Nanometals incorporation into active and biodegradable chitosan films

. 2024 Apr 15 ; 10 (7) : e28430. [epub] 20240326

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38576574
Odkazy

PubMed 38576574
PubMed Central PMC10990857
DOI 10.1016/j.heliyon.2024.e28430
PII: S2405-8440(24)04461-X
Knihovny.cz E-zdroje

This study investigates the effects of incorporating ZnO, TiO2, and colloidal Ag nanoparticles on the antioxidant, antimicrobial, and physical properties of biodegradable chitosan films. The research focuses on addressing the growing demand for sustainable packaging solutions that offer efficient food preservation while mitigating environmental concerns. In this investigation, the physical properties including thickness, water content, solubility, swelling degree, tensile strength, and elasticity of the chitosan films were examined. Additionally, the samples were analyzed for total polyphenol content, antimicrobial activity, and antioxidant capacity. Notably, the incorporation of ZnO nanoparticles led to the lowest water content and highest strength values among the tested films. Conversely, the addition of colloidal Ag nanoparticles resulted in films with the highest antioxidant capacities (DPPH: 32.202 ± 1.631 %). Remarkably, antimicrobial tests revealed enhanced activity with the inclusion of colloidal silver nanoparticles, yet the most potent antimicrobial properties were observed in films containing ZnO (E.coli: 2.0 ± 0.0 mm; MRSA: 2.0 ± 0.5 mm). The findings of this study hold significant implications for the advancement of edible biodegradable films, offering potential for more efficient food packaging solutions that address environmental sustainability concerns. By elucidating the effects of nanoparticle incorporation on film properties, this research contributes to the ongoing discourse surrounding sustainable packaging solutions in the food industry.

Zobrazit více v PubMed

Oladzadabbasabadi N., Nafchi A.M., Ariffin F., Wijekoon M.J.O., Al-Hassan A.A., Dheyab M.A., Ghasemlou M. Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydr. Polym. 2022;277 doi: 10.1016/j.carbpol.2021.118876. PubMed DOI

Zhao R., Guan W., Zheng P., Tian F., Zhang Z., Sun Z., Cai L. Development of edible composite film based on chitosan nanoparticles and their application in packaging of fresh red sea bream fillets. Food Control. 2022;132 doi: 10.1016/j.foodcont.2021.108545. DOI

Wang H., Qian J., Li H., Ding F. Rheological characterization and simulation of chitosan-TiO2 edible ink for screen-printing. Progress Org. Coatings. 2018;120:19–27. doi: 10.1016/j.porgcoat.2018.03.005. DOI

Balti R., Mansour M.B., Sayari N., Yacoubi L., Rabaoui L., Brodu N., Massé A. Development and characterization of bioactive edible films from spider crab (Maja crispata) chitosan incorporated with Spirulina extract. Int. J. Biol. Macromol. 2017;105:1464–1472. doi: 10.1016/j.ijbiomac.2017.07.046. PubMed DOI

Wang M., Li S., Chen Z., Zhu J., Hao W., Jia G., Chen W., Zheng Y., Weidong Q., Liu Y. Safety assessment of nanoparticles in food: current status and prospective. Nano Today. 2021;39 doi: 10.1016/j.nantod.2021.101169. DOI

López O.V., Castillo L.A., Garcia M.A., Villar M.A., Barbosa S.E. Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocolloids. 2015;43:18–24. doi: 10.1016/j.foodhyd.2014.04.021. DOI

Das G., Patra J.K., Debnath T., Ansari A., Shin H.S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.) PLoS One. 2019;14(8) doi: 10.1371/journal.pone.0220950. PubMed DOI PMC

Aristizabal-Gil M.V., Santiago-Toro S., Sanchez L.T., Pinzon M.I., Gutierrez J.A., Villa C.C. ZnO and ZnO/CaO nanoparticles in alginate films. Synthesis, mechanical characterization, barrier properties and release kinetics. LWT. 2019;112 doi: 10.1016/j.lwt.2019.05.115. DOI

Bahrampour K., Ziaei N., Esmaeilipour O.A. Feeding nano particles of vitamin C and zinc oxide: effect on growth performance, immune response, intestinal morphology and blood constituents in heat stressed broiler chickens. Livest. Sci. 2021;253 doi: 10.1016/j.livsci.2021.104719. DOI

Singh T.A., Sharma A., Tejwan N., Ghosh N., Das J., Sil P.C. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv. Colloid Interfac. 2021;295 doi: 10.1016/j.cis.2021.102495. PubMed DOI

Muller K.H., Kulkarni J., Motskin M., Goode A., Winship P., Skepper J.N., Ryan M.P., Porter A.E. pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano. 2010;4(11):6767–6779. doi: 10.1021/nn101192z. PubMed DOI

Tsai Y.H., Mao S.Y., Li M.Z., Huang J.T., Lien T.F. Effects of nanosize zinc oxide on zinc retention, eggshell quality, immune response and serum parameters of aged laying hens. Anim. Feed Sci. Technol. 2016;213:99–107. doi: 10.1016/j.anifeedsci.2016.01.009. DOI

Zhao C.Y., Tan S.X., Xiao X.Y., Qiu X.S., Pan J.Q., Tang Z.X. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol. Trace Elem. Res. 2014;160(3):361–367. doi: 10.1007/s12011-014-0052-2. PubMed DOI

Sun Q., Li J., Le T. Zinc oxide nanoparticle as a novel class of antifungal agents: current advances and future perspectives. J. Agric. Food Chem. 2018;66(43):11209–11220. doi: 10.1021/acs.jafc.8b03210. PubMed DOI

Zanet V., Vidic J., Auger S., Vizzini P., Lippe G., Iacumin L., Comi G., Manzano M. Activity evaluation of pure and doped zinc oxide nanoparticles against bacterial pathogens and Saccharomyces cerevisiae. J. Appl. Microbiol. 2019;127(5):1391–1402. doi: 10.1111/jam.14407. PubMed DOI

Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007;90(21) doi: 10.1063/1.2742324. PubMed DOI PMC

Raghupathi K.R., Koodali R.T., Manna A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27(7):4020–4028. doi: 10.1021/la104825u. PubMed DOI

Bogdan J., Jackowska-Tracz A., Zarzyńska J., Pławińska-Czarnak J. Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties. Nanoscale Res. Lett. 2015;10(1):1–10. doi: 10.1186/s11671-015-0753-2. PubMed DOI PMC

Mohr L.C., Capelezzo A.P., Baretta C.R.D.M., Martins M.A.P.M., Fiori M.A., Mello J.M.M. Titanium dioxide nanoparticles applied as ultraviolet radiation blocker in the polylactic acid bidegradable polymer. Polym. Test. 2019;77 doi: 10.1016/j.polymertesting.2019.04.014. DOI

Siripatrawan U., Kaewklin P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids. 2018;84:125–134. doi: 10.1016/j.foodhyd.2018.04.049. DOI

Mesgari M., Aalami A.H., Sahebkar A. Antimicrobial activities of chitosan/titanium dioxide composites as a biological nanolayer for food preservation: a review. Int. J. Biol. Macromol. 2021;176:530–539. doi: 10.1016/j.ijbiomac.2021.02.099. PubMed DOI

Nikolic M.V., Vasiljevic Z.Z., Auger S., Vidic J. Metal oxide nanoparticles for safe active and intelligent food packaging. Trends Food Sci. Technol. 2021;116:655–668. doi: 10.1016/j.tifs.2021.08.019. DOI

Lu N., Chen Z., Zhang W., Yang G., Liu Q., Böttger R., Zhou S., Liu Y. Effect of silver ion implantation on antibacterial ability of polyethylene food packing films. Food Packag. Shelf Life. 2021;28 doi: 10.1016/j.fpsl.2021.100650. DOI

Biswal A.K., Misra P.K. Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields. Mater. Chem. Phys. 2020;250 doi: 10.1016/j.matchemphys.2020.123014. DOI

Emamhadi M.A., Sarafraz M., Akbari M., Fakhri Y., Linh N.T.T., Khaneghah A.M. Nanomaterials for food packaging applications: a systematic review. Food Chem. Toxicol. 2020;146 doi: 10.1016/j.fct.2020.111825. PubMed DOI

Souza V.G.L., Fernando A.L., Pires J.R.A., Rodrigues P.F., Lopes A.A., Fernandes F.M.B. Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crop. Prod. 2017;107:565–572. doi: 10.1016/j.indcrop.2017.04.056. DOI

Mlynáriková K., Samek O., Bernatová S., Růžička F., Ježek J., Hároniková A., Šiler M., Zemánek P., Holá V. Influence of culture media on microbial fingerprints using Raman spectroscopy. Sensors. 2015;15(11):29635–29647. doi: 10.3390/s151129635. PubMed DOI PMC

Tomadoni B., Cassani L., Ponce A., Moreira M.D.R., Agüero M.V. Optimization of ultrasound, vanillin and pomegranate extract treatment for shelf-stable unpasteurized strawberry juice. LWT-Food Sci. Technol. 2016;72:475–484. doi: 10.1016/j.lwt.2016.05.024. DOI

Behbahani B.A., Shahidi F., Yazdi F.T., Mortazavi S.A., Mohebbi M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 2017;94:515–526. doi: 10.1016/j.ijbiomac.2016.10.055. PubMed DOI

