carotenoids in Photosynthesis. In: Carotenoids (Eds: Britton, G., Liaaen-Jensen, S., Pfander, H.), Birkhäuser, Basel, vol. 4, pp 265–308 (2008).
Saito, T., Miyabe, Y., Ide, H. & Yamamoto, O. Hydroxyl radical scavenging ability of bacterioruberin. Rad. Phys. Chem.50, 267–269 (1997).
Wierzchos, J. et al. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology. 9, 44–60 (2011). PubMed
Horta, J.-C. De O. S. Calcrete Gypcrete and soil classification in Algeria. Eng. Geol.15, 15–52 (1980).