EasyClick: an improved system for confocal microscopy of live roots with a user-optimized sample holder
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-02929S
Grantová Agentura České Republiky
PubMed
38095727
PubMed Central
PMC10721658
DOI
10.1007/s00425-023-04293-y
PII: 10.1007/s00425-023-04293-y
Knihovny.cz E-zdroje
- Klíčová slova
- Barley, Confocal microscopy, EasyClick, Growth, Hordeum vulgare, Live cell imaging, Plant, Root,
- MeSH
- konfokální mikroskopie MeSH
- kořeny rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
We describe a user-optimized sample holder EasyClick for medium-sized plants that reduces root side movements and thus greatly extends the duration of live cell confocal microscopy. Preparation and mounting of the samples are key factors for successful live cell microscopy. To acquire biologically relevant data, it is necessary to minimize stress and avoid physical damage to plant tissues during the installation of the sample into the microscope. This is challenging, particularly when the whole plant is mounted as the living sample needs to be properly anchored in the microscopic system to obtain high-quality and high-resolution data. Here, we present a user-optimized sample holder EasyClick for live cell inverted confocal microscopic analysis of plant roots with diameters from 0.3 to 0.7 mm. The EasyClick holder was tested on an inverted confocal microscope using germinating plants of several cereals. Nevertheless, it can be directly used on other types of inverted microscopes from various producers and on different plant species. The EasyClick holder effectively restricts root lateral and vertical movements. This greatly improves the conditions for time-lapse microscopy of the samples of interest.
Zobrazit více v PubMed
Berthet B, Maizel A. Light sheet microscopy and live imaging of plants. J Microsc. 2016;263(2):158–164. doi: 10.1111/jmi.12393. PubMed DOI
Chen RJ, Rosen E, Masson PH. Gravitropism in higher plants. Plant Physiol. 1999;120(2):343–350. doi: 10.1104/pp.120.2.343. PubMed DOI PMC
Elliott AD. Confocal microscopy: principles and modern practices. Curr Protoc Cytom. 2020;92:e68. doi: 10.1002/cpcy.68. PubMed DOI PMC
Feldhaus C, Kolb M, Küppers M, Hardy S, Palmisano R. GraviKit: An easy-to-implement microscope add-on for observation of gravitation dependent processes. (preprint) Biorxiv. 2021 doi: 10.1101/2021.08.30.458259. DOI
Fouquet C, Gilles JF, Heck N, Dos Santos M, Schwartzmann R, Cannaya V, Morel MP, Davidson RS, Trembleau A, Bolte S. Improving axial resolution in confocal microscopy with new high refractive index mounting media. PLoS ONE. 2015;10(3):e0121096. doi: 10.1371/journal.pone.0121096. PubMed DOI PMC
Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, Meier M. The RootChip: An integrated microfluidic chip for plant science. Plant Cell. 2011;23(12):4234–4240. doi: 10.1105/tpc.111.092577. PubMed DOI PMC
Hamant O, Das P, Burian A. Time-lapse imaging of developing shoot meristems using a confocal laser scanning microscope. In: Cvrčková F, Žárský V, editors. Plant cell morphogenesis. Methods in molecular biology. New York: Humana; 2019. PubMed
Higuchi K, Ono K, Araki S, Nakamura S, Uesugi T, Makishima T, Ikari A, Hanaoka T, Sue M. Elongation of barley roots in high-pH nutrient solution is supported by both cell proliferation and differentiation in the root apex. Plant Cell Environ. 2017;40(8):1609–1617. doi: 10.1111/pce.12969. PubMed DOI
Kaduchová K, Marchetti C, Ovečka M, Galuszka P, Bergougnoux V, Šamaj J, Pecinka A. Spatial organization and dynamics of chromosomes and microtubules during barley mitosis. Plant J. 2023;115:602–613. doi: 10.1111/tpj.16392. PubMed DOI
Migliaccio F, Tassone P, Fortunati A. Circimnutation as an autonomous root movement in plants. Am J Bot. 2013;100(1):4–13. doi: 10.3732/ajb.1200314. PubMed DOI
Nagy G, Kiraly G, Banfalvi G (2012) Optimization of cell cycle measurement by time-lapse microscopy. In: Conn PM (ed) Laboratory methods in cell biology. Methods in cell biology 112:143–161. doi:10.1016/b978-0-12-405914-6.00007-x
Ovecka M, Vaskebova L, Komis G, Luptovciak I, Smertenko A, Samaj J. Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat Protoc. 2015;10(8):1234–1247. doi: 10.1038/nprot.2015.081. PubMed DOI
Parashar A, Pandey S. Plant-in-chip: microfluidic system for studying root growth and pathogenic interactions in Arabidopsis. Appl Phys Lett. 2011 doi: 10.1063/1.3604788. DOI
Rahni R, Birnbaum KD. Week-long imaging of cell divisions in the Arabidopsis root meristem. Plant Methods. 2019;15:30. doi: 10.1186/s13007-019-0417-9. PubMed DOI PMC
Vernet H, Fullana AM, Sorribas FJ, Gualda EJ. Development of microscopic techniques for the visualization of plant-root-knot nematode interaction. Plants-Basel. 2022;11(9):1165. doi: 10.3390/plants11091165. PubMed DOI PMC
von Wangenheim D, Hauschild R, Fendrych M, Barone V, Benkova E, Friml J. Live tracking of moving samples in confocal microscopy for vertically grown roots. Elife. 2017;6:e26792. doi: 10.7554/eLife.26792. PubMed DOI PMC
Yazdanbakhsh N, Fisahn J. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution. Ann Bot. 2010;105(5):783–791. doi: 10.1093/aob/mcq048. PubMed DOI PMC