Bioengineering of CuO porous (nano)particles: role of surface amination in biological, antibacterial, and photocatalytic activity
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36097028
PubMed Central
PMC9467996
DOI
10.1038/s41598-022-19553-2
PII: 10.1038/s41598-022-19553-2
Knihovny.cz E-zdroje
- MeSH
- aminace MeSH
- antibakteriální látky metabolismus farmakologie MeSH
- bioinženýrství MeSH
- HEK293 buňky MeSH
- kovové nanočástice * MeSH
- lidé MeSH
- měď * farmakologie MeSH
- oxidy MeSH
- poréznost MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- cupric oxide MeSH Prohlížeč
- měď * MeSH
- oxidy MeSH
Nanotechnology is one of the most impressive sciences in the twenty-first century. Not surprisingly, nanoparticles/nanomaterials have been widely deployed given their multifunctional attributes and ease of preparation via environmentally friendly, cost-effective, and simple methods. Although there are assorted optimized preparative methods for synthesizing the nanoparticles, the main challenge is to find a comprehensive method that has multifaceted properties. The goal of this study has been to synthesize aminated (nano)particles via the Rosmarinus officinalis leaf extract-mediated copper oxide; this modification leads to the preparation of (nano)particles with promising biological and photocatalytic applications. The synthesized NPs have been fully characterized, and biological activity was evaluated in antibacterial assessment against Bacillus cereus as a model Gram-positive and Pseudomonas aeruginosa as a model Gram-negative bacterium. The bio-synthesized copper oxide (nano)particles were screened by MTT assay by applying the HEK-293 cell line. The aminated (nano)particles have shown lower cytotoxicity (~ 21%), higher (~ 50%) antibacterial activity, and a considerable increase in zeta potential value (~ + 13.4 mV). The prepared (nano)particles also revealed considerable photocatalytic activity compared to other studies wherein the dye degradation process attained 97.4% promising efficiency in only 80 min and just 7% degradation after 80 min under dark conditions. The biosynthesized copper oxide (CuO) (nano)particle's biomedical investigation underscores an eco-friendly synthesis of (nano)particles, their noticeable stability in the green reaction media, and impressive biological activity.
Department of Chemistry Sharif University of Technology Tehran Iran
Istituto Italiano di Tecnologia Centre for Materials Interfaces Pontedera 56025 Pisa Italy
School of Engineering Macquarie University Sydney NSW 2109 Australia
Universal Scientific Education and Research Network Tehran 15875 4413 Iran
Zobrazit více v PubMed
Islamipour, Z. et al. Biodegradable antibacterial and antioxidant nanocomposite films based on dextrin for bioactive food packaging. J. Nanostruct. Chem., 1–16 (2022).
Iravani S, Varma RS. Plant-derived edible nanoparticles and miRNAs: Emerging frontier for therapeutics and targeted drug-delivery. ACS Sustain. Chem. Eng. 2019;7(9):8055–8069. doi: 10.1021/acssuschemeng.9b00954. DOI
Hebbalalu D, et al. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain. Chem. Eng. 2013;1(7):703–712. doi: 10.1021/sc4000362. DOI
Priya DD, et al. Fabricating a g-C3N4/CuO heterostructure with improved catalytic activity on the multicomponent synthesis of pyrimidoindazoles. J. Nanostruct. Chem. 2020;10(4):289–308. doi: 10.1007/s40097-020-00350-0. DOI
Makvandi P, et al. Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 2020;30(22):1910021. doi: 10.1002/adfm.201910021. DOI
Rafieyan, S. G. et al. Application of Terminalia catappa wood-based activated carbon modified with CuO nanostructures coupled with H2O2 for the elimination of chemical oxygen demand in the gas refinery. J. Nanostruct. Chem., 1–19 (2021).
Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016;116:3722–3811. doi: 10.1021/acs.chemrev.5b00482. PubMed DOI
Ali A, et al. CuO assisted borate 1393B3 glass scaffold with enhanced mechanical performance and cytocompatibility: An in vitro study. J. Mech. Behav. Biomed. Mater. 2021;114:104231. doi: 10.1016/j.jmbbm.2020.104231. PubMed DOI
Chen Z, et al. Tumor reoxygenation for enhanced combination of radiation therapy and microwave thermal therapy using oxygen generation in situ by CuO nanosuperparticles under microwave irradiation. Theranostics. 2020;10(10):4659. doi: 10.7150/thno.42818. PubMed DOI PMC
Zou K, et al. CuO–ZnO heterojunction derived from Cu2+-doped ZIF-8: A new photoelectric material for ultrasensitive PEC immunoassay of CA125 with near-zero background noise. Anal. Chim. Acta. 2020;1099:75–84. doi: 10.1016/j.aca.2019.11.054. PubMed DOI
Shaabani A, et al. Multi-component reaction-functionalized chitosan complexed with copper nanoparticles: An efficient catalyst toward A3 coupling and click reactions in water. Appl. Organomet. Chem. 2019;33(9):e5074.
