Nanometals incorporation into active and biodegradable chitosan films
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38576574
PubMed Central
PMC10990857
DOI
10.1016/j.heliyon.2024.e28430
PII: S2405-8440(24)04461-X
Knihovny.cz E-zdroje
- Klíčová slova
- Chemical and physical characterization, Nanoparticles, Packaging,
- Publikační typ
- časopisecké články MeSH
This study investigates the effects of incorporating ZnO, TiO2, and colloidal Ag nanoparticles on the antioxidant, antimicrobial, and physical properties of biodegradable chitosan films. The research focuses on addressing the growing demand for sustainable packaging solutions that offer efficient food preservation while mitigating environmental concerns. In this investigation, the physical properties including thickness, water content, solubility, swelling degree, tensile strength, and elasticity of the chitosan films were examined. Additionally, the samples were analyzed for total polyphenol content, antimicrobial activity, and antioxidant capacity. Notably, the incorporation of ZnO nanoparticles led to the lowest water content and highest strength values among the tested films. Conversely, the addition of colloidal Ag nanoparticles resulted in films with the highest antioxidant capacities (DPPH: 32.202 ± 1.631 %). Remarkably, antimicrobial tests revealed enhanced activity with the inclusion of colloidal silver nanoparticles, yet the most potent antimicrobial properties were observed in films containing ZnO (E.coli: 2.0 ± 0.0 mm; MRSA: 2.0 ± 0.5 mm). The findings of this study hold significant implications for the advancement of edible biodegradable films, offering potential for more efficient food packaging solutions that address environmental sustainability concerns. By elucidating the effects of nanoparticle incorporation on film properties, this research contributes to the ongoing discourse surrounding sustainable packaging solutions in the food industry.
Zobrazit více v PubMed
Oladzadabbasabadi N., Nafchi A.M., Ariffin F., Wijekoon M.J.O., Al-Hassan A.A., Dheyab M.A., Ghasemlou M. Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydr. Polym. 2022;277 doi: 10.1016/j.carbpol.2021.118876. PubMed DOI
Zhao R., Guan W., Zheng P., Tian F., Zhang Z., Sun Z., Cai L. Development of edible composite film based on chitosan nanoparticles and their application in packaging of fresh red sea bream fillets. Food Control. 2022;132 doi: 10.1016/j.foodcont.2021.108545. DOI
Wang H., Qian J., Li H., Ding F. Rheological characterization and simulation of chitosan-TiO2 edible ink for screen-printing. Progress Org. Coatings. 2018;120:19–27. doi: 10.1016/j.porgcoat.2018.03.005. DOI
Balti R., Mansour M.B., Sayari N., Yacoubi L., Rabaoui L., Brodu N., Massé A. Development and characterization of bioactive edible films from spider crab (Maja crispata) chitosan incorporated with Spirulina extract. Int. J. Biol. Macromol. 2017;105:1464–1472. doi: 10.1016/j.ijbiomac.2017.07.046. PubMed DOI
Wang M., Li S., Chen Z., Zhu J., Hao W., Jia G., Chen W., Zheng Y., Weidong Q., Liu Y. Safety assessment of nanoparticles in food: current status and prospective. Nano Today. 2021;39 doi: 10.1016/j.nantod.2021.101169. DOI
López O.V., Castillo L.A., Garcia M.A., Villar M.A., Barbosa S.E. Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocolloids. 2015;43:18–24. doi: 10.1016/j.foodhyd.2014.04.021. DOI
Das G., Patra J.K., Debnath T., Ansari A., Shin H.S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.) PLoS One. 2019;14(8) doi: 10.1371/journal.pone.0220950. PubMed DOI PMC
Aristizabal-Gil M.V., Santiago-Toro S., Sanchez L.T., Pinzon M.I., Gutierrez J.A., Villa C.C. ZnO and ZnO/CaO nanoparticles in alginate films. Synthesis, mechanical characterization, barrier properties and release kinetics. LWT. 2019;112 doi: 10.1016/j.lwt.2019.05.115. DOI
Bahrampour K., Ziaei N., Esmaeilipour O.A. Feeding nano particles of vitamin C and zinc oxide: effect on growth performance, immune response, intestinal morphology and blood constituents in heat stressed broiler chickens. Livest. Sci. 2021;253 doi: 10.1016/j.livsci.2021.104719. DOI
Singh T.A., Sharma A., Tejwan N., Ghosh N., Das J., Sil P.C. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv. Colloid Interfac. 2021;295 doi: 10.1016/j.cis.2021.102495. PubMed DOI
Muller K.H., Kulkarni J., Motskin M., Goode A., Winship P., Skepper J.N., Ryan M.P., Porter A.E. pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano. 2010;4(11):6767–6779. doi: 10.1021/nn101192z. PubMed DOI
Tsai Y.H., Mao S.Y., Li M.Z., Huang J.T., Lien T.F. Effects of nanosize zinc oxide on zinc retention, eggshell quality, immune response and serum parameters of aged laying hens. Anim. Feed Sci. Technol. 2016;213:99–107. doi: 10.1016/j.anifeedsci.2016.01.009. DOI
Zhao C.Y., Tan S.X., Xiao X.Y., Qiu X.S., Pan J.Q., Tang Z.X. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol. Trace Elem. Res. 2014;160(3):361–367. doi: 10.1007/s12011-014-0052-2. PubMed DOI
Sun Q., Li J., Le T. Zinc oxide nanoparticle as a novel class of antifungal agents: current advances and future perspectives. J. Agric. Food Chem. 2018;66(43):11209–11220. doi: 10.1021/acs.jafc.8b03210. PubMed DOI
Zanet V., Vidic J., Auger S., Vizzini P., Lippe G., Iacumin L., Comi G., Manzano M. Activity evaluation of pure and doped zinc oxide nanoparticles against bacterial pathogens and Saccharomyces cerevisiae. J. Appl. Microbiol. 2019;127(5):1391–1402. doi: 10.1111/jam.14407. PubMed DOI
Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007;90(21) doi: 10.1063/1.2742324. PubMed DOI PMC
Raghupathi K.R., Koodali R.T., Manna A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27(7):4020–4028. doi: 10.1021/la104825u. PubMed DOI
Bogdan J., Jackowska-Tracz A., Zarzyńska J., Pławińska-Czarnak J. Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties. Nanoscale Res. Lett. 2015;10(1):1–10. doi: 10.1186/s11671-015-0753-2. PubMed DOI PMC
Mohr L.C., Capelezzo A.P., Baretta C.R.D.M., Martins M.A.P.M., Fiori M.A., Mello J.M.M. Titanium dioxide nanoparticles applied as ultraviolet radiation blocker in the polylactic acid bidegradable polymer. Polym. Test. 2019;77 doi: 10.1016/j.polymertesting.2019.04.014. DOI
Siripatrawan U., Kaewklin P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids. 2018;84:125–134. doi: 10.1016/j.foodhyd.2018.04.049. DOI
Mesgari M., Aalami A.H., Sahebkar A. Antimicrobial activities of chitosan/titanium dioxide composites as a biological nanolayer for food preservation: a review. Int. J. Biol. Macromol. 2021;176:530–539. doi: 10.1016/j.ijbiomac.2021.02.099. PubMed DOI
Nikolic M.V., Vasiljevic Z.Z., Auger S., Vidic J. Metal oxide nanoparticles for safe active and intelligent food packaging. Trends Food Sci. Technol. 2021;116:655–668. doi: 10.1016/j.tifs.2021.08.019. DOI
Lu N., Chen Z., Zhang W., Yang G., Liu Q., Böttger R., Zhou S., Liu Y. Effect of silver ion implantation on antibacterial ability of polyethylene food packing films. Food Packag. Shelf Life. 2021;28 doi: 10.1016/j.fpsl.2021.100650. DOI
Biswal A.K., Misra P.K. Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields. Mater. Chem. Phys. 2020;250 doi: 10.1016/j.matchemphys.2020.123014. DOI
Emamhadi M.A., Sarafraz M., Akbari M., Fakhri Y., Linh N.T.T., Khaneghah A.M. Nanomaterials for food packaging applications: a systematic review. Food Chem. Toxicol. 2020;146 doi: 10.1016/j.fct.2020.111825. PubMed DOI
Souza V.G.L., Fernando A.L., Pires J.R.A., Rodrigues P.F., Lopes A.A., Fernandes F.M.B. Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crop. Prod. 2017;107:565–572. doi: 10.1016/j.indcrop.2017.04.056. DOI
Mlynáriková K., Samek O., Bernatová S., Růžička F., Ježek J., Hároniková A., Šiler M., Zemánek P., Holá V. Influence of culture media on microbial fingerprints using Raman spectroscopy. Sensors. 2015;15(11):29635–29647. doi: 10.3390/s151129635. PubMed DOI PMC
Tomadoni B., Cassani L., Ponce A., Moreira M.D.R., Agüero M.V. Optimization of ultrasound, vanillin and pomegranate extract treatment for shelf-stable unpasteurized strawberry juice. LWT-Food Sci. Technol. 2016;72:475–484. doi: 10.1016/j.lwt.2016.05.024. DOI
Behbahani B.A., Shahidi F., Yazdi F.T., Mortazavi S.A., Mohebbi M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 2017;94:515–526. doi: 10.1016/j.ijbiomac.2016.10.055. PubMed DOI
Sivarooban T., Hettiarachchy N.S., Johnson M.G. Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Res. Int. 2008;41(8):781–785. doi: 10.1016/j.foodres.2008.04.007. DOI
Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Byrne D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006;19(6–7):669–675. doi: 10.1016/j.jfca.2006.01.003. DOI
Apak R., Güçlü K., Özyürek M., Karademir S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004;52(26):7970–7981. doi: 10.1021/jf048741x. PubMed DOI
Dordevic S., Dordevic D., Sedlacek P., Kalina M., Tesikova K., Antonic B., Tremlova B., Treml J., Nejezchlebova M., Vapenka L., Rajchl A., Bulakova M. Incorporation of natural blueberry, red grapes and parsley extract by-products into the production of chitosan edible films. Polymers. 2021;13(19):3388. doi: 10.3390/polym13193388. PubMed DOI PMC
Liu J., Huang J., Hu Z., Li G., Hu L., Chen X., Hu Y. Chitosan-based films with antioxidant of bamboo leaves and ZnO nanoparticles for application in active food packaging. Int. J. Biol. Macromol. 2021;189:363–369. doi: 10.1016/j.ijbiomac.2021.08.136. PubMed DOI
Chang X., Hou Y., Liu Q., Hu Z., Xie Q., Shan Y., Gaoyang L., Ding S. Physicochemical and antimicrobial properties of chitosan composite films incorporated with glycerol monolaurate and nano-TiO2. Food Hydrocolloids. 2021 doi: 10.1016/j.foodhyd.2021.106846. DOI
Wang X., Yong H., Gao L., Li L., Jin M., Liu J. Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocolloids. 2019;89:56–66. doi: 10.1016/j.foodhyd.2018.10.019. DOI
Ortega F., Giannuzzi L., Arce V.B., García M.A. Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids. 2017;70:152–162. doi: 10.1016/j.foodhyd.2017.03.036. DOI
Liu H., Adhikari R., Guo Q., Adhikari B. Preparation and characterization of glycerol plasticized (high-amylose) starch–chitosan films. J. Food Eng. 2013;116(2):588–597. doi: 10.1016/j.jfoodeng.2012.12.037. DOI
Qin Y., Liu Y., Yuan L., Yong H., Liu J. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids. 2019;96:102–111. doi: 10.1016/j.foodhyd.2019.05.017. DOI
Arezoo E., Mohammadreza E., Maryam M., Abdorreza M.N. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int. J. Biol. Macromol. 2020;157:743–751. doi: 10.1016/j.ijbiomac.2019.11.244. PubMed DOI
Zhang W., Rhim J.W. Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packag. Shelf Life. 2022;31 doi: 10.1016/j.fpsl.2021.100806. DOI
Ge L., Zhu M., Li X., Xu Y., Ma X., Shi R., Li D., Mu C. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids. 2018;83:308–316. doi: 10.1016/j.foodhyd.2018.04.052. DOI
Sanuja S., Agalya A., Umapathy M.J. Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int. J. Biol. Macromol. 2015;74:76–84. doi: 10.1016/j.ijbiomac.2014.11.036. PubMed DOI
Li W., Zheng K., Chen H., Feng S., Wang W., Qin C. Influence of nano titanium dioxide and clove oil on chitosan–starch film characteristics. Polymers. 2019;11(9):1418. doi: 10.3390/polym11091418. PubMed DOI PMC
Dash K.K., Ali N.A., Das D., Mohanta D. Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int. J. Biol. Macromol. 2019;139:449–458. doi: 10.1016/j.ijbiomac.2019.07.193. PubMed DOI
Nafchi A.M., Mahmud S., Robal M. Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J. Food Eng. 2012;113(4):511–519. doi: 10.1016/j.jfoodeng.2012.07.017. DOI
Zhang W., Jiang W. Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. Int. J. Biol. Macromol. 2020;155:1252–1261. doi: 10.1016/j.ijbiomac.2019.11.093. PubMed DOI
Rodríguez‐Tobías H., Morales G., Enríquez‐Medrano F.J., Grande D. Performance of zinc oxide nanoparticles as Polymerization initiating systems in the microwave‐assisted synthesis of poly (d, l‐Lactide)/ZnO nanocomposites. Macromol. Symp. 2017;374
Hosseini Largani S., Akbarzadeh Pasha M. The effect of concentration ratio and type of functional group on synthesis of CNT–ZnO hybrid nanomaterial by an in situ sol–gel process. Int. Nano Lett. 2017;7:25–33. doi: 10.1007/s40089-016-0197-4. DOI
Handore K., Bhavsar S., Horne A., Chhattise P., Mohite K., Ambekar J., Pande N., Chabukswar V. Novel green route of synthesis of ZnO nanoparticles by using natural biodegradable polymer and its application as a catalyst for oxidation of aldehydes. J. Macromol. Sci. 2014;51(12):941–947. doi: 10.1080/10601325.2014.967078. DOI
Ahmad M.M., Mushtaq S., Al Qahtani H.S., Sedky A., Alam M.W. Investigation of TiO2 nanoparticles synthesized by sol-gel method for effectual photodegradation, oxidation and reduction reaction. Crystals. 2021;11(12):1456. doi: 10.3390/cryst11121456. DOI
Gohari G., Mohammadi A., Akbari A., Panahirad S., Dadpour M.R., Fotopoulos V., Kimura S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. UK. 2020;10(1):912. doi: 10.1038/s41598-020-57794-1. PubMed DOI PMC
Benbow N.L., Rozenberga L., McQuillan A.J., Krasowska M., Beattie D.A. ATR FTIR study of the interaction of tio2 nanoparticle films with β-Lactoglobulin and bile salts. Langmuir. 2021;37(45):13278–13290. doi: 10.1021/acs.langmuir.1c01830. PubMed DOI
Chi H., Li W., Fan C., Zhang C., Li L., Qin Y., Yuan M. Effect of high pressure treatment on poly (lactic acid)/nano–TiO2 composite films. Molecules. 2018;23(10):2621. doi: 10.3390/molecules23102621. PubMed DOI PMC
Salazar A.S.S., Cavazos P.A.S., Paz H.M., Fragoso A.V. External factors and nanoparticles effect on water vapor permeability of pectin-based films. J. Food Eng. 2019;245:73–79. doi: 10.1016/j.jfoodeng.2018.09.002. DOI
Jamieson E.H.H., Windle A.H. Structure and oxygen-barrier properties of metallized polymer film. J. Mater. Sci. 1983;18:64–80. doi: 10.1007/BF00543811. DOI
Castro-Rosas J., Cruz-Galvez A.M., Gomez-Aldapa C.A., Falfan-Cortes R.N., Guzman-Ortiz F.A., Rodríguez-Marín M.L. Biopolymer films and the effects of added lipids, nanoparticles and antimicrobials on their mechanical and barrier properties: a review. Int. J. Food Sci. Technol. 2016;51:1967–1978. doi: 10.1111/ijfs.13183. DOI
Zheng K., Xiao S., Li W., Wang W., Chen H., Yang F., Qin C. Chitosan-acorn starch-eugenol edible film: physico-chemical, barrier, antimicrobial, antioxidant and structural properties. Int. J. Biol. Macromol. 2019;135:344–352. doi: 10.1016/j.ijbiomac.2019.05.151. PubMed DOI
Riahi Z., Priyadarshi R., Rhim J.W., Bagheri R. Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications. Food Hydrocolloids. 2021;112 doi: 10.1016/j.foodhyd.2020.106314. DOI
Mareček V., Mikyška A., Hampel D., Čejka P., Neuwirthová J., Malachová A., Cerkal R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal. Sci. 2017;73:40–45. doi: 10.1016/j.jcs.2016.11.004. DOI
Otunola G.A., Afolayan A.J. In vitro antibacterial, antioxidant and toxicity profile of silver nanoparticles green-synthesized and characterized from aqueous extract of a spice blend formulation. Biotechnol. Biotechnol. Equip. 2018;32(3):724–733. doi: 10.1080/13102818.2018.1448301. DOI
Affes S., Maalej H., Aranaz I., Kchaou H., Acosta N., Heras Á., Nasri M. Controlled size green synthesis of bioactive silver nanoparticles assisted by chitosan and its derivatives and their application in biofilm preparation. Carbohyd. Polym. 2020;236 doi: 10.1016/j.carbpol.2020.116063. PubMed DOI
Jones A., Pravadali-Cekic S., Dennis G.R., Bashir R., Mahon P.J., Shalliker R.A. Ferric reducing antioxidant potential (FRAP) of antioxidants using reaction flow chromatography. Anal. Chim. Acta. 2017;967:93–101. doi: 10.1016/j.aca.2017.02.032. PubMed DOI
Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7:219–242. doi: 10.1007/s40820-015-0040-x. PubMed DOI PMC
Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007;90(21) doi: 10.1063/1.2742324. PubMed DOI PMC
Podporska-Carroll J., Panaitescu E., Quilty B., Wang L., Menon L., Pillai S.C. Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes. Appl. Catal. B Environ. 2015;176:70–75. doi: 10.1016/j.apcatb.2015.03.029. DOI
Kaweeteerawat C., Na Ubol P., Sangmuang S., Aueviriyavit S., Maniratanachote R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J. Toxicol. Env. Heal. A. 2017;80(23–24):1276–1289. doi: 10.1080/15287394.2017.1376727. PubMed DOI