Pigment structure in the violaxanthin-chlorophyll-a-binding protein VCP

. 2017 Oct ; 134 (1) : 51-58. [epub] 20170704

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28677008

Grantová podpora
PHOTPROT project European Research Council - International
14-01377P Czech Science Foundation

Odkazy

PubMed 28677008
DOI 10.1007/s11120-017-0407-6
PII: 10.1007/s11120-017-0407-6
Knihovny.cz E-zdroje

Resonance Raman spectroscopy was used to evaluate pigment-binding site properties in the violaxanthin-chlorophyll-a-binding protein (VCP) from Nannochloropsis oceanica. The pigments bound to this antenna protein are chlorophyll-a, violaxanthin, and vaucheriaxanthin. The molecular structures of bound Chl-a molecules are discussed with respect to those of the plant antenna proteins LHCII and CP29, the crystal structures of which are known. We show that three populations of carotenoid molecules are bound by VCP, each of which is in an all-trans configuration. We assign the lower-energy absorption transition of each of these as follows. One violaxanthin population absorbs at 485 nm, while the second population is red-shifted and absorbs at 503 nm. The vaucheriaxanthin population absorbs at 525 nm, a position red-shifted by 2138 cm-1 as compared to isolated vaucheriaxanthin in n-hexane. The red-shifted violaxanthin is slightly less planar than the blue-absorbing one, as observed for the two central luteins in LHCII, and we suggest that these violaxanthins occupy the two equivalent binding sites in VCP at the centre of the cross-brace. The presence of a highly red-shifted vaucheriaxanthin in VCP is reminiscent of the situation of FCP, in which (even more) highly red-shifted populations of fucoxanthin are present. Tuning carotenoids to absorb in the green-yellow region of the visible spectrum appears to be a common evolutionary response to competition with other photosynthetic species in the aquatic environment.

Zobrazit více v PubMed

J Biol Chem. 2013 Jun 28;288(26):18758-65 PubMed

J Biol Chem. 2017 Jan 27;292(4):1396-1403 PubMed

Biochim Biophys Acta. 2014 Aug;1837(8):1235-46 PubMed

J Biol Chem. 2000 Jul 21;275(29):22031-6 PubMed

J Am Chem Soc. 1973 Jul 11;95(14):4493-501 PubMed

FEBS Lett. 2000 Jul 21;477(3):181-5 PubMed

Science. 1996 Jun 21;272(5269):1788-91 PubMed

J Phys Chem B. 2013 Sep 26;117(38):11015-21 PubMed

Planta. 1990 May;181(2):204-11 PubMed

Biochim Biophys Acta. 2015 Jan;1847(1):12-8 PubMed

Photosynth Res. 2010 Nov;106(1-2):57-71 PubMed

Bioresour Technol. 2011 May;102(10):6026-32 PubMed

Photosynth Res. 2005 Nov;86(1-2):5-24 PubMed

Biochemistry. 1995 Feb 21;34(7):2333-7 PubMed

Plant Physiol. 2007 Apr;143(4):1802-16 PubMed

BMC Evol Biol. 2010 Jul 30;10:233 PubMed

Biotechnol Bioeng. 2009 Jan 1;102(1):100-12 PubMed

Nature. 2004 Mar 18;428(6980):287-92 PubMed

J Phys Chem A. 2015 Jan 8;119(1):56-66 PubMed

Biochim Biophys Acta. 2016 Nov;1857(11):1759-1765 PubMed

J Phys Chem A. 2014 Mar 13;118(10):1817-25 PubMed

Nat Commun. 2012 Feb 21;3:686 PubMed

Sci Rep. 2013 Sep 26;3:2761 PubMed

PLoS One. 2012;7(6):e38975 PubMed

Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):636-40 PubMed

Spectrochim Acta A Mol Biomol Spectrosc. 2011 Apr;78(4):1261-5 PubMed

Biochim Biophys Acta. 2014 Feb;1837(2):306-14 PubMed

Biochemistry. 1998 Feb 24;37(8):2450-7 PubMed

J Phys Chem B. 2009 Sep 17;113(37):12565-74 PubMed

Nat Struct Mol Biol. 2011 Mar;18(3):309-15 PubMed

Biochim Biophys Acta. 2011 Aug;1807(8):864-77 PubMed

Biochim Biophys Acta. 2016 Apr;1857(4):370-9 PubMed

Biochim Biophys Acta. 1977 Jun 9;460(3):408-30 PubMed

Mol Gen Genet. 1995 Feb 20;246(4):455-64 PubMed

Photosynth Res. 2016 Dec;130(1-3):137-150 PubMed

Biochim Biophys Acta. 2016 Sep;1857(9):1490-6 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...