Electronic and Vibrational Properties of Allene Carotenoids
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35114087
PubMed Central
PMC8859822
DOI
10.1021/acs.jpca.1c09393
Knihovny.cz E-zdroje
- MeSH
- alkadieny * MeSH
- elektronika MeSH
- karotenoidy * chemie MeSH
- Ramanova spektroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkadieny * MeSH
- karotenoidy * MeSH
- propadiene MeSH Prohlížeč
Carotenoids are conjugated linear molecules built from the repetition of terpene units, which display a large structural diversity in nature. They may, in particular, contain several types of side or end groups, which tune their functional properties, such as absorption position and photochemistry. We report here a detailed experimental study of the absorption and vibrational properties of allene-containing carotenoids, together with an extensive modeling of these experimental data. Our calculations can satisfactorily explain the electronic properties of vaucheriaxanthin, where the allene group introduces the equivalent of one C═C double bond into the conjugated C═C chain. The position of the electronic absorption of fucoxanthin and butanoyloxyfucoxanthin requires long-range corrections to be found correctly on the red side of that of vaucheriaxanthin; however, these corrections tend to overestimate the effect of the conjugated and nonconjugated C═O groups in these molecules. We show that the resonance Raman spectra of these carotenoids are largely perturbed by the presence of the allene group, with the two major Raman contributions split into two components. These perturbations are satisfactorily explained by modeling, through a gain in the Raman intensity of the C═C antisymmetric stretching mode, induced by the presence of the allene group in the carotenoid C═C chain.
Zobrazit více v PubMed
Yabuzaki J. Carotenoids Database: Structures, Chemical Fingerprints and Distribution among Organisms. Database 2017, 2017, bax00410.1093/database/bax004. PubMed DOI PMC
Polívka T.; Sundström V. Ultrafast Dynamics of Carotenoid Excited States–from Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104, 2021–2072. 10.1021/cr020674n. PubMed DOI
Tavan P.; Schulten K. Electronic Excitations in Finite and Infinite Polyenes. Phys. Rev. B 1987, 36, 4337–4358. 10.1103/PhysRevB.36.4337. PubMed DOI
Llansola-Portoles M. J.; Pascal A. A.; Robert B. Electronic and Vibrational Properties of Carotenoids: From in Vitro to in Vivo. J. R. Soc. Interface 2017, 14, 2017050410.1098/rsif.2017.0504. PubMed DOI PMC
Mendes-Pinto M. M.; Sansiaume E.; Hashimoto H.; Pascal A. A.; Gall A.; Robert B. Electronic Absorption and Ground State Structure of Carotenoid Molecules. J. Phys. Chem. B 2013, 117, 11015–11021. 10.1021/jp309908r. PubMed DOI
Ruban A. V.; Berera R.; Ilioaia C.; van Stokkum I. H. M.; Kennis J. T. M.; Pascal A. A.; van Amerongen H.; Robert B.; Horton P.; van Grondelle R. Identification of a Mechanism of Photoprotective Energy Dissipation in Higher Plants. Nature 2007, 450, 575–578. 10.1038/nature06262. PubMed DOI
Mendes-Pinto M. M.; Galzerano D.; Telfer A.; Pascal A. A.; Robert B.; Ilioaia C. Mechanisms Underlying Carotenoid Absorption in Oxygenic Photosynthetic Proteins. J. Biol. Chem. 2013, 288, 18758–18765. 10.1074/jbc.M112.423681. PubMed DOI PMC
Llansola-Portoles M. J.; Sobotka R.; Kish E.; Shukla M. K.; Pascal A. A.; Polívka T.; Robert B. Twisting a B-Carotene, an Adaptive Trick from Nature for Dissipating Energy During Photoprotection. J. Biol. Chem. 2017, 292, 1396–1403. 10.1074/jbc.M116.753723. PubMed DOI PMC
Staleva H.; Komenda J.; Shukla M. K.; Šlouf V.; Kaňa R.; Polívka T.; Sobotka R. Mechanism of Photoprotection in the Cyanobacterial Ancestor of Plant Antenna Proteins. Nat. Chem. Biol. 2015, 11, 287–291. 10.1038/nchembio.1755. PubMed DOI
Shukla M. K.; Llansola-Portoles M. J.; Tichý M.; Pascal A. A.; Robert B.; Sobotka R. Binding of Pigments to the Cyanobacterial High-Light-Inducible Protein Hlic. Photosynth. Res. 2018, 137, 29–39. 10.1007/s11120-017-0475-7. PubMed DOI
Streckaite S.; Macernis M.; Li F.; Kuthanová Trsková E.; Litvin R.; Yang C.; Pascal A. A.; Valkunas L.; Robert B.; Llansola-Portoles M. J. Modeling Dynamic Conformations of Organic Molecules: Alkyne Carotenoids in Solution. J. Phys. Chem. A 2020, 124, 2792–2801. 10.1021/acs.jpca.9b11536. PubMed DOI PMC
Staleva-Musto H.; Kuznetsova V.; West R. G.; Keşan G.; Minofar B.; Fuciman M.; Bína D.; Litvín R.; Polívka T. Nonconjugated Acyloxy Group Deactivates the Intramolecular Charge-Transfer State in the Carotenoid Fucoxanthin. J. Phys. Chem. B 2018, 122, 2922–2930. 10.1021/acs.jpcb.8b00743. PubMed DOI
Premvardhan L.; Sandberg D. J.; Fey H.; Birge R. R.; Büchel C.; van Grondelle R. The Charge-Transfer Properties of the S2 State of Fucoxanthin in Solution and in Fucoxanthin Chlorophyll-a/C2 Protein (Fcp) Based on Stark Spectroscopy and Molecular-Orbital Theory. J. Phys. Chem. B 2008, 112, 11838–11853. 10.1021/jp802689p. PubMed DOI PMC
Premvardhan L.; Robert B.; Beer A.; Büchel C. Pigment Organization in Fucoxanthin Chlorophyll a/C2 Proteins (Fcp) Based on Resonance Raman Spectroscopy and Sequence Analysis. Biochim. Biophys. Acta 2010, 1797, 1647–1656. 10.1016/j.bbabio.2010.05.002. PubMed DOI
Premvardhan L.; Bordes L.; Beer A.; Büchel C.; Robert B. Carotenoid Structures and Environments in Trimeric and Oligomeric Fucoxanthin Chlorophyll a/C2 Proteins from Resonance Raman Spectroscopy. J. Phys. Chem. B 2009, 113, 12565–12574. 10.1021/jp903029g. PubMed DOI
Redeckas K.; Voiciuk V.; Vengris M. Investigation of the S1/Ict Equilibrium in Fucoxanthin by Ultrafast Pump-Dump-Probe and Femtosecond stimulated Raman Scattering Spectroscopy. Photosynth. Res. 2016, 128, 169–181. 10.1007/s11120-015-0215-9. PubMed DOI
Kosumi D.; Kajikawa T.; Okumura S.; Sugisaki M.; Sakaguchi K.; Katsumura S.; Hashimoto H. Elucidation and Control of an Intramolecular Charge Transfer Property of Fucoxanthin by a Modification of Its Polyene Chain Length. J. Phys. Chem. Lett. 2014, 5, 792–797. 10.1021/jz5000287. PubMed DOI
Staleva-Musto H.; Kuznetsova V.; Bína D.; Litvín R.; Polívka T. Intramolecular Charge-Transfer State of Carotenoids Siphonaxanthin and Siphonein: Function of Non-Conjugated Acyl-Oxy Group. Photosynth. Res. 2020, 144, 127–135. 10.1007/s11120-019-00694-x. PubMed DOI
Frank H. A.; Bautista J. A.; Josue J.; Pendon Z.; Hiller R. G.; Sharples F. P.; Gosztola D.; Wasielewski M. R. Effect of the Solvent Environment on the Spectroscopic Properties and Dynamics of the Lowest Excited States of Carotenoids. J. Phys. Chem. B 2000, 104, 4569–4577. 10.1021/jp000079u. DOI
Zigmantas D.; Hiller R. G.; Sharples F. P.; Frank H. A.; Sundstrom V.; Polivka T. Effect of a Conjugated Carbonyl Group on the Photophysical Properties of Carotenoids. Phys. Chem. Chem. Phys. 2004, 6, 3009–3016. 10.1039/B315786E. DOI
Martyna G. J.; Klein M. L.; et al. Nosé–Hoover Chains: The Canonical Ensemble Via Continuous Dynamics. J. Chem. Phys. 1992, 97, 2635–2643. 10.1063/1.463940. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Troullier N.; Martins J. L. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B 1991, 43, 1993–2006. 10.1103/PhysRevB.43.1993. PubMed DOI
Dreuw A.; Harbach P. H. P.; Mewes J. M.; Wormit M. Quantum Chemical Excited State Calculations on Pigment–Protein Complexes Require Thorough Geometry Re-Optimization of Experimental Crystal Structures. Theor. Chem. Acc. 2010, 125, 419–426. 10.1007/s00214-009-0680-3. DOI
Wong M. W. Vibrational Frequency Prediction Using Density Functional Theory. Chem. Phys. Lett. 1996, 256, 391–399. 10.1016/0009-2614(96)00483-6. DOI
Liu W.; Wang Z.; Zheng Z.; Jiang L.; Yang Y.; Zhao L.; Su W. Density Functional Theoretical Analysis of the Molecular Structural Effects on Raman Spectra of B-Carotene and Lycopene. Chin. J. Chem. 2012, 30, 2573–2580. 10.1002/cjoc.201200661. DOI
Mardirossian N.; Head-Gordon M. Thirty Years of Density Functional Theory in Computational Chemistry: An Overview and Extensive Assessment of 200 Density Functionals. Mol. Phys. 2017, 115, 2315–2372. 10.1080/00268976.2017.1333644. DOI
Cohen A. J.; Mori-Sánchez P.; Yang W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289–320. 10.1021/cr200107z. PubMed DOI
Chung L. W.; Sameera W. M. C.; Ramozzi R.; Page A. J.; Hatanaka M.; Petrova G. P.; Harris T. V.; Li X.; Ke Z.; Liu F.; et al. The Oniom Method and Its Applications. Chem. Rev. 2015, 115, 5678–5796. 10.1021/cr5004419. PubMed DOI
Hutter J. Car–Parrinello Molecular Dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 604–612. 10.1002/wcms.90. DOI
Kühne T. D. Second Generation Car–Parrinello Molecular Dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 391–406. 10.1002/wcms.1176. DOI
Rudberg E.; Sałek P.; Helgaker T.; Ågren H. Calculations of Two-Photon Charge-Transfer Excitations Using Coulomb-Attenuated Density-Functional Theory. J. Chem. Phys. 2005, 123, 18410810.1063/1.2104367. PubMed DOI
Spezia R.; Knecht S.; Mennucci B. Excited State Characterization of Carbonyl Containing Carotenoids: A Comparison between Single and Multireference Descriptions. Phys. Chem. Chem. Phys. 2017, 19, 17156–17166. 10.1039/C7CP02941A. PubMed DOI
Gall A.; Pascal A. A.; Robert B. Vibrational Techniques Applied to Photosynthesis: Resonance Raman and Fluorescence Line-Narrowing. Biochim. Biophys. Acta 2015, 1847, 12–18. 10.1016/j.bbabio.2014.09.009. PubMed DOI
Robert B. Resonance Raman Spectroscopy. Photosynth. Res. 2009, 101, 147–155. 10.1007/s11120-009-9440-4. PubMed DOI
Rimai L.; Heyde M. E.; Gill D. Vibrational Spectra of Some Carotenoids and Related Linear Polyenes. Raman Spectroscopic Study. J. Am. Chem. Soc. 1973, 95, 4493–4501. 10.1021/ja00795a005. PubMed DOI
Koyama Y.; Kito M.; Takii T.; Saiki K.; Tsukida K.; Yamashita J. Configuration of the Carotenoid in the Reaction Centers of Photosynthetic Bacteria. Comparison of the Resonance Raman Spectrum of the Reaction Center of Rhodopseudomonas Sphaeroides G1c with Those of Cis-Trans Isomers of B-Carotene. Biochim. Biophys. Acta 1982, 680, 109–118. 10.1016/0005-2728(82)90001-9. DOI
Koyama Y.; Takii T.; Saiki K.; Tsukida K. Configuration of the Carotenoid in the Reaction Centers of Photosynthetic Bacteria. 2. Comparison of the Resonance Raman Lines of the Reaction Centers with Those of the 14 Different Cis-Trans Isomers of B-Carotene. Photobiochem. Photobiophys. 1983, 5, 139–150.
Koyama Y.; Takatsuka I.; Nakata M.; Tasumi M. Raman and Infrared Spectra of the All-Trans, 7-Cis, 9-Cis, 13-Cis and 15-Cis Isomers of B-Carotene: Key Bands Distinguishing Stretched or Terminal-Bent Configurations Form Central-Bent Configurations. J. Raman Spectrosc. 1988, 19, 37–49. 10.1002/jrs.1250190107. DOI
Streckaite S.; Gardian Z.; Li F.; Pascal A. A.; Litvin R.; Robert B.; Llansola-Portoles M. J. Pigment Configuration in the Light-Harvesting Protein of the Xanthophyte Alga Xanthonema Debile. Photosynth. Res. 2018, 138, 139–148. 10.1007/s11120-018-0557-1. PubMed DOI
Martínez L.; Andrade R.; Birgin E. G.; Martínez J. M. Packmol: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157–2164. 10.1002/jcc.21224. PubMed DOI
Valiev M.; Bylaska E. J.; Govind N.; Kowalski K.; Straatsma T. P.; Van Dam H. J. J.; Wang D.; Nieplocha J.; Apra E.; Windus T. L.; et al. Nwchem: A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations. Comput. Phys. Commun. 2010, 181, 1477–1489. 10.1016/j.cpc.2010.04.018. DOI
Litvín R.; Bína D.; Herbstová M.; Gardian Z. Architecture of the Light-Harvesting Apparatus of the Eustigmatophyte Alga Nannochloropsis Oceanica. Photosynth. Res. 2016, 130, 137–150. 10.1007/s11120-016-0234-1. PubMed DOI
Alami M.; Lazar D.; Green B. R. The Harmful Alga Aureococcus Anophagefferens Utilizes 19′-Butanoyloxyfucoxanthin as Well as Xanthophyll Cycle Carotenoids in Acclimating to Higher Light Intensities. Biochim. Biophys. Acta 2012, 1817, 1557–1564. 10.1016/j.bbabio.2012.05.006. PubMed DOI
Llansola-Portoles M. J.; Uragami C.; Pascal A. A.; Bina D.; Litvin R.; Robert B. Pigment Structure in the Fcp-Like Light-Harvesting Complex from Chromera Velia. Biochim. Biophys. Acta 2016, 1857, 1759–1765. 10.1016/j.bbabio.2016.08.006. PubMed DOI