Modeling Dynamic Conformations of Organic Molecules: Alkyne Carotenoids in Solution

. 2020 Apr 09 ; 124 (14) : 2792-2801. [epub] 20200330

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32163283

Calculating the spectroscopic properties of complex conjugated organic molecules in their relaxed state is far from simple. An additional complexity arises for flexible molecules in solution, where the rotational energy barriers are low enough so that nonminimum conformations may become dynamically populated. These metastable conformations quickly relax during the minimization procedures preliminary to density functional theory calculations, and so accounting for their contribution to the experimentally observed properties is problematic. We describe a strategy for stabilizing these nonminimum conformations in silico, allowing their properties to be calculated. Diadinoxanthin and alloxanthin present atypical vibrational properties in solution, indicating the presence of several conformations. Performing energy calculations in vacuo and polarizable continuum model calculations in different solvents, we found three different conformations with values for the δ dihedral angle of the end ring ca. 0, 180, and 90° with respect to the plane of the conjugated chain. The latter conformation, a nonglobal minimum, is not stable during the minimization necessary for modeling its spectroscopic properties. To circumvent this classical problem, we used a Car-Parinello MD supermolecular approach, in which diadinoxanthin was solvated by water molecules so that metastable conformations were stabilized by hydrogen-bonding interactions. We progressively removed the number of solvating waters to find the minimum required for this stabilization. This strategy represents the first modeling of a carotenoid in a distorted conformation and provides an accurate interpretation of the experimental data.

Zobrazit více v PubMed

Martyna G. J.; Klein M. L.; Tuckerman M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. 10.1063/1.463940. DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/physrevlett.77.3865. PubMed DOI

Troullier N.; Martins J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 1991, 43, 1993–2006. 10.1103/physrevb.43.1993. PubMed DOI

Dreuw A.; Harbach P. H. P.; Mewes J. M.; Wormit M. Quantum chemical excited state calculations on pigment–protein complexes require thorough geometry re-optimization of experimental crystal structures. Theor. Chem. Acc. 2010, 125, 419–426. 10.1007/s00214-009-0680-3. DOI

Wong M. W. Vibrational frequency prediction using density functional theory. Chem. Phys. Lett. 1996, 256, 391–399. 10.1016/0009-2614(96)00483-6. DOI

Liu W.; Wang Z.; Zheng Z.; Jiang L.; Yang Y.; Zhao L.; Su W. Density Functional Theoretical Analysis of the Molecular Structural Effects on Raman Spectra of β-Carotene and Lycopene. Chin. J. Chem. 2012, 30, 2573–2580. 10.1002/cjoc.201200661. DOI

Mardirossian N.; Head-Gordon M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 2017, 115, 2315–2372. 10.1080/00268976.2017.1333644. DOI

Cohen A. J.; Mori-Sánchez P.; Yang W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289–320. 10.1021/cr200107z. PubMed DOI

Chung L. W.; Sameera W. M. C.; Ramozzi R.; Page A. J.; Hatanaka M.; Petrova G. P.; Harris T. V.; Li X.; Ke Z.; Liu F.; Li H.-B.; Ding L.; Morokuma K. The ONIOM Method and Its Applications. Chem. Rev. 2015, 115, 5678–5796. 10.1021/cr5004419. PubMed DOI

Hutter J. Car–Parrinello molecular dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 604–612. 10.1002/wcms.90. DOI

Kühne T. D. Second generation Car–Parrinello molecular dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 391–406. 10.1002/wcms.1176. DOI

Rudberg E.; Sałek P.; Helgaker T.; Årena H. Calculations of two-photon charge-transfer excitations using Coulomb-attenuated density-functional theory. J. Chem. Phys. 2005, 123, 184108.10.1063/1.2104367. PubMed DOI

Macernis M.; Sulskus J.; Duffy C. D. P.; Ruban A. V.; Valkunas L. Electronic Spectra of Structurally Deformed Lutein. J. Phys. Chem. A 2012, 116, 9843–9853. 10.1021/jp304363q. PubMed DOI

Cunningham F. X. Jr.; Gantt E. One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 2905–2910. 10.1073/pnas.051618398. PubMed DOI PMC

Tschirner N.; Schenderlein M.; Brose K.; Schlodder E.; Mroginski M. A.; Hildebrandt P.; Thomsen C. Raman excitation profiles of β -carotene – novel insights into the nature of the ν1-band. Phys. Status Solidi B 2008, 245, 2225–2228. 10.1002/pssb.200879649. DOI

Britton G.; Liaaen-Jensen S.; Pfander H.. Carotenoids: Natural Functions; Birkhäuser Verlag: Switzerland, 2008; Vol. 4.

Frank H. A.; Young A. J.; Britton G.; Cogdell R. J.. The Photochemistry of Carotenoids; Kluwer Academic Publishing, 1999.

Thomas D. B.; McGraw K. J.; Butler M. W.; Carrano M. T.; Madden O.; James H. F. Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds. Proc. R. Soc. B 2014, 281, 20140806.10.1098/rspb.2014.0806. PubMed DOI PMC

Zhao C.; Nabity P. D. Phylloxerids share ancestral carotenoid biosynthesis genes of fungal origin with aphids and adelgids. PLoS One 2017, 12, e018548410.1371/journal.pone.0185484. PubMed DOI PMC

Harrison E. H.; Quadro L. Apocarotenoids: Emerging Roles in Mammals. Annu. Rev. Nutr. 2018, 38, 153–172. 10.1146/annurev-nutr-082117-051841. PubMed DOI PMC

Saint S.; Renzi-Hammond L.; Khan N.; Hillman J. The Macular Carotenoids are Associated with Cognitive Function in Preadolescent Children. Nutrients 2018, 10, 193.10.3390/nu10020193. PubMed DOI PMC

Hou X.; Rivers J.; León P.; McQuinn R. P.; Pogson B. J. Synthesis and Function of Apocarotenoid Signals in Plants. Trends Plant Sci. 2016, 21, 792–803. 10.1016/j.tplants.2016.06.001. PubMed DOI

Tavan P.; Schulten K. Electronic excitations in finite and infinite polyenes. Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 36, 4337–4358. 10.1103/physrevb.36.4337. PubMed DOI

Polívka T.; Sundström V. Ultrafast Dynamics of Carotenoid Excited States–From Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104, 2021–2072. 10.1021/cr020674n. PubMed DOI

Schulten K.; Karplus M. On the origin of a low-lying forbidden transition in polyenes and related molecules. Chem. Phys. Lett. 1972, 14, 305–309. 10.1016/0009-2614(72)80120-9. DOI

Frank H. A. Spectroscopic Studies of the Low-Lying Singlet Excited Electronic States and Photochemical Properties of Carotenoids. Arch. Biochem. Biophys. 2001, 385, 53–60. 10.1006/abbi.2000.2091. PubMed DOI

Rondonuwu F. S.; Yokoyama K.; Fujii R.; Koyama Y.; Cogdell R. J.; Watanabe Y. The role of the 11Bu– state in carotenoid-to-bacteriochlorophyll singlet-energy transfer in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rhodobacter sphaeroides 2.4.1, Rhodospirillum molischianum and Rhodopseudomonas acidophila. Chem. Phys. Lett. 2004, 390, 314–322. 10.1016/j.cplett.2004.03.089. DOI

Nishimura K.; Rondonuwu F. S.; Fujii R.; Akahane J.; Koyama Y.; Kobayashi T. Sequential singlet internal conversion of 1Bu+→3Ag–→1Bu–→2Ag–→(1Ag– ground) in all-trans-spirilloxanthin revealed by two-dimensional sub-5-fs spectroscopy. Chem. Phys. Lett. 2004, 392, 68–73. 10.1016/j.cplett.2004.04.109. DOI

Llansola-Portoles M. J.; Pascal A. A.; Robert B. Electronic and vibrational properties of carotenoids: from in vitro to in vivo. J. R. Soc., Interface 2017, 14, 20170504.10.1098/rsif.2017.0504. PubMed DOI PMC

Mendes-Pinto M. M.; Sansiaume E.; Hashimoto H.; Pascal A. A.; Gall A.; Robert B. Electronic Absorption and Ground State Structure of Carotenoid Molecules. J. Phys. Chem. B 2013, 117, 11015–11021. 10.1021/jp309908r. PubMed DOI

Macernis M.; Sulskus J.; Malickaja S.; Robert B.; Valkunas L. Resonance Raman Spectra and Electronic Transitions in Carotenoids: A Density Functional Theory Study. J. Phys. Chem. A 2014, 118, 1817–1825. 10.1021/jp406449c. PubMed DOI

Mendes-Pinto M. M.; Galzerano D.; Telfer A.; Pascal A. A.; Robert B.; Ilioaia C. Mechanisms Underlying Carotenoid Absorption in Oxygenic Photosynthetic Proteins. J. Biol. Chem. 2013, 288, 18758–18765. 10.1074/jbc.m112.423681. PubMed DOI PMC

Llansola-Portoles M. J.; Sobotka R.; Kish E.; Shukla M. K.; Pascal A. A.; Polívka T.; Robert B. Twisting a β-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection. J. Biol. Chem. 2017, 292, 1396–1403. 10.1074/jbc.m116.753723. PubMed DOI PMC

Kaňa R.; Kotabová E.; Sobotka R.; Prášil O. Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae. PLoS One 2012, 7, e2970010.1371/journal.pone.0029700. PubMed DOI PMC

Streckaite S.; Gardian Z.; Li F.; Pascal A. A.; Litvin R.; Robert B.; Llansola-Portoles M. J. Pigment configuration in the light-harvesting Protein of the Xanthophyte alga Xanthonema debile. Photosynth. Res. 2018, 138, 139–148. 10.1007/s11120-018-0557-1. PubMed DOI

Goss R.; Jakob T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth. Res. 2010, 106, 103–122. 10.1007/s11120-010-9536-x. PubMed DOI

Macernis M.; Kietis B. P.; Sulskus J.; Lin S. H.; Hayashi M.; Valkunas L. Triggering the proton transfer by H-bond network. Chem. Phys. Lett. 2008, 466, 223–226. 10.1016/j.cplett.2008.10.069. DOI

Moss G. P. Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 2193.10.1351/pac199668122193. DOI

Gill D.; Kilponen R. G.; Rimai L. Resonance Raman Scattering of Laser Radiation by Vibrational Modes of Carotenoid Pigment Molecules in Intact Plant Tissues. Nature 1970, 227, 743–744. 10.1038/227743a0. PubMed DOI

Ruban A. V.; Pascal A. A.; Robert B. Xanthophylls of the major photosynthetic light-harvesting complex of plants: identification, conformation and dynamics. FEBS Lett. 2000, 477, 181–185. 10.1016/s0014-5793(00)01799-3. PubMed DOI

Koyama Y.; Takatsuka I.; Nakata M.; Tasumi M. Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: Key bands distinguishing stretched or terminal-bent configurations form central-bent configurations. J. Raman Spectrosc. 1988, 19, 37–49. 10.1002/jrs.1250190107. DOI

Koyama Y.; Takii T.; Saiki K.; Tsukida K. Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. 2. Comparison of the resonance Raman lines of the reaction centers with those of the 14 different cis-trans isomers of β-carotene. Photobiochem. Photobiophys. 1983, 5, 139–150.

Koyama Y.; Kito M.; Takii T.; Saiki K.; Tsukida K.; Yamashita J. Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. Comparison of the resonance Raman spectrum of the reaction center of Rhodopseudomonas sphaeroides G1C with those of cis-trans isomers of β-carotene. Biochim. Biophys. Acta, Bioenerg. 1982, 680, 109–118. 10.1016/0005-2728(82)90001-9. DOI

Macernis M.; Galzerano D.; Sulskus J.; Kish E.; Kim Y.-H.; Koo S.; Valkunas L.; Robert B. Resonance Raman Spectra of Carotenoid Molecules: Influence of Methyl Substitutions. J. Phys. Chem. A 2015, 119, 56–66. 10.1021/jp510426m. PubMed DOI

Liu W.-L.; Wang Z.-G.; Zheng Z.-R.; Li A.-H.; Su W.-H. Effect of β-Ring Rotation on the Structures and Vibrational Spectra of β-Carotene: Density Functional Theory Analysis. J. Phys. Chem. A 2008, 112, 10580–10585. 10.1021/jp802024v. PubMed DOI

Martínez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. 10.1002/jcc.21224. PubMed DOI

Redeckas K.; Voiciuk V.; Vengris M. Investigation of the S1/ICT equilibrium in fucoxanthin by ultrafast pump-dump-probe and femtosecond stimulated Raman scattering spectroscopy. Photosynth. Res. 2016, 128, 169–181. 10.1007/s11120-015-0215-9. PubMed DOI

West R.; Keşan G.; Trsková E.; Sobotka R.; Kaňa R.; Fuciman M.; Polívka T. Spectroscopic properties of the triple bond carotenoid alloxanthin. Chem. Phys. Lett. 2016, 653, 167–172. 10.1016/j.cplett.2016.04.085. DOI

Llansola-Portoles M. J.; Uragami C.; Pascal A. A.; Bina D.; Litvin R.; Robert B. Pigment structure in the FCP-like light-harvesting complex from Chromera velia. Biochim. Biophys. Acta, Bioenerg. 2016, 1857, 1759–1765. 10.1016/j.bbabio.2016.08.006. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009.

Valiev M.; Bylaska E. J.; Govind N.; Kowalski K.; Straatsma T. P.; Van Dam H. J. J.; Wang D.; Nieplocha J.; Apra E.; Windus T. L.; de Jong W. A. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477–1489. 10.1016/j.cpc.2010.04.018. DOI

Chemcraft Graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com.

Humphrey W.; Dalke A.; Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Electronic and Vibrational Properties of Allene Carotenoids

. 2022 Feb 17 ; 126 (6) : 813-824. [epub] 20220203

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace