Neutrophils in STAT1 Gain-Of-Function Have a Pro-inflammatory Signature Which Is Not Rescued by JAK Inhibition

. 2023 Oct ; 43 (7) : 1640-1659. [epub] 20230626

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37358695
Odkazy

PubMed 37358695
PubMed Central PMC10499747
DOI 10.1007/s10875-023-01528-1
PII: 10.1007/s10875-023-01528-1
Knihovny.cz E-zdroje

STAT1 gain-of-function (GOF) mutations cause an inborn error of immunity with diverse phenotype ranging from chronic mucocutaneous candidiasis (CMC) to various non-infectious manifestations, the most precarious of which are autoimmunity and vascular complications. The pathogenesis centers around Th17 failure but is far from being understood. We hypothesized that neutrophils, whose functions have not been explored in the context of STAT1 GOF CMC yet, might be involved in the associated immunodysregulatory and vascular pathology. In a cohort of ten patients, we demonstrate that STAT1 GOF human ex-vivo peripheral blood neutrophils are immature and highly activated; have strong propensity for degranulation, NETosis, and platelet-neutrophil aggregation; and display marked inflammatory bias. STAT1 GOF neutrophils exhibit increased basal STAT1 phosphorylation and expression of IFN stimulated genes, but contrary to other immune cells, STAT1 GOF neutrophils do not display hyperphosphorylation of STAT1 molecule upon stimulation with IFNs. The patient treatment with JAKinib ruxolitinib does not ameliorate the observed neutrophil aberrations. To our knowledge, this is the first work describing features of peripheral neutrophils in STAT1 GOF CMC. The presented data suggest that neutrophils may contribute to the immune pathophysiology of the STAT1 GOF CMC.

Zobrazit více v PubMed

Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, Toubiana J, Itan Y, Audry M, Nitschke P, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208:1635–1648. doi: 10.1084/JEM.20110958. PubMed DOI PMC

Toubiana J, Okada S, Hiller J, Oleastro M, Gomez ML, Becerra JCA, Ouachée-Chardin M, Fouyssac F, Girisha KM, Etzioni A, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127:3154–3164. doi: 10.1182/blood-2015-11-679902. PubMed DOI PMC

Depner M, Fuchs S, Raabe J, Frede N, Glocker C, Doffinger R, Gkrania-Klotsas E, Kumararatne D, Atkinson TP, Schroeder HW, et al. The extended clinical phenotype of 26 patients with chronic mucocutaneous candidiasis due to gain-of-function mutations in STAT1. J Clin Immunol. 2016;36:73. doi: 10.1007/S10875-015-0214-9. PubMed DOI PMC

van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LAB, Gilissen C, Arts P, Rosentul DC, Carmichael AJ, Smits-van der Graaf CAA, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365:54–61. doi: 10.1056/NEJMOA1100102/SUPPL_FILE/NEJMOA1100102_DISCLOSURES.PDF. PubMed DOI

O’Shea JJ, Plenge R. JAK and STAT Signaling Molecules in immunoregulation and immune-mediated disease. Immunity. 2012;36:542–550. doi: 10.1016/J.IMMUNI.2012.03.014. PubMed DOI PMC

Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021;61:1–33. doi: 10.1038/s41392-021-00791-1. PubMed DOI PMC

Aittomäki S, Pesu M. Therapeutic targeting of the JAK/STAT pathway. Basic Clin Pharmacol Toxicol. 2014;114:18–23. doi: 10.1111/BCPT.12164. PubMed DOI

Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Zaid Al-Mohsen I, Al-Jumaah S, Yang K, Chapgier A, Eidenschenk C, Eid P, et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet. 2003;33:388–391. doi: 10.1038/NG1097. PubMed DOI

Takayanagi H, Kim S, Koga T, Taniguchi T. Stat1-mediated cytoplasmic attenuation in osteoimmunology. J Cell Biochem. 2005;94:232–240. doi: 10.1002/JCB.20316. PubMed DOI