Sivarooban T., Hettiarachchy N.S., Johnson M.G. Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Res. Int. 2008;41(8):781–785. doi: 10.1016/j.foodres.2008.04.007. DOI

Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Byrne D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006;19(6–7):669–675. doi: 10.1016/j.jfca.2006.01.003. DOI

Apak R., Güçlü K., Özyürek M., Karademir S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004;52(26):7970–7981. doi: 10.1021/jf048741x. PubMed DOI

Dordevic S., Dordevic D., Sedlacek P., Kalina M., Tesikova K., Antonic B., Tremlova B., Treml J., Nejezchlebova M., Vapenka L., Rajchl A., Bulakova M. Incorporation of natural blueberry, red grapes and parsley extract by-products into the production of chitosan edible films. Polymers. 2021;13(19):3388. doi: 10.3390/polym13193388. PubMed DOI PMC

Liu J., Huang J., Hu Z., Li G., Hu L., Chen X., Hu Y. Chitosan-based films with antioxidant of bamboo leaves and ZnO nanoparticles for application in active food packaging. Int. J. Biol. Macromol. 2021;189:363–369. doi: 10.1016/j.ijbiomac.2021.08.136. PubMed DOI

Chang X., Hou Y., Liu Q., Hu Z., Xie Q., Shan Y., Gaoyang L., Ding S. Physicochemical and antimicrobial properties of chitosan composite films incorporated with glycerol monolaurate and nano-TiO2. Food Hydrocolloids. 2021 doi: 10.1016/j.foodhyd.2021.106846. DOI

Wang X., Yong H., Gao L., Li L., Jin M., Liu J. Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocolloids. 2019;89:56–66. doi: 10.1016/j.foodhyd.2018.10.019. DOI

Ortega F., Giannuzzi L., Arce V.B., García M.A. Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids. 2017;70:152–162. doi: 10.1016/j.foodhyd.2017.03.036. DOI

Liu H., Adhikari R., Guo Q., Adhikari B. Preparation and characterization of glycerol plasticized (high-amylose) starch–chitosan films. J. Food Eng. 2013;116(2):588–597. doi: 10.1016/j.jfoodeng.2012.12.037. DOI

Qin Y., Liu Y., Yuan L., Yong H., Liu J. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids. 2019;96:102–111. doi: 10.1016/j.foodhyd.2019.05.017. DOI

Arezoo E., Mohammadreza E., Maryam M., Abdorreza M.N. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int. J. Biol. Macromol. 2020;157:743–751. doi: 10.1016/j.ijbiomac.2019.11.244. PubMed DOI

Zhang W., Rhim J.W. Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packag. Shelf Life. 2022;31 doi: 10.1016/j.fpsl.2021.100806. DOI

Ge L., Zhu M., Li X., Xu Y., Ma X., Shi R., Li D., Mu C. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids. 2018;83:308–316. doi: 10.1016/j.foodhyd.2018.04.052. DOI

Sanuja S., Agalya A., Umapathy M.J. Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int. J. Biol. Macromol. 2015;74:76–84. doi: 10.1016/j.ijbiomac.2014.11.036. PubMed DOI

Li W., Zheng K., Chen H., Feng S., Wang W., Qin C. Influence of nano titanium dioxide and clove oil on chitosan–starch film characteristics. Polymers. 2019;11(9):1418. doi: 10.3390/polym11091418. PubMed DOI PMC

Dash K.K., Ali N.A., Das D., Mohanta D. Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int. J. Biol. Macromol. 2019;139:449–458. doi: 10.1016/j.ijbiomac.2019.07.193. PubMed DOI

Nafchi A.M., Mahmud S., Robal M. Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J. Food Eng. 2012;113(4):511–519. doi: 10.1016/j.jfoodeng.2012.07.017. DOI

Zhang W., Jiang W. Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. Int. J. Biol. Macromol. 2020;155:1252–1261. doi: 10.1016/j.ijbiomac.2019.11.093. PubMed DOI

Rodríguez‐Tobías H., Morales G., Enríquez‐Medrano F.J., Grande D. Performance of zinc oxide nanoparticles as Polymerization initiating systems in the microwave‐assisted synthesis of poly (d, l‐Lactide)/ZnO nanocomposites. Macromol. Symp. 2017;374

Hosseini Largani S., Akbarzadeh Pasha M. The effect of concentration ratio and type of functional group on synthesis of CNT–ZnO hybrid nanomaterial by an in situ sol–gel process. Int. Nano Lett. 2017;7:25–33. doi: 10.1007/s40089-016-0197-4. DOI

Handore K., Bhavsar S., Horne A., Chhattise P., Mohite K., Ambekar J., Pande N., Chabukswar V. Novel green route of synthesis of ZnO nanoparticles by using natural biodegradable polymer and its application as a catalyst for oxidation of aldehydes. J. Macromol. Sci. 2014;51(12):941–947. doi: 10.1080/10601325.2014.967078. DOI

Ahmad M.M., Mushtaq S., Al Qahtani H.S., Sedky A., Alam M.W. Investigation of TiO2 nanoparticles synthesized by sol-gel method for effectual photodegradation, oxidation and reduction reaction. Crystals. 2021;11(12):1456. doi: 10.3390/cryst11121456. DOI

Gohari G., Mohammadi A., Akbari A., Panahirad S., Dadpour M.R., Fotopoulos V., Kimura S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. UK. 2020;10(1):912. doi: 10.1038/s41598-020-57794-1. PubMed DOI PMC

Benbow N.L., Rozenberga L., McQuillan A.J., Krasowska M., Beattie D.A. ATR FTIR study of the interaction of tio2 nanoparticle films with β-Lactoglobulin and bile salts. Langmuir. 2021;37(45):13278–13290. doi: 10.1021/acs.langmuir.1c01830. PubMed DOI

Chi H., Li W., Fan C., Zhang C., Li L., Qin Y., Yuan M. Effect of high pressure treatment on poly (lactic acid)/nano–TiO2 composite films. Molecules. 2018;23(10):2621. doi: 10.3390/molecules23102621. PubMed DOI PMC

Salazar A.S.S., Cavazos P.A.S., Paz H.M., Fragoso A.V. External factors and nanoparticles effect on water vapor permeability of pectin-based films. J. Food Eng. 2019;245:73–79. doi: 10.1016/j.jfoodeng.2018.09.002. DOI

Jamieson E.H.H., Windle A.H. Structure and oxygen-barrier properties of metallized polymer film. J. Mater. Sci. 1983;18:64–80. doi: 10.1007/BF00543811. DOI

Castro-Rosas J., Cruz-Galvez A.M., Gomez-Aldapa C.A., Falfan-Cortes R.N., Guzman-Ortiz F.A., Rodríguez-Marín M.L. Biopolymer films and the effects of added lipids, nanoparticles and antimicrobials on their mechanical and barrier properties: a review. Int. J. Food Sci. Technol. 2016;51:1967–1978. doi: 10.1111/ijfs.13183. DOI

Zheng K., Xiao S., Li W., Wang W., Chen H., Yang F., Qin C. Chitosan-acorn starch-eugenol edible film: physico-chemical, barrier, antimicrobial, antioxidant and structural properties. Int. J. Biol. Macromol. 2019;135:344–352. doi: 10.1016/j.ijbiomac.2019.05.151. PubMed DOI

Riahi Z., Priyadarshi R., Rhim J.W., Bagheri R. Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications. Food Hydrocolloids. 2021;112 doi: 10.1016/j.foodhyd.2020.106314. DOI

Mareček V., Mikyška A., Hampel D., Čejka P., Neuwirthová J., Malachová A., Cerkal R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal. Sci. 2017;73:40–45. doi: 10.1016/j.jcs.2016.11.004. DOI

Otunola G.A., Afolayan A.J. In vitro antibacterial, antioxidant and toxicity profile of silver nanoparticles green-synthesized and characterized from aqueous extract of a spice blend formulation. Biotechnol. Biotechnol. Equip. 2018;32(3):724–733. doi: 10.1080/13102818.2018.1448301. DOI

Affes S., Maalej H., Aranaz I., Kchaou H., Acosta N., Heras Á., Nasri M. Controlled size green synthesis of bioactive silver nanoparticles assisted by chitosan and its derivatives and their application in biofilm preparation. Carbohyd. Polym. 2020;236 doi: 10.1016/j.carbpol.2020.116063. PubMed DOI

Jones A., Pravadali-Cekic S., Dennis G.R., Bashir R., Mahon P.J., Shalliker R.A. Ferric reducing antioxidant potential (FRAP) of antioxidants using reaction flow chromatography. Anal. Chim. Acta. 2017;967:93–101. doi: 10.1016/j.aca.2017.02.032. PubMed DOI

Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7:219–242. doi: 10.1007/s40820-015-0040-x. PubMed DOI PMC

Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007;90(21) doi: 10.1063/1.2742324. PubMed DOI PMC

Podporska-Carroll J., Panaitescu E., Quilty B., Wang L., Menon L., Pillai S.C. Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes. Appl. Catal. B Environ. 2015;176:70–75. doi: 10.1016/j.apcatb.2015.03.029. DOI

Kaweeteerawat C., Na Ubol P., Sangmuang S., Aueviriyavit S., Maniratanachote R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J. Toxicol. Env. Heal. A. 2017;80(23–24):1276–1289. doi: 10.1080/15287394.2017.1376727. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...