Porphyrin Molecules Decorated on Metal-Organic Frameworks for Multi-Functional Biomedical Applications

. 2021 Nov 17 ; 11 (11) : . [epub] 20211117

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34827712

Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.

Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875 4413 Iran

Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran 19857 17443 Iran

Department of Chemistry Sharif University of Technology Tehran 11155 3516 Iran

Department of Medicine Stanford University School of Medicine Stanford CA 94305 USA

Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155 6451 Iran

Department of Physics Sharif University of Technology Tehran 11155 9161 Iran

Faculty of Medicine Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB R2H 0G1 Canada

Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155 6451 Iran

Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic

School of Chemistry College of Science University of Tehran Tehran 14155 6455 Iran

School of Engineering Macquarie University Sydney NSW 2109 Australia

Stanford Cardiovascular Institute Stanford University School of Medicine Stanford CA 94305 USA

Student Research Committee Department of Medical Biotechnology School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran 19857 17443 Iran

Uro Oncology Research Center Tehran University of Medical Sciences Tehran 14197 33141 Iran

Zobrazit více v PubMed

Mukherjee P., Kumar A., Bhamidipati K., Puvvada N., Sahu S.K. Facile Strategy to Synthesize Magnetic Upconversion Nanoscale Metal-Organic Framework Composites for Theranostics Application. ACS Appl. Bio Mater. 2019;3:869–880. doi: 10.1021/acsabm.9b00949. PubMed DOI

Jin M., Mou Z.-L., Zhang R.-L., Liang S.-S., Zhang Z.-Q. An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine. Biosens. Bioelectron. 2017;91:162–168. doi: 10.1016/j.bios.2016.12.022. PubMed DOI

Liu Z., Feng H., Xue S., Xie P., Li L., Hou X., Gong J., Wei X., Huang J., Wu D. The triple-component Ag3PO4-CoFe2O4-GO synthesis and visible light photocatalytic performance. Appl. Surf. Sci. 2018;458:880–892. doi: 10.1016/j.apsusc.2018.07.166. DOI

Nasseri B., Soleimani N., Rabiee N., Kalbasi A., Karimi M., Hamblin M.R. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron. 2018;117:112–128. doi: 10.1016/j.bios.2018.05.050. PubMed DOI PMC

Farjadian F., Moghoofei M., Mirkiani S., Ghasemi A., Rabiee N., Hadifar S., Beyzavi A., Karimi M., Hamblin M.R. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol. Adv. 2018;36:968–985. doi: 10.1016/j.biotechadv.2018.02.016. PubMed DOI PMC

Rabiee N., Yaraki M.T., Garakani S.M., Garakani S.M., Ahmadi S., Lajevardi A., Bagherzadeh M., Rabiee M., Tayebi L., Tahriri M. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials. 2020;232:119707. doi: 10.1016/j.biomaterials.2019.119707. PubMed DOI PMC

Ahmadi S., Rabiee N., Bagherzadeh M., Elmi F., Fatahi Y., Farjadian F., Baheiraei N., Nasseri B., Rabiee M., Dastjerd N.T. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today. 2020;34:100914. doi: 10.1016/j.nantod.2020.100914. PubMed DOI PMC

Nik A.B., Zare H., Razavi S., Mohammadi H., Ahmadi P.T., Yazdani N., Bayandori M., Rabiee N., Mobarakeh J.I. Smart drug delivery: Capping strategies for mesoporous silica nanoparticles. Microporous Mesoporous Mater. 2020;299:110115.