Kovacic B, Stoiber D, Moriggl R, Weisz E, Ott RG, Kreibich R, Levy DE, Beug H, Freissmuth M, Sexl V. STAT1 acts as a tumor promoter for leukemia development. Cancer Cell. 2006;10:77–87. doi: 10.1016/J.CCR.2006.05.025. PubMed DOI

Najjar I, Deglesne P-A, Schischmanoff PO, Fabre EE, Boisson-Dupuis S, Nimmerjahn F, Bornkamm GW, Dusanter-Fourt I, Fagard R. STAT1-dependent IgG cell-surface expression in a human B cell line derived from a STAT1-deficient patient. J Leukoc Biol. 2010;87:1145–1152. doi: 10.1189/JLB.1109714. PubMed DOI

Zimmerman O, Olbrich P, Freeman AF, Rosen LB, Uzel G, Zerbe CS, Rosenzweig SD, Kuehn HS, Holmes KL, Stephany D, et al. STAT1 gain-of-function mutations cause high total STAT1 levels with normal dephosphorylation. Front Immunol. 2019;10:1433. doi: 10.3389/FIMMU.2019.01433/BIBTEX. PubMed DOI PMC

Zheng J, van de Veerdonk FL, Crossland KL, Smeekens SP, Chan CM, Al Shehri T, Abinun M, Gennery AR, Mann J, Lendrem DW, et al. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC) Eur J Immunol. 2015;45:2834–2846. doi: 10.1002/EJI.201445344. PubMed DOI

Rodero MP, Crow YJ. Type I interferon-mediated monogenic autoinflammation: The type I interferonopathies, a conceptual overview. J Exp Med. 2016;213:2527–2538. doi: 10.1084/JEM.20161596. PubMed DOI PMC

Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci. 2011;1238:91–98. doi: 10.1111/J.1749-6632.2011.06220.X. PubMed DOI

Crow YJ, Lebon P, Casanova JL, Gresser I. A Brief Historical perspective on the pathological consequences of excessive type I interferon exposure in vivo. J Clin Immunol. 2018;38:694–698. doi: 10.1007/S10875-018-0543-6. PubMed DOI

Bloomfield M, Zentsova I, Milota T, Sediva A, Parackova Z. Immunoprofiling of monocytes in STAT1 gain-offunction chronic mucocutaneous candidiasis. Front Immunol. 2022;13:1–14. 10.3389/FIMMU.2022.983977. PubMed PMC

Parackova Z, Zentsova I, Vrabcova P, Sediva A, Bloomfield M. Aberrant tolerogenic functions and proinflammatory skew of dendritic cells in STAT1 gain-of-function patients may contribute to autoimmunity and fungal susceptibility. Clin Immunol. 2022;246:109174. doi: 10.1016/J.CLIM.2022.109174. PubMed DOI

Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol. 2006;43:189–195. doi: 10.1053/J.SEMINHEMATOL.2006.04.004. PubMed DOI

Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov. 2020;19:253–275. doi: 10.1038/s41573-019-0054-z. PubMed DOI

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. doi: 10.1002/PRO.3943. PubMed DOI PMC

Bloomfield M, Kanderová V, Paračková Z, Vrabcová P, Svatoň M, Froňková E, Fejtková M, Zachová R, Rataj M, Zentsová I, et al. Utility of ruxolitinib in a child with chronic mucocutaneous candidiasis caused by a novel STAT1 gain-of-function mutation. J Clin Immunol. 2018;38:589–601. doi: 10.1007/s10875-018-0519-6. PubMed DOI

Matsumoto K, Yasuoka H, Yoshimoto K, Suzuki K, Takeuchi T. Platelet CXCL4 mediates neutrophil extracellular traps formation in ANCA-associated vasculitis. Sci Rep. 2021;11:222. doi: 10.1038/S41598-020-80685-4. PubMed DOI PMC

Panopoulos AD, Zhang L, Snow JW, Jones DM, Smith AM, El Kasmi KC, Liu F, Goldsmith MA, Link DC, Murray PJ, et al. STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood. 2006;108:3682–3690. doi: 10.1182/BLOOD-2006-02-003012. PubMed DOI PMC

Zhang H, Nguyen-Jackson H, Panopoulos AD, Li HS, Murray PJ, Watowich SS. STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood. 2010;116:2462–2471. doi: 10.1182/BLOOD-2009-12-259630. PubMed DOI PMC

Sakamoto E, Hato F, Kato T, Sakamoto C, Akahori M, Hino M, Kitagawa S. Type I and type II interferons delay human neutrophil apoptosis via activation of STAT3 and up-regulation of cellular inhibitor of apoptosis 2. J Leukoc Biol. 2005;78:301–309. doi: 10.1189/JLB.1104690. PubMed DOI

Perussia B, Kobayashi M, Rossi ME, Anegon I, Trinchieri G. Immune interferon enhances functional properties of human granulocytes: role of Fc receptors and effect of lymphotoxin, tumor necrosis factor, and granulocyte-macrophage colony-stimulating factor. J Immunol. 1987;138:765–774. doi: 10.4049/JIMMUNOL.138.3.765. PubMed DOI

Pylaeva E, Lang S, Jablonska J. The essential role of type I interferons in differentiation and activation of tumor-associated neutrophils. Front Immunol. 2016;7:629. doi: 10.3389/FIMMU.2016.00629/BIBTEX. PubMed DOI PMC

McLemore ML, Grewal S, Liu F, Archambault A, Poursine-Laurent J, Haug J, Link DC. STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity. 2001;14:193–204. doi: 10.1016/S1074-7613(01)00101-7. PubMed DOI

Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity. 2002;17:413–423. doi: 10.1016/S1074-7613(02)00424-7. PubMed DOI

Wang W-B, Levy DE, Lee C-K. STAT3 negatively regulates type I IFN-mediated antiviral response. J Immunol. 2011;187:2578–2585. doi: 10.4049/JIMMUNOL.1004128. PubMed DOI

Kaplan MJ. Role of neutrophils in systemic autoimmune diseases. Arthritis Res Ther. 2013;15:219. doi: 10.1186/ar4325. PubMed DOI PMC

Németh T, Mócsai A. The role of neutrophils in autoimmune diseases. Immunol Lett. 2012;143:9–19. doi: 10.1016/J.IMLET.2012.01.013. PubMed DOI

Tabellini G, Vairo D, Scomodon O, Tamassia N, Ferraro RM, Patrizi O, Gasperini S, Soresina A, Giardino G, Pignata C, et al. Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol. 2017;140:553–564.e4. doi: 10.1016/J.JACI.2016.10.051. PubMed DOI

Kaleviste E, Saare M, Leahy TR, Bondet V, Duffy D, Mogensen TH, Jørgensen SE, Nurm H, Ip W, Davies EG, et al. Interferon signature in patients with STAT1 gain-of-function mutation is epigenetically determined. Eur J Immunol. 2019;49:790–800. doi: 10.1002/EJI.201847955. PubMed DOI

Stellacci E, Moneta GM, Bruselles A, Barresi S, Pizzi S, Torre G, De Benedetti F, Tartaglia M, Insalaco A. The activating p.Ser466Arg change in STAT1 causes a peculiar phenotype with features of interferonopathies. Clin Genet. 2019;96:585–589. doi: 10.1111/CGE.13632. PubMed DOI

Psarras A, Emery P, Vital EM. Type I interferon–mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology. 2017;56:1662–1675. doi: 10.1093/RHEUMATOLOGY/KEW431. PubMed DOI

Di Domizio J, Cao W. Fueling autoimmunity: type I interferon in autoimmune diseases. Expert Rev Clin Immunol. 2013;9:201–210. doi: 10.1586/ECI.12.106. PubMed DOI PMC

Niewold TB. Type I interferon in human autoimmunity. Front Immunol. 2014;5:1–2. 10.3389/FIMMU.2014.00306. PubMed PMC

Okada S, Asano T, Moriya K, Boisson-Dupuis S, Kobayashi M, Casanova JL, Puel A. Human STAT1 gain-of-function heterozygous mutations: chronic mucocutaneous candidiasis and type I interferonopathy. J Clin Immunol. 2020;40:1065–1081. doi: 10.1007/S10875-020-00847-X/FIGURES/2. PubMed DOI PMC

Tolaymat A, Leventhal B, Sakarcan A, Kashima H, Monteiro C. Systemic lupus erythematosus in a child receiving long-term interferon therapy. J Pediatr. 1992;120:429–432. doi: 10.1016/S0022-3476(05)80913-8. PubMed DOI

Crow YJ, Stetson DB. The type I interferonopathies: 10 years on. Nat Rev Immunol. 2022;22:471. doi: 10.1038/S41577-021-00633-9. PubMed DOI PMC

Jaeger BN, Donadieu J, Cognet C, Bernat C, Ordoñez-Rueda D, Barlogis V, Mahlaoui N, Fenis A, Narni-Mancinelli E, Beaupain B, et al. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. J Exp Med. 2012;209:565–580. doi: 10.1084/JEM.20111908. PubMed DOI PMC

Micheletti A, Costantini C, Calzetti F, Camuesco D, Costa S, Tamassia N, Cassatella MA. Neutrophils promote 6-sulfo LacNAc+ dendritic cell (slanDC) survival. J Leukoc Biol. 2013;94:705–710. doi: 10.1189/JLB.1212638. PubMed DOI

Yang D, de la Rosa G, Tewary P, Oppenheim JJ. Alarmins link neutrophils and dendritic cells. Trends Immunol. 2009;30:531–537. doi: 10.1016/J.IT.2009.07.004. PubMed DOI PMC

Elloumi N, Ben Mansour R, Marzouk S, Mseddi M, Fakhfakh R, Gargouri B, Masmoudi H, Lassoued S. Differential reactive oxygen species production of neutrophils and their oxidative damage in patients with active and inactive systemic lupus erythematosus. Immunol Lett. 2017;184:1–6. doi: 10.1016/J.IMLET.2017.01.018. PubMed DOI

Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: same foe different M.O. Front Immunol. 2021;12:1–22. 10.3389/FIMMU.2021.649693. PubMed PMC

Didier K, Giusti D, Le Jan S, Terryn C, Muller C, Pham BN, Le Naour R, Antonicelli FD, Servettaz A. Neutrophil extracellular traps generation relates with early stage and vascular complications in ssystemic sclerosis. J Clin Med. 2020;9:1–14. doi: 10.3390/JCM9072136. PubMed DOI PMC

Kundu S, Ghosh P, Datta S, Ghosh A, Chattopadhyay S, Chatterjee M. Oxidative stress as a potential biomarker for determining disease activity in patients with rheumatoid arthritis. Free Radic Res. 2012;46:1482–1489. doi: 10.3109/10715762.2012.727991. PubMed DOI

Prame Kumar K, Nicholls AJ, Wong CHY. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res. 2018;371:551. doi: 10.1007/S00441-017-2753-2. PubMed DOI PMC

Schuster S, Hurrell B, Tacchini-Cottier F. Crosstalk between neutrophils and dendritic cells: a context-dependent process. J Leukoc Biol. 2013;94:671–675. doi: 10.1189/jlb.1012540. PubMed DOI

Parackova Z, Zentsova I, Vrabcova P, Klocperk A, Sumnik Z, Pruhova S, Petruzelkova L, Hasler R, Sediva A. Neutrophil extracellular trap induced dendritic cell activation leads to Th1 polarization in type 1 diabetes. Front Immunol. 2020;11:661. doi: 10.3389/fimmu.2020.00661. PubMed DOI PMC

Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol. 2017;17:248–261. doi: 10.1038/NRI.2017.10. PubMed DOI

Grieshaber-Bouyer R, Nigrovic PA. Neutrophil heterogeneity as therapeutic opportunity in immune-mediated disease. Front Immunol. 2019;10:1–13. 10.3389/FIMMU.2019.00346. PubMed PMC

Mistry P, Nakabo S, O’Neil L, Goel RR, Jiang K, Carmona-Rivera C, Gupta S, Chan DW, Carlucci PM, Wang X, et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2019;116:25222–25228. doi: 10.1073/PNAS.1908576116. PubMed DOI PMC

Crook KR, Liu P. Role of myeloid-derived suppressor cells in autoimmune disease. World J Immunol. 2014;4:26. doi: 10.5411/WJI.V4.I1.26. PubMed DOI PMC

Yin B, Ma G, Yen C-Y, Zhou Z, Wang GX, Divino CM, Casares S, Chen S-H, Yang W-C, Pan P-Y. Myeloid-derived suppressor cells prevent type 1 diabetes in murine models. J Immunol. 2010;185:5828–5834. doi: 10.4049/JIMMUNOL.0903636. PubMed DOI PMC

Li M, Zhu D, Wang T, Xia X, Tian J, Wang S. Roles of myeloid-derived suppressor cell subpopulations in autoimmune arthritis. Front Immunol. 2018;9:2849. doi: 10.3389/FIMMU.2018.02849. PubMed DOI PMC

Perdomo J, Leung HHL, Ahmadi Z, Yan F, Chong JJH, Passam FH, Chong BH. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun. 2019;10:1–14. doi: 10.1038/s41467-019-09160-7. PubMed DOI PMC

Lisman T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018;371:567–576. doi: 10.1007/S00441-017-2727-4. PubMed DOI PMC

Bdeir K, Gollomp K, Stasiak M, Mei J, Papiewska-Pajak I, Zhao G, Worthen GS, Cines DB, Poncz M, Kowalska MA. Platelet-specific chemokines contribute to the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol. 2017;56:261–270. doi: 10.1165/RCMB.2015-0245OC/SUPPL_FILE/DISCLOSURES.PDF. PubMed DOI PMC

Zucoloto AZ, Jenne CN. Platelet-neutrophil interplay: insights into neutrophil extracellular trap (NET)-driven coagulation in infection. 2019;6:85. https://pubmed.ncbi.nlm.nih.gov/31281822/. Accessed 9 Feb 2022. PubMed PMC

Jenne CN, Kubes P. Platelets in inflammation and infection. Platelets. 2015;26:286–292. doi: 10.3109/09537104.2015.1010441. PubMed DOI

Kim SJ, Jenne CN. Role of platelets in neutrophil extracellular trap (NET) production and tissue injury. Semin Immunol. 2016;28:546–554. doi: 10.1016/j.smim.2016.10.013. PubMed DOI

Finsterbusch M, Schrottmaier WC, Kral-Pointner JB, Salzmann M, Assinger A. Measuring and interpreting platelet-leukocyte aggregates. Platelets. 2018;29:677. doi: 10.1080/09537104.2018.1430358. PubMed DOI PMC

Kral JB, Schrottmaier WC, Salzmann M, Assinger A. Platelet interaction with innate immune cells. Transfus Med Hemotherapy. 2016;43:78. doi: 10.1159/000444807. PubMed DOI PMC

McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12:324–333. doi: 10.1016/J.CHOM.2012.06.011. PubMed DOI

Popp SK, Vecchio F, Brown DJ, Fukuda R, Suzuki Y, Takeda Y, Wakamatsu R, Sarma MA, Garrett J, Giovenzana A, et al. Circulating platelet-neutrophil aggregates characterize the development of type 1 diabetes in humans and NOD mice. JCI Insight. 2022;7:1–16. 10.1172/JCI.INSIGHT.153993. PubMed PMC

Herster F, Bittner Z, Codrea MC, Archer NK, Heister M, Löffler MW, Heumos S, Wegner J, Businger R, Schindler M, et al. Platelets aggregate with neutrophils and promote skin pathology in psoriasis. Front Immunol. 2019;10:1867. doi: 10.3389/FIMMU.2019.01867/BIBTEX. PubMed DOI PMC

Schrottmaier WC, Mussbacher M, Salzmann M, Assinger A. Platelet-leukocyte interplay during vascular disease. Atherosclerosis. 2020;307:109–120. doi: 10.1016/j.atherosclerosis.2020.04.018. PubMed DOI

Bierman-Chow S, Freeman AF, Holland SM, Lynch J, Cho HJ. Cerebral aneurysm in three pediatric patients with STAT1 gain-of-function mutations. J Neurol. 2022;269:5638–5642. doi: 10.1007/S00415-022-11131-W/FIGURES/1. PubMed DOI

Allen N, Barrett TJ, Guo Y, Nardi M, Ramkhelawon B, Rockman CB, Hochman JS, Berger JS. Circulating monocyte-platelet aggregates are a robust marker of platelet activity in cardiovascular disease. Atherosclerosis. 2019;282:11–18. doi: 10.1016/J.ATHEROSCLEROSIS.2018.12.029. PubMed DOI

Kusters PJH, Seijkens TTP, Beckers L, Lievens D, Winkels H, De Waard V, Duijvestijn A, Liljeqvist ML, Roy J, Daugherty A, et al. CD40L deficiency protects against aneurysm formation. Arterioscler Thromb Vasc Biol. 2018;38:1076–1085. doi: 10.1161/ATVBAHA.117.310640. PubMed DOI

Hannawa KK, Cho BS, Sinha I, Roelofs KJ, Myers DD, Wakefield TJ, Stanley JC, Henke PK, Upchurch GR. Attenuation of experimental aortic aneurysm formation in P-selectin knockout mice. Ann N Y Acad Sci. 2006;1085:353–359. doi: 10.1196/ANNALS.1383.014. PubMed DOI

Zhou H, Yan H, Cannon JL, Springer LE, Green JM, Pham CTN. CD43-mediated IFN-γ production by CD8+ T cells promotes abdominal aortic aneurysm in mice. J Immunol. 2013;190:5078–5085. doi: 10.4049/JIMMUNOL.1203228. PubMed DOI PMC

Deyà-Martínez A, Rivière JG, Roxo-Junior P, Ramakers J, Bloomfield M, Guisado Hernandez P, Blanco Lobo P, Abu Jamra SR, Esteve-Sole A, Kanderova V, et al. Impact of JAK inhibitors in pediatric patients with STAT1 gain of function (GOF) mutations—10 children and review of the literature. J Clin Immunol. 2022;12:1–12. doi: 10.1007/S10875-022-01257-X/FIGURES/2. PubMed DOI PMC

Zimmerman O, Rösler B, Zerbe CS, Rosen LB, Hsu AP, Uzel G, Freeman AF, Sampaio EP, Rosenzweig SD, Kuehn HS, et al. Risks of ruxolitinib in STAT1 gain-of-function-associated severe fungal disease. Open Forum Infect Dis. 2017;4:1–5. 10.1093/OFID/OFX202. PubMed PMC

Giovannozzi S, Demeulemeester J, Schrijvers R, Gijsbers R. Transcriptional profiling of STAT1 gain-of-function reveals common and mutation-specific fingerprints. Front Immunol. 2021;12:632997. doi: 10.3389/FIMMU.2021.632997/FULL. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace