Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26913864
DOI
10.1007/s11120-016-0234-1
PII: 10.1007/s11120-016-0234-1
Knihovny.cz E-zdroje
- Klíčová slova
- Light harvesting, Thylakoid membrane, Vaucheriaxanthin, Violaxanthin–chlorophyll protein,
- MeSH
- fotosystém I - proteinový komplex metabolismus MeSH
- fylogeneze MeSH
- Heterokontophyta genetika metabolismus MeSH
- spektrofotometrie ultrafialová MeSH
- světlosběrné proteinové komplexy chemie genetika metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosystém I - proteinový komplex MeSH
- světlosběrné proteinové komplexy MeSH
We present proteomic, spectroscopic, and phylogenetic analysis of light-harvesting protein (Lhc) function in oleaginous Nannochloropsis oceanica (Eustigmatophyta, Stramenopila). N. oceanica utilizes Lhcs of multiple classes: Lhcr-type proteins (related to red algae LHCI), Lhcv (VCP) proteins (violaxanthin-containing Lhcs related to Lhcf/FCP proteins of diatoms), Lhcx proteins (related to Lhcx/LhcSR of diatoms and green algae), and Lhc proteins related to Red-CLH of Chromera velia. Altogether, 17 Lhc-type proteins of the 21 known from genomic data were found in our proteomic analyses. Besides Lhcr-type antennas, a RedCAP protein and a member of the Lhcx protein subfamily were found in association with Photosystem I. The free antenna fraction is formed by trimers of a mixture of Lhcs of varied origins (Lhcv, Lhcr, Lhcx, and relatives of Red-CLH). Despite possessing several proteins of the Red-CLH-type Lhc clade, N. oceanica is not capable of chromatic adaptation under the same conditions as the diatom Phaeodactylum tricornutum or C. velia. In addition, a naming scheme of Nannochloropsis Lhcs is proposed to facilitate further work.
Zobrazit více v PubMed
Photosynth Res. 2014 Jul;121(1):79-86 PubMed
Biochim Biophys Acta. 2015 Oct;1847(10 ):1327-34 PubMed
Biochim Biophys Acta. 2013 Jun;1827(6):723-9 PubMed
Biochim Biophys Acta. 2014 Jan;1837(1):63-72 PubMed
Photosynth Res. 2015 Jun;124(3):253-65 PubMed
Biotechnol Bioeng. 2001 Oct 5;75(1):1-12 PubMed
Biochim Biophys Acta. 2013 Apr;1827(4):529-39 PubMed
Biochim Biophys Acta. 2010 Feb;1797(2):160-6 PubMed
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21265-9 PubMed
Protist. 2012 Mar;163(2):306-23 PubMed
BMC Evol Biol. 2013 Jul 30;13:159 PubMed
Syst Biol. 2012 May;61(3):539-42 PubMed
Sci Rep. 2015 May 28;5:10134 PubMed
Biochim Biophys Acta. 2008 Apr;1777(4):351-61 PubMed
Mol Biol Evol. 2013 Apr;30(4):772-80 PubMed
Nature. 2009 Nov 26;462(7272):518-21 PubMed
Biochim Biophys Acta. 2005 Feb 17;1706(3):267-75 PubMed
J Phys Chem Lett. 2014 Sep 4;5(17):2983-7 PubMed
J Phycol. 2008 Feb;44(1):99-102 PubMed
J Proteome Res. 2011 Dec 2;10(12):5338-53 PubMed
Nature. 2011 May 5;473(7345):55-60 PubMed
Plant Physiol. 2012 Jan;158(1):476-86 PubMed
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18214-9 PubMed
Trends Plant Sci. 1999 Jun;4(6):236-240 PubMed
BMC Evol Biol. 2011 Apr 15;11:101 PubMed
Biochemistry. 2007 Aug 28;46(34):9813-22 PubMed
Science. 2004 Oct 1;306(5693):79-86 PubMed
Photosynth Res. 2011 May;108(1):25-32 PubMed
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):534-43 PubMed
J Plant Physiol. 2015 Jan 1;172:62-75 PubMed
Nature. 2008 Nov 13;456(7219):239-44 PubMed
Science. 2015 May 29;348(6238):989-95 PubMed
BMC Evol Biol. 2010 Jul 30;10:233 PubMed
J Biol Chem. 2013 Nov 15;288(46):32821-6 PubMed
Nature. 2004 Mar 18;428(6980):287-92 PubMed
Can J Microbiol. 1962 Apr;8:229-39 PubMed
Biophys J. 2011 Jan 5;100(1):135-43 PubMed
Anal Biochem. 1991 Dec;199(2):223-31 PubMed
Eukaryot Cell. 2013 May;12(5):665-76 PubMed
Nat Commun. 2012 Feb 21;3:686 PubMed
Biochemistry. 2003 Nov 11;42(44):13027-34 PubMed
Biochim Biophys Acta. 2014 Jun;1837(6):734-43 PubMed
Biochem J. 2011 Feb 1;433(3):477-85 PubMed
PLoS Genet. 2012;8(11):e1003064 PubMed
J Phys Chem B. 2014 May 15;118(19):5093-100 PubMed
Plant J. 2014 Apr;78(2):181-91 PubMed
EMBO J. 2009 Oct 7;28(19):3052-63 PubMed
Biochim Biophys Acta. 2007 Dec;1767(12):1353-62 PubMed
Biochim Biophys Acta. 2014 Feb;1837(2):306-14 PubMed
Plant Physiol. 1987 Feb;83(2):434-7 PubMed
Biochemistry. 1994 Aug 30;33(34):10494-500 PubMed
Biochim Biophys Acta. 2014 Jun;1837(6):802-10 PubMed
Biochim Biophys Acta. 2013 Mar;1827(3):303-10 PubMed
Biochim Biophys Acta. 2010 Aug;1797(8):1449-57 PubMed
Biochim Biophys Acta. 2016 Apr;1857(4):370-9 PubMed
Photosynth Res. 2013 Nov;117(1-3):281-8 PubMed
Biochemistry. 1996 Jul 2;35(26):8572-9 PubMed
Elife. 2015 Jul 15;4:e06974 PubMed
J Phys Chem B. 2010 Jul 15;114(27):9031-8 PubMed
Plant Physiol. 2013 Feb;161(2):853-65 PubMed
Plant Cell. 2008 Apr;20(4):1012-28 PubMed
Mol Plant. 2014 Feb;7(2):323-35 PubMed
Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes
Electronic and Vibrational Properties of Allene Carotenoids
Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile
Pigment structure in the violaxanthin-chlorophyll-a-binding protein VCP
A two-component nonphotochemical fluorescence quenching in eustigmatophyte algae