Kumari S, Singh BN, Srivastava P. Effect of copper nanoparticles on physico-chemical properties of chitosan and gelatin-based scaffold developed for skin tissue engineering application. 3 Biotech. 2019;9(3):1–14. PubMed PMC
Ameh T, Sayes CM. The potential exposure and hazards of copper nanoparticles: A review. Environ. Toxicol. Pharmacol. 2019;71:103220. doi: 10.1016/j.etap.2019.103220. PubMed DOI
Rabiee N, et al. Multifunctional 3D hierarchical bioactive green carbon-based nanocomposites. ACS Sustain. Chem. Eng. 2021;9(26):8706–8720. doi: 10.1021/acssuschemeng.1c00781. DOI
Kiani M, et al. High-gravity-assisted green synthesis of palladium nanoparticles: The flowering of nanomedicine. Nanomed. Nanotechnol. Biol. Med. 2020;30:102297. doi: 10.1016/j.nano.2020.102297. PubMed DOI
Kiani M, et al. Improved green biosynthesis of chitosan decorated Ag-and Co3O4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications. Nanomed. Nanotechnol. Biol. Med. 2021;32:102331. doi: 10.1016/j.nano.2020.102331. PubMed DOI
Rabiee N, et al. High-gravity-assisted green synthesis of NiO-NPs anchored on the surface of biodegradable nanobeads with potential biomedical applications. J. Biomed. Nanotechnol. 2020;16(4):520–530. doi: 10.1166/jbn.2020.2904. PubMed DOI
Rabiee N, et al. Turning toxic nanomaterials into a safe and bioactive nanocarrier for co-delivery of DOX/pCRISPR. ACS Appl. Bio Mater. 2021;4(6):5336–5351. doi: 10.1021/acsabm.1c00447. PubMed DOI
Rabiee, N. et al. Calcium-based nanomaterials and their interrelation with chitosan: Optimization for pCRISPR delivery. J. Nanostruct. Chem., 1–14 (2021). PubMed PMC
Abdallah, Y. et al. The green synthesis of MgO nano-flowers using Rosmarinusofficinalis L. (Rosemary) and the antibacterial activities against Xanthomonasoryzae pv. oryzae. BioMed Res. Int.2019 (2019). PubMed PMC
Abdollahiyan P, et al. An innovative colorimetric platform for the low-cost and selective identification of Cu (II), Fe (III), and Hg (II) using GQDs-DPA supported amino acids by microfluidic paper-based (µPADs) device: Multicolor plasmonic patterns. J. Environ. Chem. Eng. 2021;9(5):106197. doi: 10.1016/j.jece.2021.106197. DOI
Sathiyavimal S, et al. Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J. Photochem. Photobiol. B. 2018;188:126–134. doi: 10.1016/j.jphotobiol.2018.09.014. PubMed DOI
Sarkar J, et al. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials. 2020;10(2):312. doi: 10.3390/nano10020312. PubMed DOI PMC
Waris A, et al. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg. Chem. Commun. 2021;123:108369. doi: 10.1016/j.inoche.2020.108369. DOI
Praburaman L, et al. Piper betle-mediated synthesis, characterization, antibacterial and rat splenocyte cytotoxic effects of copper oxide nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016;44(6):1400–1405. doi: 10.3109/21691401.2015.1029630. PubMed DOI
Mali S, Raj S, Trivedi R. Biosynthesis of copper oxide nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochem. Biophys. Rep. 2019;20:100699. PubMed PMC
Berra D, et al. Green synthesis of copper oxide nanoparticles by Pheonix dactylifera L. leaves extract. Dig. J. Nanomater. Biostruct. 2018;13(4):1231–1238.
Gunalan S, Sivaraj R, Venckatesh R. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: Optical properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012;97:1140–1144. doi: 10.1016/j.saa.2012.07.096. PubMed DOI
Nwanya AC, et al. Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. dry husk mediated bio-synthesized copper oxide nanoparticles. J. Hazard. Mater. 2019;375:281–289. doi: 10.1016/j.jhazmat.2019.05.004. PubMed DOI
Gultekin DD, et al. Biosynthesis and characterization of copper oxide nanoparticles using Cimin grape (Vitis vinifera cv.) extract. Int. J. Second. Metab. 2017;4, Special Issue 1(3):77–84. doi: 10.21448/ijsm.362672. DOI
Wang G, et al. Green synthesis of copper nanoparticles using green coffee bean and their applications for efficient reduction of organic dyes. J. Environ. Chem. Eng. 2021;9(4):105331. doi: 10.1016/j.jece.2021.105331. DOI
Rafique M, et al. A review on synthesis, characterization and applications of copper nanoparticles using green method. NANO. 2017;12(04):1750043. doi: 10.1142/S1793292017500436. DOI
Subhankari I, Nayak P. Antimicrobial activity of copper nanoparticles synthesised by ginger (Zingiber officinale) extract. World J. Nano Sci. Technol. 2013;2(1):10–13.
Sirisha NGD, Asthana S. Microwave mediated green synthesis of copper nanoparticles using aqueous extract of Piper nigrum seeds and particles characterisation. IAETSD J. Adv. Res. Appl. Sci. 2018;5(2):859–870.
Chakraborty N, et al. Green synthesis of copper/copper oxide nanoparticles and their applications: A review. Green Chem. Lett. Rev. 2022;15(1):187–215. doi: 10.1080/17518253.2022.2025916. DOI
Vaidehi D, et al. Antibacterial and photocatalytic activity of copper oxide nanoparticles synthesized using Solanum lycopersicum leaf extract. Mater. Res. Express. 2018;5(8):085403. doi: 10.1088/2053-1591/aad426. DOI
Shende S, et al. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015;31(6):865–873. doi: 10.1007/s11274-015-1840-3. PubMed DOI
Thakur S, et al. Green synthesis of copper nano-particles using Asparagus adscendens roxb. root and leaf extract and their antimicrobial activities. Int. J. Curr. Microbiol. Appl. Sci. 2018;7(4):683–694. doi: 10.20546/ijcmas.2018.704.077. DOI
Hafeez M, et al. Populus ciliata leaves extract mediated synthesis of zinc oxide nanoparticles and investigation of their anti-bacterial activities. Mater. Res. Express. 2019;6(7):075064. doi: 10.1088/2053-1591/ab19c8. DOI
Narasaiah, P., Mandal, B. K. & Sarada, N. Biosynthesis of copper oxide nanoparticles from Drypetes sepiaria leaf extract and their catalytic activity to dye degradation. In IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2017).
Ijaz F, et al. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activities. Trop. J. Pharm. Res. 2017;16(4):743–753. doi: 10.4314/tjpr.v16i4.2. DOI
Prasad, K. S. et al. Aqueous extract of Saracaindica leaves in the synthesis of copper oxide nanoparticles: Finding a way towards going green. J. Nanotechnol.2017 (2017).
Nasrollahzadeh M, Sajadi SM. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J. Colloid Interface Sci. 2015;457:141–147. doi: 10.1016/j.jcis.2015.07.004. PubMed DOI
Aher YB, et al. Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against diverse pathogens. Int. J. Mol. Clin. Microbiol. 2017;7(1):776–786.
Ramesh C, HariPrasad M, Ragunathan V. Effect of Arachis hypogaea L. leaf extract on Barfoed's solution; Green synthesis of Cu2O nanoparticles and its antibacterial effect. Curr. Nanosci. 2011;7(6):995–999. doi: 10.2174/157341311798220781. DOI
Naika HR, et al. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J. Taibah Univ. Sci. 2015;9(1):7–12. doi: 10.1016/j.jtusci.2014.04.006. DOI
Chung IM, et al. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med. 2017;14(1):18–24. PubMed PMC
Javad, K. & Mohsenzadeh, M. Rapid, green and eco-friendly biosynthesis of copper nanoparticles using flower extract of aloe vera, synthesis and reactivity in inorganic. Met. Organ. Nano-Met. Chem. (2014).
Applerot G, et al. Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress. Small. 2012;8(21):3326–3337. doi: 10.1002/smll.201200772. PubMed DOI
Awwad A, Albiss B, Salem N. Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. SMU Med. J. 2015;2(1):91–101.
Akintelu SA, et al. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon. 2020;6(7):e04508. doi: 10.1016/j.heliyon.2020.e04508. PubMed DOI PMC
Camacho-Flores, B. et al. Copper: Synthesis techniques in nanoscale and powerful application as an antimicrobial agent. J. Nanomater. 2015 (2015).
Chtita S, et al. Quantitative structure–activity relationship studies of dibenzo [a, d] cycloalkenimine derivatives for non-competitive antagonists of N-methyl-d-aspartate based on density functional theory with electronic and topological descriptors. J. Taibah Univ. Sci. 2015;9(2):143–154. doi: 10.1016/j.jtusci.2014.10.006. DOI
Fonseca-Cervantes OR, et al. Effects in band gap for photocatalysis in TiO2 support by adding gold and ruthenium. Processes. 2020;8(9):1032. doi: 10.3390/pr8091032. DOI
Bagherzadeh M, Kaveh R. A new SnS2-BiFeO3/reduced graphene oxide photocatalyst with superior photocatalytic capability under visible light irradiation. J. Photochem. Photobiol. A. 2018;359:11–22. doi: 10.1016/j.jphotochem.2018.03.031. PubMed DOI
Prakash K, et al. Controllable synthesis of SnO2 photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution. J. Exp. Nanosci. 2016;11(14):1138–1155. doi: 10.1080/17458080.2016.1188222. DOI
Bibi H, et al. Green synthesis of multifunctional carbon coated copper oxide nanosheets and their photocatalytic and antibacterial activities. Sci. Rep. 2021;11(1):1–11. doi: 10.1038/s41598-020-79139-8. PubMed DOI PMC
Tomi K, et al. Enantioselective GC–MS analysis of volatile components from rosemary (Rosmarinus officinalis L.) essential oils and hydrosols. Biosci. Biotechnol. Biochem. 2016;80(5):840–847. doi: 10.1080/09168451.2016.1146066. PubMed DOI
Garzoli S, et al. Headspace/GC–MS analysis and investigation of antibacterial, antioxidant and cytotoxic activity of essential oils and hydrolates from Rosmarinus officinalis L. and Lavandula angustifolia Miller. Foods. 2021;10(8):1768. doi: 10.3390/foods10081768. PubMed DOI PMC
Ghadiri AM, et al. Green synthesis of CuO-and Cu2O-NPs in assistance with high-gravity: The flowering of nanobiotechnology. Nanotechnology. 2020;31(42):425101. doi: 10.1088/1361-6528/aba142. PubMed DOI
Ehsani A, et al. Facile and green synthesis of CuO nanoparticles and electrocatalytic activity of CuO nanoparticles/conductive polymer composite film. Iran. J. Catal. 2016;6(3-Special issue):269–274.
Zarrabi, A. & Ghasemi-Fasaei, R. Preparation of green synthesized copper oxide nanoparticles for efficient removal of lead from wastewaters (2021). PubMed
Ram, A. J. et al. Green synthesis of copper oxide nanoparticles using tamarind extract and its alpha amylase inhibitory activity. Plant Cell Biotechnol. Mol. Biol., 121–126 (2020).
Lakshmanan S, et al. Role of green synthesized CuO nanoparticles of Trigonella foenum-graecum L. leaves and their impact on structural, optical and antimicrobial activity. Int. J. Nanosci. Nanotechnol. 2021;17(2):107–119.
Rancan F, et al. Influence of substitutions on asymmetric dihydroxychlorins with regard to intracellular uptake, subcellular localization and photosensitization of Jurkat cells. J. Photochem. Photobiol. B. 2005;78(1):17–28. doi: 10.1016/j.jphotobiol.2004.08.010. PubMed DOI
Samu GF, et al. Photocatalytic, photoelectrochemical, and antibacterial activity of benign-by-design mechanochemically synthesized metal oxide nanomaterials. Catal. Today. 2017;284:3–10. doi: 10.1016/j.cattod.2016.07.010. DOI
Umadevi M, Christy AJ. Synthesis, characterization and photocatalytic activity of CuO nanoflowers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013;109:133–137. doi: 10.1016/j.saa.2013.02.028. PubMed DOI
Scuderi V, et al. Photocatalytic activity of CuO and Cu2O nanowires. Mater. Sci. Semicond. Process. 2016;42:89–93. doi: 10.1016/j.mssp.2015.08.008. DOI
Jiang D, et al. Photocatalytic performance enhancement of CuO/Cu2O heterostructures for photodegradation of organic dyes: Effects of CuO morphology. Appl. Catal. B. 2017;211:199–204. doi: 10.1016/j.apcatb.2017.04.034. DOI
Devi AB, et al. Novel synthesis and characterization of CuO nanomaterials: Biological applications. Chin. Chem. Lett. 2014;25(12):1615–1619. doi: 10.1016/j.cclet.2014.07.014. DOI
Esmaeili Govarchin Ghaleh H, et al. Using CuO nanoparticles and hyperthermia in radiotherapy of MCF-7 cell line: Synergistic effect in cancer therapy. Artif. Cells Nanomed. Biotechnol. 2019;47(1):1396–1403. doi: 10.1080/21691401.2019.1600529. PubMed DOI
Rabiee N, et al. Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: A review. Int. J. Nanomed. 2020;15:4237. doi: 10.2147/IJN.S248736. PubMed DOI PMC
Rabiee N, et al. Porphyrin molecules decorated on metal–organic frameworks for multi-functional biomedical applications. Biomolecules. 2021;11(11):1714. doi: 10.3390/biom11111714. PubMed DOI PMC
Bala N, et al. Phenolic compound-mediated single-step fabrication of copper oxide nanoparticles for elucidating their influence on anti-bacterial and catalytic activity. New J. Chem. 2017;41(11):4458–4467. doi: 10.1039/C6NJ04008J. DOI
Mallakpour S, Azadi E, Hussain CM. Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coord. Chem. Rev. 2020;419:213378. doi: 10.1016/j.ccr.2020.213378. DOI
Alnaddaf LM, et al. Nanobiotechnology. Springer; 2021. Green synthesis of nanoparticles using different plant extracts and their characterizations; pp. 165–199.
Velsankar K, et al. Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. J. Environ. Chem. Eng. 2020;8(5):104123. doi: 10.1016/j.jece.2020.104123. DOI
Benhammada, A. & Trache, D. Green synthesis of CuO nanoparticles using Malvasylvestris leaf extract with different copper precursors and their effect on nitrocellulose thermal behavior.J. Therm. Anal. Calorim., 1–16 (2021).
Venkatramanan A, et al. Green synthesis of copper oxide nanoparticles (CuO NPs) from aqueous extract of seeds of Elettaria cardamomum and its antimicrobial activity against pathogens. Curr. Biotechnol. 2020;9(4):304–311. doi: 10.2174/2211550109999201113095459. DOI
Taghavimandi F, Norouzbeigi R, Velayi E. Single-step fabrication of superhydrophobic urchin-like copper oxide nanopowders: Effect of structure-directing agents. Ceram. Int. 2021;47(7):9522–9533. doi: 10.1016/j.ceramint.2020.12.086. DOI
Amin, F. et al. Green synthesis of copper oxide nanoparticles using Aervajavanica leaf extract and their characterization and investigation of in vitro antimicrobial potential and cytotoxic activities. Evid. Based Complem. Altern. Med. 2021 (2021). PubMed PMC
Rabiee N, et al. Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int. J. Nanomed. 2020;15:3983. doi: 10.2147/IJN.S255398. PubMed DOI PMC
Reddy KR. Green synthesis, morphological and optical studies of CuO nanoparticles. J. Mol. Struct. 2017;1150:553–557. doi: 10.1016/j.molstruc.2017.09.005. DOI
Pansambal S, et al. Green synthesis of CuO nanoparticles using Ziziphus mauritiana L. extract and its characterizations. Int. J. Sci. Res. Sci. Technol. 2017;3:1388–1392.
Guo Y, et al. Micro/nano-structured CaWO4/Bi2WO6 composite: Synthesis, characterization and photocatalytic properties for degradation of organic contaminants. Dalton Trans. 2012;41(41):12697–12703. doi: 10.1039/c2dt31376f. PubMed DOI
Cuong HN, et al. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environ. Res. 2022;203:111858. doi: 10.1016/j.envres.2021.111858. PubMed DOI
Anjali Krishna B, Prema P. Green synthesis of copper oxide nanoparticles using Cinnamomum malabatrum leaf extract and its antibacterial activity. Indian J. Chem. Technol. (IJCT) 2021;27(6):525–530.
Rabiee N, Safarkhani M, Rabiee M. Rapid electrochemical ultra-sensitive evaluation and determination of daptomycin based on continuous cyclic voltammetry. Curr. Pharm. Anal. 2020;16(2):181–185. doi: 10.2174/1573412914666181017134015. DOI
Alishah H, et al. Green synthesis of starch-mediated CuO nanoparticles: Preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line. Rendiconti Lincei. 2017;28(1):65–71. doi: 10.1007/s12210-016-0574-y. DOI
Nabila MI, Kannabiran K. Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal. Agric. Biotechnol. 2018;15:56–62. doi: 10.1016/j.bcab.2018.05.011. DOI
Patra JK, Baek K-H. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int. J. Nanomed. 2015;10:7253. PubMed PMC
Ahmed JY, Alrubaye RTA. Gas adsorption and storage at metal-organic frameworks. J. Eng. 2022;28(1):65–75. doi: 10.31026/j.eng.2022.01.05. DOI
Ahmad R, et al. Engineered hierarchical CuO nanoleaves based electrochemical nonenzymatic biosensor for glucose detection. J. Electrochem. Soc. 2021;168(1):017501. doi: 10.1149/1945-7111/abd515. DOI
Aryal M, et al. Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Deliv. Rev. 2014;72:94–109. doi: 10.1016/j.addr.2014.01.008. PubMed DOI PMC
Van de Ven S, et al. Discordances in ER, PR and HER2 receptors after neoadjuvant chemotherapy in breast cancer. Cancer Treat. Rev. 2011;37(6):422–430. PubMed
Ajorlou E, Khosroushahi AY, Yeganeh H. Novel water-borne polyurethane nanomicelles for cancer chemotherapy: Higher efficiency of folate receptors than TRAIL receptors in a cancerous Balb/C mouse model. Pharm. Res. 2016;33(6):1426–1439. doi: 10.1007/s11095-016-1884-6. PubMed DOI
Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: From fundamentals to the clinic. Chem. Commun. 2014;50(58):7743–7765. doi: 10.1039/C4CC01429D. PubMed DOI
Yu J, Hai Y, Jaroniec M. Photocatalytic hydrogen production over CuO-modified titania. J. Colloid Interface Sci. 2011;357(1):223–228. doi: 10.1016/j.jcis.2011.01.101. PubMed DOI
Singh, J. et al. Environmental Research. 177, ID Patent 108,569 (2019). PubMed
Abid J-P, et al. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem. Commun. 2002;7:792–793. doi: 10.1039/b200272h. PubMed DOI
Abdollahiyan P, et al. Providing multicolor plasmonic patterns with graphene quantum dots functionalized d-penicillamine for visual recognition of V (V), Cu (II), and Fe (III): Colorimetric fingerprints of GQDs-DPA for discriminating ions in human urine samples. J. Mol. Recognit. 2021;34(12):e2936. doi: 10.1002/jmr.2936. PubMed DOI
Cottu P, et al. Ribociclib plus letrozole in subgroups of special clinical interest with hormone receptor–positive, human epidermal growth factor receptor 2-negative advanced breast cancer: Subgroup analysis of the phase IIIb CompLEEment-1 trial. Breast. 2022;62:75–83. doi: 10.1016/j.breast.2022.01.016. PubMed DOI PMC
Houas A, et al. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B. 2001;31(2):145–157. doi: 10.1016/S0926-3373(00)00276-9. DOI
Zong Y, et al. Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles. Ceram. Int. 2014;40(7):10375–10382. doi: 10.1016/j.ceramint.2014.02.123. DOI
Bagherzadeh M, et al. MIL-125-based nanocarrier decorated with Palladium complex for targeted drug delivery. Sci. Rep. 2022;12(1):1–15. doi: 10.1038/s41598-021-99269-x. PubMed DOI PMC
Zlabiene U, et al. In vitro and clinical safety assessment of the multiple W/O/W emulsion based on the active ingredients from Rosmarinus officinalis L., Avena sativa L. and Linum usitatissimum L. Pharmaceutics. 2021;13(5):732. doi: 10.3390/pharmaceutics13050732. PubMed DOI PMC
Fitsiou E, Pappa A. Anticancer activity of essential oils and other extracts from aromatic plants grown in Greece. Antioxidants. 2019;8(8):290. doi: 10.3390/antiox8080290. PubMed DOI PMC