Maghsoudi S., Shahraki B.T., Rabiee N., Fatahi Y., Dinarvand R., Tavakolizadeh M., Ahmadi S., Rabiee M., Bagherzadeh M., Pourjavadi A. Burgeoning polymer nano blends for improved controlled drug release: A review. Int. J. Nanomed. 2020;15:4363. doi: 10.2147/IJN.S252237. PubMed DOI PMC

Rabiee N., Bagherzadeh M., Kiani M., Ghadiri A.M. Rosmarinus officinalis directed palladium nanoparticle synthesis: Investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Adv. Powder Technol. 2020;31:1402–1411. doi: 10.1016/j.apt.2020.01.024. DOI

Bagherzadeh M., Rabiee N., Fattahi Y., Dinarvand R. Zn-rich (GaN) 1-x (ZnO) x: A biomedical friend? New J. Chem. 2021;45:4077–4089. doi: 10.1039/D0NJ06310J. DOI

Spampinato V., Parracino M.A., La Spina R., Rossi F., Ceccone G. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications. Front. Chem. 2016;4:8. doi: 10.3389/fchem.2016.00008. PubMed DOI PMC

Rogers J.K., Taylor N.D., Church G.M. Biosensor-based engineering of biosynthetic pathways. Curr. Opin. Biotechnol. 2016;42:84–91. doi: 10.1016/j.copbio.2016.03.005. PubMed DOI

Velasco-Garcia M.N., Mottram T. Biosensor technology addressing agricultural problems. Biosyst. Eng. 2003;84:1–12. doi: 10.1016/S1537-5110(02)00236-2. DOI

Flachbart L.K., Sokolowsky S., Marienhagen J. Displaced by deceivers: Prevention of biosensor cross-talk is pivotal for successful biosensor-based high-throughput screening campaigns. ACS Synth. Biol. 2019;8:1847–1857. doi: 10.1021/acssynbio.9b00149. PubMed DOI PMC

Zhu P., Li S., Zhou S., Ren N., Ge S., Zhang Y., Wang Y., Yu J. In situ grown COFs on 3D strutted graphene aerogel for electrochemical detection of NO released from living cells. Chem. Eng. J. 2020;420:127559. doi: 10.1016/j.cej.2020.127559. DOI

Zhu P., Li S., Zhao C., Zhang Y., Yu J. 3D synergistical rGO/Eu (TPyP)(Pc) hybrid aerogel for high-performance NO2 gas sensor with enhanced immunity to humidity. J. Hazard. Mater. 2020;384:121426. doi: 10.1016/j.jhazmat.2019.121426. PubMed DOI

Nasr S.M., Rabiee N., Hajebi S., Ahmadi S., Fatahi Y., Hosseini M., Bagherzadeh M., Ghadiri A.M., Rabiee M., Jajarmi V. Biodegradable nanopolymers in cardiac tissue engineering: From concept towards nanomedicine. Int. J. Nanomed. 2020;15:4205. doi: 10.2147/IJN.S245936. PubMed DOI PMC

Rabiee N., Ahmadvand S., Ahmadi S., Fatahi Y., Dinarvand R., Bagherzadeh M., Rabiee M., Tahriri M., Tayebi L., Hamblin M.R. Carbosilane dendrimers: Drug and gene delivery applications. J. Drug Deliv. Sci. Technol. 2020;59:101879. doi: 10.1016/j.jddst.2020.101879. DOI

Rabiee N., Bagherzadeh M., Kiani M., Ghadiri A.M., Etessamifar F., Jaberizadeh A.H., Shakeri A. Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int. J. Nanomed. 2020;15:3983. doi: 10.2147/IJN.S255398. PubMed DOI PMC

Kiani M., Rabiee N., Bagherzadeh M., Ghadiri A.M., Fatahi Y., Dinarvand R., Webster T.J. High-gravity-assisted green synthesis of palladium nanoparticles: The flowering of nanomedicine. Nanomed. Nanotechnol. Biol. Med. 2020;30:102297. doi: 10.1016/j.nano.2020.102297. PubMed DOI

Saeb M.R., Rabiee N., Mozafari M., Mostafavi E. Metal-organic frameworks-based nanomaterials for drug delivery. Materials. 2021;14:3652. doi: 10.3390/ma14133652. PubMed DOI PMC

Rabiee N., Bagherzadeh M., Ghadiri A.M., Kiani M., Aldhaher A., Ramakrishna S., Tahriri M., Tayebi L., Webster T.J. Green synthesis of ZnO NPs via Salvia hispanica: Evaluation of potential antioxidant, antibacterial, mammalian cell viability, H1N1 influenza virus inhibition and photocatalytic activities. J. Biomed. Nanotechnol. 2020;16:456–466. doi: 10.1166/jbn.2020.2916. PubMed DOI

Tavakolizadeh M., Pourjavadi A., Ansari M., Tebyanian H., Tabaei S.J.S., Atarod M., Rabiee N., Bagherzadeh M., Varma R.S. An environmentally friendly wound dressing based on a self-healing, extensible and compressible antibacterial hydrogel. Green Chem. 2021;23:1312–1329. doi: 10.1039/D0GC02719G. DOI

Rajeev G., Melville E., Cowin A.J., Prieto-Simon B., Voelcker N.H. Porous alumina membrane-based electrochemical biosensor for protein biomarker detection in chronic wounds. Front. Chem. 2020;8:155. doi: 10.3389/fchem.2020.00155. PubMed DOI PMC

Sun Z., Wang L., Wu S., Pan Y., Dong Y., Zhu S., Yang J., Yin Y., Li G. An Electrochemical Biosensor Designed by Using Zr-Based Metal-Organic Frameworks for the Detection of Glioblastoma-Derived Exosomes with Practical Application. Anal. Chem. 2020;92:3819–3826. doi: 10.1021/acs.analchem.9b05241. PubMed DOI

Saeed A.A., Sánchez J.L.A., O’Sullivan C.K., Abbas M.N. DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry. 2017;118:91–99. doi: 10.1016/j.bioelechem.2017.07.002. PubMed DOI

Kalkal A., Pradhan R., Kadian S., Manik G., Packirisamy G. Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer. ACS Appl. Bio Mater. 2020;3:4922–4932. doi: 10.1021/acsabm.0c00427. PubMed DOI

Kumar S., Tripathy S., Jyoti A., Singh S.G. Recent advances in biosensors for diagnosis and detection of sepsis: A comprehensive review. Biosens. Bioelectron. 2019;124:205–215. doi: 10.1016/j.bios.2018.10.034. PubMed DOI

Maghsoudi S., Rabiee N., Ahmadi S., Rabiee M., Bagherzadeh M., Karimi M. An overview of microfluidic devices. Biomed. Appl. Microfluid. Devices. 2021:1–22. doi: 10.1016/B978-0-12-818791-3.00005-X. DOI

Rabiee N., Bagherzadeh M., Heidarian Haris M., Ghadiri A.M., Matloubi Moghaddam F., Fatahi Y., Dinarvand R., Jarahiyan A., Ahmadi S., Shokouhimehr M. Polymer-Coated NH2-UiO-66 for the Codelivery of DOX/pCRISPR. ACS Appl. Mater. Interfaces. 2021;13:10796–10811. doi: 10.1021/acsami.1c01460. PubMed DOI

Shahraki B.T., Maghsoudi S., Fatahi Y., Rabiee N., Bahadorikhalili S., Dinarvand R., Bagherzadeh M., Verpoort F. The flowering of mechanically interlocked molecules: Novel approaches to the synthesis of rotaxanes and catenanes. Coord. Chem. Rev. 2020;423:213484. doi: 10.1016/j.ccr.2020.213484. DOI

Rabiee N., Bagherzadeh M., Jouyandeh M., Zarrintaj P., Saeb M.R., Mozafari M., Shokouhimehr M., Varma R.S. Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Appl. Bio Mater. 2021;4:5106–5121. doi: 10.1021/acsabm.1c00332. PubMed DOI

Pourjavadi A., Tavakolizadeh M., Hosseini S.H., Rabiee N., Bagherzadeh M. Highly stretchable, self-adhesive, and self-healable double network hydrogel based on alginate/polyacrylamide with tunable mechanical properties. J. Polym. Sci. 2020;58:2062–2073. doi: 10.1002/pol.20200295. DOI

Rabiee N., Bagherzadeh M., Ghadiri A.M., Salehi G., Fatahi Y., Dinarvand R. ZnAl nano layered double hydroxides for dual functional CRISPR/Cas9 delivery and enhanced green fluorescence protein biosensor. Sci. Rep. 2020;10:1–15. doi: 10.1038/s41598-020-77809-1. PubMed DOI PMC

Hajebi S., Mohammadi Nasr S., Rabiee N., Bagherzadeh M., Ahmadi S., Rabiee M., Tahriri M., Tayebi L., Hamblin M.R. Bioresorbable composite polymeric materials for tissue engineering applications. Int. J. Polym. Mater. Polym. Biomater. 2020;69:1–15. doi: 10.1080/00914037.2020.1765365. DOI

Rabiee N., Bagherzadeh M., Tavakolizadeh M., Pourjavadi A., Atarod M., Webster T.J. Synthesis, characterization and mechanistic study of nano chitosan tetrazole as a novel and promising platform for CRISPR delivery. Int. J. Polym. Mater. Polymeric Biomater. 2020;69:1–11. doi: 10.1080/00914037.2020.1809405. DOI

Kharati M., Rabiee M., Rostami-Nejad M., Aghamohammadi E., Asadzadeh-Aghdaei H., Zali M.R., Rabiee N., Fatahi Y., Bagherzadeh M., Webster T.J. Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays. Biomed. Phys. Eng. Express. 2020;6:55015. doi: 10.1088/2057-1976/aba7ca. PubMed DOI

Maghsoudi S., Taghavi Shahraki B., Rabiee N., Fatahi Y., Bagherzadeh M., Dinarvand R., Ahmadi S., Rabiee M., Tahriri M., Hamblin M.R. The colorful world of carotenoids: A profound insight on therapeutics and recent trends in nano delivery systems. Crit. Rev. Food Sci. Nutr. 2020;60:1–40. doi: 10.1080/10408398.2020.1867958. PubMed DOI

Rabiee N., Ahmadi S., Fatahi Y., Rabiee M., Bagherzadeh M., Dinarvand R., Bagheri B., Zarrintaj P., Saeb M.R., Webster T.J. Nanotechnology-assisted microfluidic systems: From bench to bedside. Nanomedicine. 2020;16:237–258. doi: 10.2217/nnm-2020-0353. PubMed DOI

Ahmadi S., Rabiee N., Fatahi Y., Bagherzadeh M., Gachpazan M., Baheiraei N., Nasseri B., Karimi M., Webster T.J., Hamblin M.R. Controlled gene delivery systems: Nanomaterials and chemical approaches. J. Biomed. Nanotechnol. 2020;16:553–582. doi: 10.1166/jbn.2020.2927. PubMed DOI

Abu-Thabit N., Ratemi E. Hybrid porous silicon biosensors using plasmonic and fluorescent nanomaterials: A mini review. Front. Chem. 2020;8:454. doi: 10.3389/fchem.2020.00454. PubMed DOI PMC

Ma X., Liu H., Yang W., Mao G., Zheng L., Jiang H.L. Modulating Coordination Environment of Single-Atom Catalysts and Their Proximity to Photosensitive Units for Boosting MOF Photocatalysis. J. Am. Chem. Soc. 2021;143:12220–12229. doi: 10.1021/jacs.1c05032. PubMed DOI

Rabiee N., Bagherzadeh M., Ghadiri A.M., Fatahi Y., Aldhaher A., Makvandi P., Dinarvand R., Jouyandeh M., Saeb M.R., Mozafari M. Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Appl. Bio Mater. 2021;4:5336–5351. doi: 10.1021/acsabm.1c00447. PubMed DOI

Rabiee N., Bagherzadeh M., Ghadiri A.M., Fatahi Y., Baheiraei N., Safarkhani M., Aldhaher A., Dinarvand R. Bio-multifunctional noncovalent porphyrin functionalized carbon-based nanocomposite. Sci. Rep. 2021;11:1–15. doi: 10.1038/s41598-021-86119-z. PubMed DOI PMC

Jiao Y., Li Z., Ma Y., Zhou G., Wang S., Lu G. The studies on gas adsorption properties of MIL-53 series MOFs materials. AIP Adv. 2017;7:085009. doi: 10.1063/1.4999914. DOI

Hamon L., Serre C., Devic T., Loiseau T., Millange F., Férey Gr Weireld G.D. Comparative study of hydrogen sulfide adsorption in the MIL-53 (Al, Cr, Fe), MIL-47 (V), MIL-100 (Cr), and MIL-101 (Cr) metal−organic frameworks at room temperature. J. Am. Chem. Soc. 2009;131:8775–8777. doi: 10.1021/ja901587t. PubMed DOI

Rabiee N., Bagherzadeh M., Ghadiri A.M., Kiani M., Ahmadi S., Aldhaher A., Varma R.S., Webster T.J. High-gravity-assisted green synthesis of NiO-NPs anchored on the surface of biodegradable nanobeads with potential biomedical applications. J. Biomed. Nanotechnol. 2020;16:520–530. doi: 10.1166/jbn.2020.2904. PubMed DOI

Rabiee N., Bagherzadeh M., Kiani M., Ghadiri A.M., Zhang K., Jin Z., Ramakrishna S., Shokouhimehr M. High gravity-assisted green synthesis of ZnO nanoparticles via Allium ursinum: Conjoining nanochemistry to neuroscience. Nano Express. 2020;1:020025. doi: 10.1088/2632-959X/abac4d. DOI

Ghadiri A.M., Rabiee N., Bagherzadeh M., Kiani M., Fatahi Y., Di Bartolomeo A., Dinarvand R., Webster T.J. Green synthesis of CuO-and Cu2O-NPs in assistance with high-gravity: The flowering of Nanobiotechnology. Nanotechnology. 2020;31:425101. doi: 10.1088/1361-6528/aba142. PubMed DOI

Han L., Zhang J., Mao Y., Zhou W., Xu W., Sun Y. Facile and green synthesis of MIL-53 (Cr) and its excellent adsorptive desulfurization performance. Ind. Eng. Chem. Res. 2019;58:15489–15496. doi: 10.1021/acs.iecr.9b02223. DOI

Du J.-J., Yuan Y.-P., Sun J.-X., Peng F.-M., Jiang X., Qiu L.-G., Xie A.-J., Shen Y.-H., Zhu J.-F. New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J. Hazard. Mater. 2011;190:945–951. doi: 10.1016/j.jhazmat.2011.04.029. PubMed DOI

Walker A.M., Civalleri B., Slater B., Mellot-Draznieks C., Corà F., Zicovich-Wilson C.M., Román-Pérez G., Soler J.M., Gale J.D. Flexibility in a metal–organic framework material controlled by weak dispersion forces: The bistability of MIL-53 (Al) Angew. Chem. 2010;122:7663–7665. doi: 10.1002/ange.201002413. PubMed DOI

Rabiee N., Ahmadi S., Afshari R., Khalaji S., Rabiee M., Bagherzadeh M., Fatahi Y., Dinarvand R., Tahriri M., Tayebi L. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer’s Disease. Adv. Ther. 2020;4:2000076. doi: 10.1002/adtp.202000076. DOI

Rabiee N., Ahmadi S., Arab Z., Bagherzadeh M., Safarkhani M., Nasseri B., Rabiee M., Tahriri M., Webster T.J., Tayebi L. Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: A review. Int. J. Nanomed. 2020;15:4237. doi: 10.2147/IJN.S248736. PubMed DOI PMC

Nour S., Baheiraei N., Imani R., Rabiee N., Khodaei M., Alizadeh A., Moazzeni S.M. Bioactive materials: A comprehensive review on interactions with biological microenvironment based on the immune response. J. Bionic Eng. 2019;16:563–581. doi: 10.1007/s42235-019-0046-z. DOI

Bahrami S., Baheiraei N., Mohseni M., Razavi M., Ghaderi A., Azizi B., Rabiee N., Karimi M. Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering. J. Biomater. Appl. 2019;34:74–85. doi: 10.1177/0885328219839037. PubMed DOI

Nour S., Baheiraei N., Imani R., Khodaei M., Alizadeh A., Rabiee N., Moazzeni S.M. A review of accelerated wound healing approaches: Biomaterial-assisted tissue remodeling. J. Mater. Sci. Mater. Med. 2019;30:1–15. doi: 10.1007/s10856-019-6319-6. PubMed DOI

Maghsoudi S., Shahraki B.T., Rabiee N., Afshari R., Fatahi Y., Dinarvand R., Ahmadi S., Bagherzadeh M., Rabiee M., Tayebi L. Recent advancements in aptamer-bioconjugates: Sharpening stones for breast and prostate cancers targeting. J. Drug Deliv. Sci. Technol. 2019;53:101146. doi: 10.1016/j.jddst.2019.101146. DOI

Kiani M., Rabiee N., Bagherzadeh M., Ghadiri A.M., Fatahi Y., Dinarvand R., Webster T.J. Improved green biosynthesis of chitosan decorated Ag-and Co3O4-nanoparticles: A relationship between surface morphology, Photocatalytic and biomedical applications. Nanomed. Nanotechnol. Biol. Med. 2021;32:102331. doi: 10.1016/j.nano.2020.102331. PubMed DOI

Nasseri B., Kocum I.C., Seymen C.M., Rabiee N. Penetration depth in nanoparticles incorporated radiofrequency hyperthermia into the tissue: Comprehensive study with histology and pathology observations. IET Nanobiotechnol. 2019;13:634–639. doi: 10.1049/iet-nbt.2019.0066. PubMed DOI PMC

Zarghami D.M., Bagheri B., Nasiriasayesh A., Mashhadzadeh A.H., Zarrintaj P., Rabiee N., Bagherzadeh M., Habibzadeh S., Abida O., Saeb M.R. Insight into the Self-Insertion of a Protein Inside the Boron Nitride Nanotube. ACS Omega. 2020;5:32051–32058. doi: 10.1021/acsomega.0c05080. PubMed DOI PMC

Nasseri B., Turk M., Kosemehmetoglu K., Kaya M., Piskin E., Rabiee N., Webster T.J. The pimpled gold nanosphere: A superior candidate for plasmonic photothermal therapy. Int. J. Nanomed. 2020;15:2903. doi: 10.2147/IJN.S248327. PubMed DOI PMC

Rabiee M., Ghasemnia N.N., Rabiee N., Bagherzadeh M. Biomedical Applications of Microfluidic Devices. Elsevier; Amsterdam, The Netherlands: 2021. Microfluidic Devices and Drug Delivery Systems; pp. 153–186.

Ahmadi S., Rabiee N., Bagherzadeh M., Karimi M. Biomedical Applications of Microfluidic Devices. Elsevier; Amsterdam, The Netherlands: 2021. Microfluidic Devices for Gene Delivery Systems; pp. 187–208.

Pescitelli G., Gabriel S., Wang Y., Fleischhauer J., Woody R.W., Berova N. Theoretical Analysis of the Porphyrin−Porphyrin Exciton Interaction in Circular Dichroism Spectra of Dimeric Tetraarylporphyrins. J. Am. Chem. Soc. 2003;125:7613–7628. doi: 10.1021/ja030047v. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...