• Je něco špatně v tomto záznamu ?

PHABULOSA controls the quiescent center-independent root meristem activities in Arabidopsis thaliana

J. Sebastian, KH. Ryu, J. Zhou, D. Tarkowská, P. Tarkowski, YH. Cho, SD. Yoo, ES. Kim, JY. Lee,

. 2015 ; 11 (3) : e1004973. [pub] 20150302

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc16000245

Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC) cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA) domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB), under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16000245
003      
CZ-PrNML
005      
20160127101922.0
007      
ta
008      
160108s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pgen.1004973 $2 doi
035    __
$a (PubMed)25730098
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sebastian, Jose $u Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America.
245    10
$a PHABULOSA controls the quiescent center-independent root meristem activities in Arabidopsis thaliana / $c J. Sebastian, KH. Ryu, J. Zhou, D. Tarkowská, P. Tarkowski, YH. Cho, SD. Yoo, ES. Kim, JY. Lee,
520    9_
$a Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC) cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA) domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB), under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain.
650    _2
$a Arabidopsis $x genetika $x růst a vývoj $7 D017360
650    _2
$a proteiny huseníčku $x biosyntéza $x genetika $x metabolismus $7 D029681
650    _2
$a buněčné dělení $x genetika $7 D002455
650    _2
$a cytokininy $x genetika $x metabolismus $7 D003583
650    _2
$a DNA vazebné proteiny $x genetika $7 D004268
650    _2
$a regulace genové exprese u rostlin $7 D018506
650    _2
$a homeodoménové proteiny $x biosyntéza $x genetika $7 D018398
650    _2
$a homeostáza $7 D006706
650    _2
$a meristém $x genetika $x růst a vývoj $7 D018519
650    _2
$a fenotyp $7 D010641
650    _2
$a kořeny rostlin $x genetika $x růst a vývoj $7 D018517
650    _2
$a geneticky modifikované rostliny $x růst a vývoj $7 D030821
650    _2
$a nika kmenových buněk $x genetika $7 D055153
650    _2
$a transkripční faktory $x genetika $x metabolismus $7 D014157
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Ryu, Kook Hui $u School of Biological Sciences, Seoul National University, Seoul, Korea.
700    1_
$a Zhou, Jing $u Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America.
700    1_
$a Tarkowská, Danuše $u Laboratory of Growth Regulators, Faculty of Science, Palacky University and Institute of Experimental Botany AS CR, Olomouc, Czech Republic.
700    1_
$a Tarkowski, Petr $u Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, Olomouc, Czech Republic.
700    1_
$a Cho, Young-Hee $u School of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
700    1_
$a Yoo, Sang-Dong $u School of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
700    1_
$a Kim, Eun-Sol $u School of Biological Sciences, Seoul National University, Seoul, Korea.
700    1_
$a Lee, Ji-Young $u Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America; School of Biological Sciences, Seoul National University, Seoul, Korea.
773    0_
$w MED00008920 $t PLoS genetics $x 1553-7404 $g Roč. 11, č. 3 (2015), s. e1004973
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25730098 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160108 $b ABA008
991    __
$a 20160127102046 $b ABA008
999    __
$a ok $b bmc $g 1102526 $s 924451
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 11 $c 3 $d e1004973 $e 20150302 $i 1553-7404 $m PLoS genetics $n PLoS Genet $x MED00008920
LZP    __
$a Pubmed-20160108

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace