Immunoprofiling of monocytes in STAT1 gain-of-function chronic mucocutaneous candidiasis
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36172362
PubMed Central
PMC9510987
DOI
10.3389/fimmu.2022.983977
Knihovny.cz E-zdroje
- Klíčová slova
- STAT1, candidiasis, cmc, dendritic cell, immunodeficiencies, monocytes, ruxolitinib,
- MeSH
- aktivační mutace MeSH
- antifungální látky MeSH
- cytokiny metabolismus MeSH
- kandidóza chronická mukokutánní * genetika MeSH
- lidé MeSH
- monocyty metabolismus MeSH
- toll-like receptor 7 metabolismus MeSH
- transkripční faktor STAT1 genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antifungální látky MeSH
- cytokiny MeSH
- STAT1 protein, human MeSH Prohlížeč
- toll-like receptor 7 MeSH
- transkripční faktor STAT1 MeSH
Patients with STAT1 gain-of-function (GOF) mutations suffer from an inborn error of immunity hallmarked by chronic mucocutaneous candidiasis (CMC). The pathogenesis behind this complex and heterogeneous disease is still incompletely understood. Beyond the well-recognized Th17 failure, linked to the STAT1/STAT3 dysbalance-driven abrogation of antifungal defense, only little is known about the consequences of augmented STAT1 signaling in other cells, including, interestingly, the innate immune cells. STAT1-mediated signaling was previously shown to be increased in STAT1 GOF CD14+ monocytes. Therefore, we hypothesized that monocytes might represent important co-orchestrators of antifungal defense failure, as well as various immunodysregulatory phenomena seen in patients with STAT1 GOF CMC, including autoimmunity. In this article, we demonstrate that human STAT1 GOF monocytes are characterized by proinflammatory phenotypes and a strong inflammatory skew of their secretory cytokine profile. Moreover, they exhibit diminished CD16 expression, and reduction of classical (CD14++C16-) and expansion of intermediate (CD14++16+) subpopulations. Amongst the functional aberrations, a selectively enhanced responsiveness to TLR7/8 stimulation, but not to other TLR ligands, was noted, which might represent a contributing mechanism in the pathogenesis of STAT1 GOF-associated autoimmunity. Importantly, some of these features extend to STAT1 GOF monocyte-derived dendritic cells and to STAT1 GOF peripheral myeloid dendritic cells, suggesting that the alterations observed in monocytes are, in fact, intrinsic due to STAT1 mutation, and not mere bystanders of chronic inflammatory environment. Lastly, we observe that the proinflammatory bias of STAT1 GOF monocytes may be ameliorated with JAK inhibition. Taken together, we show that monocytes likely play an active role in both the microbial susceptibility and autoimmunity in STAT1 GOF CMC.
Zobrazit více v PubMed
Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, et al. . Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med (2011) 208:1635–48. doi: 10.1084/JEM.20110958 PubMed DOI PMC
Toubiana J, Okada S, Hiller J, Oleastro M, Gomez ML, Becerra JCA, et al. . Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood (2016) 127:3154–64. doi: 10.1182/blood-2015-11-679902 PubMed DOI PMC
Depner M, Fuchs S, Raabe J, Frede N, Glocker C, Doffinger R, et al. . The extended clinical phenotype of 26 patients with chronic mucocutaneous candidiasis due to gain-of-Function mutations in STAT1. J Clin Immunol (2016) 36:73. doi: 10.1007/S10875-015-0214-9 PubMed DOI PMC
van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LAB, Gilissen C, et al. . STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med (2011) 365:54–61. doi: 10.1056/NEJMOA1100102/SUPPL_FILE/NEJMOA1100102_DISCLOSURES.PDF PubMed DOI
Zheng J, van de Veerdonk FL, Crossland KL, Smeekens SP, Chan CM, Al Shehri T, et al. . Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). Eur J Immunol (2015) 45:2834–46. doi: 10.1002/EJI.201445344 PubMed DOI
Bloomfield M, Kanderová V, Paračková Z, Vrabcová P, Svatoň M, Froňková E, et al. . Utility of ruxolitinib in a child with chronic mucocutaneous candidiasis caused by a novel STAT1 gain-of-function mutation. J Clin Immunol (2018) 38:589–601. doi: 10.1007/s10875-018-0519-6 PubMed DOI
Deyà-Martínez A, Rivière JG, Roxo-Junior P, Ramakers J, Bloomfield M, Guisado Hernandez P, et al. . Impact of JAK inhibitors in pediatric patients with STAT1 gain of function (GOF) mutations–10 children and review of the literature. J Clin Immunol (2022) 12:1–12. doi: 10.1007/S10875-022-01257-X/FIGURES/2 PubMed DOI PMC
Darnell JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science (1994) 264:1415–21. doi: 10.1126/SCIENCE.8197455 PubMed DOI
Lim CP, Cao X. Structure, function, and regulation of STAT proteins. Mol Biosyst (2006) 2:536–50. doi: 10.1039/B606246F PubMed DOI
Levy DE, Darnell JE. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol (2002) 3:651–62. doi: 10.1038/NRM909 PubMed DOI
Schindler C, Levy DE, Decker T. JAK-STAT signaling: From interferons to cytokines. J Biol Chem (2007) 282:20059–63. doi: 10.1074/JBC.R700016200 PubMed DOI
Zhong M, Henriksen MA, Takeuchi K, Schaefer O, Liu B, Ten Hoeve J, et al. . Implications of an antiparallel dimeric structure of nonphosphorylated STAT1 for the activation-inactivation cycle. Proc Natl Acad Sci U.S.A. (2005) 102:3966–71. doi: 10.1073/PNAS.0501063102 PubMed DOI PMC
Zimmerman O, Olbrich P, Freeman AF, Rosen LB, Uzel G, Zerbe CS, et al. . STAT1 gain-of-function mutations cause high total STAT1 levels with normal dephosphorylation. Front Immunol (2019) 10:1433/BIBTEX. doi: 10.3389/FIMMU.2019.01433/BIBTEX PubMed DOI PMC
Hiller J, Hagl B, Effner R, Puel A, Schaller M, Mascher B, et al. . STAT1 gain-of-Function and dominant negative STAT3 mutations impair IL-17 and IL-22 immunity associated with CMC. J Invest Dermatol (2018) 138:711–4. doi: 10.1016/J.JID.2017.09.035 PubMed DOI
Scott O, Lindsay K, Erwood S, Mollica A, Roifman CM, Cohn RD, et al. . STAT1 gain-of-function heterozygous cell models reveal diverse interferon-signature gene transcriptional responses. NPJ Genomic Med 2021 61 (2021) 6:1–15. doi: 10.1038/s41525-021-00196-7 PubMed DOI PMC
Zhang W, Chen X, Gao G, Xing S, Zhou L, Tang X, et al. . Clinical relevance of gain- and loss-of-Function germline mutations in STAT1: A systematic review. Front Immunol (2021) 12:654406/BIBTEX. doi: 10.3389/FIMMU.2021.654406/BIBTEX PubMed DOI PMC
Vargas-Hernández A, Mace EM, Zimmerman O, Zerbe CS, Freeman AF, Rosenzweig S, et al. . Ruxolitinib partially reverses functional NK cell deficiency in patients with STAT1 gain-of-function mutations. J Allergy Clin Immunol (2018) 141:2142. doi: 10.1016/J.JACI.2017.08.040 PubMed DOI PMC
Tabellini G, Vairo D, Scomodon O, Tamassia N, Ferraro RM, Patrizi O, et al. . Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol (2017) 140:553–564.e4. doi: 10.1016/J.JACI.2016.10.051 PubMed DOI
Guilliams M, Mildner A, Yona S. Immunity review developmental and functional heterogeneity of monocytes. Immunity (2018) 49(4):595–613. doi: 10.1016/j.immuni.2018.10.005 PubMed DOI
Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. . Nomenclature of monocytes and dendritic cells in blood. Blood (2010) 116:e74–80. doi: 10.1182/BLOOD-2010-02-258558 PubMed DOI
Ma W-T, Gao F, Gu K, Chen D-K. The role of monocytes and macrophages in autoimmune diseases: A comprehensive review. Front Immunol (2019) 10:1140. doi: 10.3389/fimmu.2019.01140 PubMed DOI PMC
Mizoguchi Y, Tsumura M, Okada S, Hirata O, Minegishi S, Imai K, et al. . Simple diagnosis of STAT1 gain-of-function alleles in patients with chronic mucocutaneous candidiasis. J Leukoc Biol (2014) 95:667–76. doi: 10.1189/JLB.0513250 PubMed DOI PMC
Ong SM, Teng K, Newell E, Chen H, Chen J, Loy T, et al. . Five-marker alternative to CD16-CD14 gating to identify the three human monocyte subsets. Front Immunol (2019) 10:1761/BIBTEX. doi: 10.3389/FIMMU.2019.01761/BIBTEX PubMed DOI PMC
Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. . Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science (80-) (2017) 356:80–111. doi: 10.1126/SCIENCE.AAH4573/SUPPL_FILE/AAH4573_VILLANI_SM.PDF PubMed DOI PMC
Dutertre CA, Becht E, Irac SE, Khalilnezhad A, Narang V, Khalilnezhad S, et al. . Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity (2019) 51:573–589.e8. doi: 10.1016/J.IMMUNI.2019.08.008 PubMed DOI
Coccia EM, Del Russo ND, Stellacci E, Testa U, Marziali G, Battistini A. STAT1 activation during monocyte to macrophage maturation: Role of adhesion molecules. Int Immunol (1999) 11:1075–83. doi: 10.1093/INTIMM/11.7.1075 PubMed DOI
Wang Y, Li T, Wu B, Liu H, Luo J, Feng D, et al. . STAT1 regulates MD-2 expression in monocytes of sepsis via miR-30a. Inflammation (2014) 37:1903–11. doi: 10.1007/S10753-014-9922-1 PubMed DOI
Bernasconi AR, Yancoski J, Villa M, Oleastro MM, Galicchio M, Rossi JG. Increased STAT1 amounts correlate with the phospho-STAT1 level in STAT1 gain-of-function defects. J Clin Immunol (2018) 38:745–7. doi: 10.1007/S10875-018-0557-0/FIGURES/1 PubMed DOI
Kobbe R, Kolster M, Fuchs S, Schulze-Sturm U, Jenderny J, Kochhan L, et al. . Common variable immunodeficiency, impaired neurological development and reduced numbers of T regulatory cells in a 10-year-old boy with a STAT1 gain-of-function mutation. Gene (2016) 586:234–8. doi: 10.1016/J.GENE.2016.04.006 PubMed DOI
Thompson A, Davies LC, Te Liao C, da Fonseca DM, Griffiths JS, Andrews R, et al. . The protective effect of inflammatory monocytes during systemic c. albicans infection is dependent on collaboration between c-type lectin-like receptors. PloS Pathog (2019) 15:1–29. doi: 10.1371/JOURNAL.PPAT.1007850 PubMed DOI PMC
Smeekens SP, van de Veerdonk FL, Joosten LAB, Jacobs L, Jansen T, Williams DL, et al. . The classical CD14++CD16– monocytes, but not the patrolling CD14+CD16+ monocytes, promote Th17 responses to candida albicans. Eur J Immunol (2011) 41:2915–24. doi: 10.1002/EJI.201141418 PubMed DOI
Yeap WH, Wong KL, Shimasaki N, Teo ECY, Quek JKS, Yong HX, et al. . CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep (2016) 6:1–16. doi: 10.1038/SREP34310 PubMed DOI PMC
Srpan K, Ambrose A, Karampatzakis A, Saeed M, Cartwright ANR, Guldevall K, et al. . Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J Cell Biol (2018) 217:3267–83. doi: 10.1083/JCB.201712085/VIDEO-4 PubMed DOI PMC
Waller K, James C, de Jong A, Blackmore L, Ma Y, Stagg A, et al. . ADAM17-mediated reduction in CD14++ CD16+ monocytes ex vivo and reduction in intermediate monocytes with immune paresis in acute pancreatitis and acute alcoholic hepatitis. Front Immunol (2019) 10:1902/BIBTEX. doi: 10.3389/FIMMU.2019.01902/BIBTEX PubMed DOI PMC
Goodier MR, Lusa C, Sherratt S, Rodriguez-Galan A, Behrens R, Riley EM. Sustained immune complex-mediated reduction in CD16 expression after vaccination regulates NK cell function. Front Immunol (2016) 7:384/BIBTEX. doi: 10.3389/FIMMU.2016.00384/BIBTEX PubMed DOI PMC
Shalova IN, Kajiji T, Lim JY, Gómez-Piña V, Fernández-Ruíz I, Arnalich F, et al. . CD16 regulates TRIF-dependent TLR4 response in human monocytes and their subsets. J Immunol (2012) 188:3584–93. doi: 10.4049/JIMMUNOL.1100244 PubMed DOI
Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand J Immunol (2020) 92:e12883. doi: 10.1111/SJI.12883 PubMed DOI
Lee-Kirsch MA, Wolf C, Günther C. Aicardi–goutières syndrome: A model disease for systemic autoimmunity. Clin Exp Immunol (2014) 175:17. doi: 10.1111/CEI.12160 PubMed DOI PMC
Okada S, Asano T, Moriya K, Boisson-Dupuis S, Kobayashi M, Casanova JL, et al. . Human STAT1 gain-of-Function heterozygous mutations: Chronic mucocutaneous candidiasis and type I interferonopathy. J Clin Immunol (2020) 40:1065–81. doi: 10.1007/S10875-020-00847-X/FIGURES/2 PubMed DOI PMC
Romberg N, Morbach H, Lawrence MG, Kim S, Kang I, Holland SM, et al. . Gain-of-function STAT1 mutations are associated with PD-L1 overexpression and a defect in b-cell survival. J Allergy Clin Immunol (2013) 131:1691. doi: 10.1016/J.JACI.2013.01.004 PubMed DOI PMC
van Zelm MC, Bosco JJ, Aui PM, De Jong S, Hore-Lacy F, O’Hehir RE, et al. . Impaired STAT3-dependent upregulation of IL2Rα in b cells of a patient with a STAT1 gain-of-Function mutation. Front Immunol (2019) 10:768/BIBTEX. doi: 10.3389/FIMMU.2019.00768/BIBTEX PubMed DOI PMC
Akira S. Innate immunity to pathogens: Diversity in receptors for microbial recognition. Immunol Rev (2009) 227:5–8. doi: 10.1111/J.1600-065X.2008.00739.X PubMed DOI
Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S. Autoreactive b cell responses to RNA-related antigens due to TLR7 gene duplication. Science (80-) (2006) 312:1669–72. doi: 10.1126/SCIENCE.1124978/SUPPL_FILE/PISITKUN.SOM.PDF PubMed DOI
Murakami Y, Fukui R, Tanaka R, Motoi Y, Kanno A, Sato R, et al. . Anti-TLR7 antibody protects against lupus nephritis in NZBWF1 mice by targeting b cells and patrolling monocytes. Front Immunol (2021) 12:777197/BIBTEX. doi: 10.3389/FIMMU.2021.777197/BIBTEX PubMed DOI PMC
Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, et al. . Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity (2010) 33:375–86. doi: 10.1016/J.IMMUNI.2010.08.012 PubMed DOI PMC
Celhar T, Hopkins R, Thornhill SI, De Magalhaes R, Hwang SH, Lee HY, et al. . RNA Sensing by conventional dendritic cells is central to the development of lupus nephritis. Proc Natl Acad Sci U.S.A. (2015) 112:E6195–204. doi: 10.1073/PNAS.1507052112/SUPPL_FILE/PNAS.201507052SI.PDF PubMed DOI PMC
Swiecki M, Wang Y, Vermi W, Gilfillan S, Schreiber RD, Colonna M. Type I interferon negatively controls plasmacytoid dendritic cell numbers in vivo . J Exp Med (2011) 208:2367–74. doi: 10.1084/JEM.20110654 PubMed DOI PMC
Piccioli D, Tavarini S, Borgogni E, Steri V, Nuti S, Sammicheli C, et al. . Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood (2007) 109:5371–9. doi: 10.1182/BLOOD-2006-08-038422 PubMed DOI
Korenfeld D, Gorvel L, Munk A, Man J, Schaffer A, Tung T, et al. . A type of human skin dendritic cell marked by CD5 is associated with the development of inflammatory skin disease. JCI Insight (2017) 2:1–16. doi: 10.1172/JCI.INSIGHT.96101 PubMed DOI PMC
Ferreira da Mota NV, Colo Brunialti MK, Santos SS, Machado FR, Assuncao M, Pontes Azevedo LC, et al. . Immunophenotyping of monocytes during human sepsis shows impairment in antigen presentation: A shift toward nonclassical differentiation and upregulation of FCγRi-receptor. Shock (2018) 50:293–300. doi: 10.1097/SHK.0000000000001078 PubMed DOI
Parackova Z, Zentsova I, Bloomfield M, Vrabcova P, Smetanova J, Klocperk A, et al. . Disharmonic inflammatory signatures in COVID-19: Augmented neutrophils’ but impaired monocytes’ and dendritic cells’ responsiveness. Cells (2020) 9:1–19. doi: 10.3390/cells9102206 PubMed DOI PMC
Pradhan K, Yi Z, Geng S, Li L. Development of exhausted memory monocytes and underlying mechanisms. Front Immunol (2021) 12:778830/BIBTEX. doi: 10.3389/FIMMU.2021.778830/BIBTEX PubMed DOI PMC