Modeling Dynamic Conformations of Organic Molecules: Alkyne Carotenoids in Solution
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32163283
PubMed Central
PMC7313542
DOI
10.1021/acs.jpca.9b11536
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Calculating the spectroscopic properties of complex conjugated organic molecules in their relaxed state is far from simple. An additional complexity arises for flexible molecules in solution, where the rotational energy barriers are low enough so that nonminimum conformations may become dynamically populated. These metastable conformations quickly relax during the minimization procedures preliminary to density functional theory calculations, and so accounting for their contribution to the experimentally observed properties is problematic. We describe a strategy for stabilizing these nonminimum conformations in silico, allowing their properties to be calculated. Diadinoxanthin and alloxanthin present atypical vibrational properties in solution, indicating the presence of several conformations. Performing energy calculations in vacuo and polarizable continuum model calculations in different solvents, we found three different conformations with values for the δ dihedral angle of the end ring ca. 0, 180, and 90° with respect to the plane of the conjugated chain. The latter conformation, a nonglobal minimum, is not stable during the minimization necessary for modeling its spectroscopic properties. To circumvent this classical problem, we used a Car-Parinello MD supermolecular approach, in which diadinoxanthin was solvated by water molecules so that metastable conformations were stabilized by hydrogen-bonding interactions. We progressively removed the number of solvating waters to find the minimum required for this stabilization. This strategy represents the first modeling of a carotenoid in a distorted conformation and provides an accurate interpretation of the experimental data.
Biology Centre Czech Academy of Sciences Branisovska 31 370 05 Ceske Budejovice Czech Republic
Institute of Microbiology Academy of Sciences of the Czech Republic 379 81 Třeboň Czech Republic
Zobrazit více v PubMed
Martyna G. J.; Klein M. L.; Tuckerman M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. 10.1063/1.463940. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/physrevlett.77.3865. PubMed DOI
Troullier N.; Martins J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 1991, 43, 1993–2006. 10.1103/physrevb.43.1993. PubMed DOI
Dreuw A.; Harbach P. H. P.; Mewes J. M.; Wormit M. Quantum chemical excited state calculations on pigment–protein complexes require thorough geometry re-optimization of experimental crystal structures. Theor. Chem. Acc. 2010, 125, 419–426. 10.1007/s00214-009-0680-3. DOI
Wong M. W. Vibrational frequency prediction using density functional theory. Chem. Phys. Lett. 1996, 256, 391–399. 10.1016/0009-2614(96)00483-6. DOI
Liu W.; Wang Z.; Zheng Z.; Jiang L.; Yang Y.; Zhao L.; Su W. Density Functional Theoretical Analysis of the Molecular Structural Effects on Raman Spectra of β-Carotene and Lycopene. Chin. J. Chem. 2012, 30, 2573–2580. 10.1002/cjoc.201200661. DOI
Mardirossian N.; Head-Gordon M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 2017, 115, 2315–2372. 10.1080/00268976.2017.1333644. DOI
Cohen A. J.; Mori-Sánchez P.; Yang W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289–320. 10.1021/cr200107z. PubMed DOI
Chung L. W.; Sameera W. M. C.; Ramozzi R.; Page A. J.; Hatanaka M.; Petrova G. P.; Harris T. V.; Li X.; Ke Z.; Liu F.; Li H.-B.; Ding L.; Morokuma K. The ONIOM Method and Its Applications. Chem. Rev. 2015, 115, 5678–5796. 10.1021/cr5004419. PubMed DOI
Hutter J. Car–Parrinello molecular dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 604–612. 10.1002/wcms.90. DOI
Kühne T. D. Second generation Car–Parrinello molecular dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 391–406. 10.1002/wcms.1176. DOI
Rudberg E.; Sałek P.; Helgaker T.; Årena H. Calculations of two-photon charge-transfer excitations using Coulomb-attenuated density-functional theory. J. Chem. Phys. 2005, 123, 184108.10.1063/1.2104367. PubMed DOI
Macernis M.; Sulskus J.; Duffy C. D. P.; Ruban A. V.; Valkunas L. Electronic Spectra of Structurally Deformed Lutein. J. Phys. Chem. A 2012, 116, 9843–9853. 10.1021/jp304363q. PubMed DOI
Cunningham F. X. Jr.; Gantt E. One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 2905–2910. 10.1073/pnas.051618398. PubMed DOI PMC
Tschirner N.; Schenderlein M.; Brose K.; Schlodder E.; Mroginski M. A.; Hildebrandt P.; Thomsen C. Raman excitation profiles of β -carotene – novel insights into the nature of the ν1-band. Phys. Status Solidi B 2008, 245, 2225–2228. 10.1002/pssb.200879649. DOI
Britton G.; Liaaen-Jensen S.; Pfander H.. Carotenoids: Natural Functions; Birkhäuser Verlag: Switzerland, 2008; Vol. 4.
Frank H. A.; Young A. J.; Britton G.; Cogdell R. J.. The Photochemistry of Carotenoids; Kluwer Academic Publishing, 1999.
Thomas D. B.; McGraw K. J.; Butler M. W.; Carrano M. T.; Madden O.; James H. F. Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds. Proc. R. Soc. B 2014, 281, 20140806.10.1098/rspb.2014.0806. PubMed DOI PMC
Zhao C.; Nabity P. D. Phylloxerids share ancestral carotenoid biosynthesis genes of fungal origin with aphids and adelgids. PLoS One 2017, 12, e018548410.1371/journal.pone.0185484. PubMed DOI PMC
Harrison E. H.; Quadro L. Apocarotenoids: Emerging Roles in Mammals. Annu. Rev. Nutr. 2018, 38, 153–172. 10.1146/annurev-nutr-082117-051841. PubMed DOI PMC
Saint S.; Renzi-Hammond L.; Khan N.; Hillman J. The Macular Carotenoids are Associated with Cognitive Function in Preadolescent Children. Nutrients 2018, 10, 193.10.3390/nu10020193. PubMed DOI PMC
Hou X.; Rivers J.; León P.; McQuinn R. P.; Pogson B. J. Synthesis and Function of Apocarotenoid Signals in Plants. Trends Plant Sci. 2016, 21, 792–803. 10.1016/j.tplants.2016.06.001. PubMed DOI
Tavan P.; Schulten K. Electronic excitations in finite and infinite polyenes. Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 36, 4337–4358. 10.1103/physrevb.36.4337. PubMed DOI
Polívka T.; Sundström V. Ultrafast Dynamics of Carotenoid Excited States–From Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104, 2021–2072. 10.1021/cr020674n. PubMed DOI
Schulten K.; Karplus M. On the origin of a low-lying forbidden transition in polyenes and related molecules. Chem. Phys. Lett. 1972, 14, 305–309. 10.1016/0009-2614(72)80120-9. DOI
Frank H. A. Spectroscopic Studies of the Low-Lying Singlet Excited Electronic States and Photochemical Properties of Carotenoids. Arch. Biochem. Biophys. 2001, 385, 53–60. 10.1006/abbi.2000.2091. PubMed DOI
Rondonuwu F. S.; Yokoyama K.; Fujii R.; Koyama Y.; Cogdell R. J.; Watanabe Y. The role of the 11Bu– state in carotenoid-to-bacteriochlorophyll singlet-energy transfer in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rhodobacter sphaeroides 2.4.1, Rhodospirillum molischianum and Rhodopseudomonas acidophila. Chem. Phys. Lett. 2004, 390, 314–322. 10.1016/j.cplett.2004.03.089. DOI
Nishimura K.; Rondonuwu F. S.; Fujii R.; Akahane J.; Koyama Y.; Kobayashi T. Sequential singlet internal conversion of 1Bu+→3Ag–→1Bu–→2Ag–→(1Ag– ground) in all-trans-spirilloxanthin revealed by two-dimensional sub-5-fs spectroscopy. Chem. Phys. Lett. 2004, 392, 68–73. 10.1016/j.cplett.2004.04.109. DOI
Llansola-Portoles M. J.; Pascal A. A.; Robert B. Electronic and vibrational properties of carotenoids: from in vitro to in vivo. J. R. Soc., Interface 2017, 14, 20170504.10.1098/rsif.2017.0504. PubMed DOI PMC
Mendes-Pinto M. M.; Sansiaume E.; Hashimoto H.; Pascal A. A.; Gall A.; Robert B. Electronic Absorption and Ground State Structure of Carotenoid Molecules. J. Phys. Chem. B 2013, 117, 11015–11021. 10.1021/jp309908r. PubMed DOI
Macernis M.; Sulskus J.; Malickaja S.; Robert B.; Valkunas L. Resonance Raman Spectra and Electronic Transitions in Carotenoids: A Density Functional Theory Study. J. Phys. Chem. A 2014, 118, 1817–1825. 10.1021/jp406449c. PubMed DOI
Mendes-Pinto M. M.; Galzerano D.; Telfer A.; Pascal A. A.; Robert B.; Ilioaia C. Mechanisms Underlying Carotenoid Absorption in Oxygenic Photosynthetic Proteins. J. Biol. Chem. 2013, 288, 18758–18765. 10.1074/jbc.m112.423681. PubMed DOI PMC
Llansola-Portoles M. J.; Sobotka R.; Kish E.; Shukla M. K.; Pascal A. A.; Polívka T.; Robert B. Twisting a β-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection. J. Biol. Chem. 2017, 292, 1396–1403. 10.1074/jbc.m116.753723. PubMed DOI PMC
Kaňa R.; Kotabová E.; Sobotka R.; Prášil O. Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae. PLoS One 2012, 7, e2970010.1371/journal.pone.0029700. PubMed DOI PMC
Streckaite S.; Gardian Z.; Li F.; Pascal A. A.; Litvin R.; Robert B.; Llansola-Portoles M. J. Pigment configuration in the light-harvesting Protein of the Xanthophyte alga Xanthonema debile. Photosynth. Res. 2018, 138, 139–148. 10.1007/s11120-018-0557-1. PubMed DOI
Goss R.; Jakob T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth. Res. 2010, 106, 103–122. 10.1007/s11120-010-9536-x. PubMed DOI
Macernis M.; Kietis B. P.; Sulskus J.; Lin S. H.; Hayashi M.; Valkunas L. Triggering the proton transfer by H-bond network. Chem. Phys. Lett. 2008, 466, 223–226. 10.1016/j.cplett.2008.10.069. DOI
Moss G. P. Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 2193.10.1351/pac199668122193. DOI
Gill D.; Kilponen R. G.; Rimai L. Resonance Raman Scattering of Laser Radiation by Vibrational Modes of Carotenoid Pigment Molecules in Intact Plant Tissues. Nature 1970, 227, 743–744. 10.1038/227743a0. PubMed DOI
Ruban A. V.; Pascal A. A.; Robert B. Xanthophylls of the major photosynthetic light-harvesting complex of plants: identification, conformation and dynamics. FEBS Lett. 2000, 477, 181–185. 10.1016/s0014-5793(00)01799-3. PubMed DOI
Koyama Y.; Takatsuka I.; Nakata M.; Tasumi M. Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: Key bands distinguishing stretched or terminal-bent configurations form central-bent configurations. J. Raman Spectrosc. 1988, 19, 37–49. 10.1002/jrs.1250190107. DOI
Koyama Y.; Takii T.; Saiki K.; Tsukida K. Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. 2. Comparison of the resonance Raman lines of the reaction centers with those of the 14 different cis-trans isomers of β-carotene. Photobiochem. Photobiophys. 1983, 5, 139–150.
Koyama Y.; Kito M.; Takii T.; Saiki K.; Tsukida K.; Yamashita J. Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. Comparison of the resonance Raman spectrum of the reaction center of Rhodopseudomonas sphaeroides G1C with those of cis-trans isomers of β-carotene. Biochim. Biophys. Acta, Bioenerg. 1982, 680, 109–118. 10.1016/0005-2728(82)90001-9. DOI
Macernis M.; Galzerano D.; Sulskus J.; Kish E.; Kim Y.-H.; Koo S.; Valkunas L.; Robert B. Resonance Raman Spectra of Carotenoid Molecules: Influence of Methyl Substitutions. J. Phys. Chem. A 2015, 119, 56–66. 10.1021/jp510426m. PubMed DOI
Liu W.-L.; Wang Z.-G.; Zheng Z.-R.; Li A.-H.; Su W.-H. Effect of β-Ring Rotation on the Structures and Vibrational Spectra of β-Carotene: Density Functional Theory Analysis. J. Phys. Chem. A 2008, 112, 10580–10585. 10.1021/jp802024v. PubMed DOI
Martínez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. 10.1002/jcc.21224. PubMed DOI
Redeckas K.; Voiciuk V.; Vengris M. Investigation of the S1/ICT equilibrium in fucoxanthin by ultrafast pump-dump-probe and femtosecond stimulated Raman scattering spectroscopy. Photosynth. Res. 2016, 128, 169–181. 10.1007/s11120-015-0215-9. PubMed DOI
West R.; Keşan G.; Trsková E.; Sobotka R.; Kaňa R.; Fuciman M.; Polívka T. Spectroscopic properties of the triple bond carotenoid alloxanthin. Chem. Phys. Lett. 2016, 653, 167–172. 10.1016/j.cplett.2016.04.085. DOI
Llansola-Portoles M. J.; Uragami C.; Pascal A. A.; Bina D.; Litvin R.; Robert B. Pigment structure in the FCP-like light-harvesting complex from Chromera velia. Biochim. Biophys. Acta, Bioenerg. 2016, 1857, 1759–1765. 10.1016/j.bbabio.2016.08.006. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009.
Valiev M.; Bylaska E. J.; Govind N.; Kowalski K.; Straatsma T. P.; Van Dam H. J. J.; Wang D.; Nieplocha J.; Apra E.; Windus T. L.; de Jong W. A. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477–1489. 10.1016/j.cpc.2010.04.018. DOI
Chemcraft Graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com.
Humphrey W.; Dalke A.; Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Electronic and Vibrational Properties of Allene Carotenoids