A two-component nonphotochemical fluorescence quenching in eustigmatophyte algae
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27485797
DOI
10.1007/s11120-016-0299-x
PII: 10.1007/s11120-016-0299-x
Knihovny.cz E-zdroje
- Klíčová slova
- Chl a fluorescence, Eustigmatophyceae, Nannochloropsis, Nonphotochemical quenching, Xanthophyll cycle,
- MeSH
- fluorescence MeSH
- fotosyntéza MeSH
- mořské řasy chemie MeSH
- Publikační typ
- časopisecké články MeSH
Eustigmatophyte algae represent an interesting model system for the study of the regulation of the excitation energy flow due to their use of violaxanthin both as a major light-harvesting pigment and as the basis of xanthophyll cycle. Fluorescence induction kinetics was studied in an oleaginous marine alga Nannochloropsis oceanica. Nonphotochemical fluorescence quenching was analyzed in detail with respect to the state of the cellular xanthophyll pool. Two components of nonphotochemical fluorescence quenching (NPQ), both dependent on the presence of zeaxanthin, were clearly resolved, denoted as slow and fast NPQ based on kinetics of their formation. The slow component was shown to be in direct proportion to the amount of zeaxanthin, while the fast NPQ component was transiently induced in the presence of membrane potential on subsecond timescales. The applicability of these observations to other eustigmatophyte species is demonstrated by measurements of other representatives of this algal group, both marine and freshwater.
Zobrazit více v PubMed
FEBS Lett. 2002 Jul 17;523(1-3):163-6 PubMed
Biotechnol Bioeng. 2001 Oct 5;75(1):1-12 PubMed
Biochim Biophys Acta. 2009 Jul;1787(7):929-38 PubMed
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13674-8 PubMed
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):377-85 PubMed
Photosynth Res. 1986 Jan;10(3):303-8 PubMed
Photosynth Res. 2009 Feb;99(2):115-25 PubMed
New Phytol. 2007;173(3):526-36 PubMed
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18214-9 PubMed
Biochim Biophys Acta. 2013 Mar;1827(3):427-37 PubMed
Bioresour Technol. 2011 May;102(10):6026-32 PubMed
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):534-43 PubMed
Photosynth Res. 2002;72(3):255-62 PubMed
J Biol Chem. 2004 May 28;279(22):22866-74 PubMed
Adv Exp Med Biol. 2010;675:139-59 PubMed
Biochim Biophys Acta. 2010 Apr;1797(4):466-75 PubMed
J Plant Physiol. 2015 Jan 1;172:13-32 PubMed
Arch Mikrobiol. 1970;71(2):164-90 PubMed
Photosynth Res. 2012 Mar;111(1-2):19-28 PubMed
Photosynth Res. 1993 Jan;35(1):67-78 PubMed
Can J Microbiol. 1962 Apr;8:229-39 PubMed
Photosynth Res. 2008 Feb-Mar;95(2-3):229-35 PubMed
FEBS Lett. 2011 Jun 23;585(12):1941-5 PubMed
Biochim Biophys Acta. 2013 Mar;1827(3):294-302 PubMed
New Phytol. 2013 Apr;198(2):398-407 PubMed
J Plant Physiol. 2006 Mar;163(5):585-90 PubMed
Photosynth Res. 2012 Mar;111(1-2):157-63 PubMed
Photosynth Res. 2004;81(1):67-76 PubMed
Plant Physiol. 2001 Apr;125(4):1558-66 PubMed
FEBS Lett. 2013 May 2;587(9):1310-5 PubMed
Plant Cell Physiol. 2008 Aug;49(8):1217-25 PubMed
Plant Physiol. 2010 Dec;154(4):1905-20 PubMed
Plant Physiol. 1994 Oct;106(2):763-770 PubMed
Biochim Biophys Acta. 2014 Jun;1837(6):802-10 PubMed
BMC Evol Biol. 2010 Nov 26;10:365 PubMed
Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130241 PubMed
Biochim Biophys Acta. 2016 Apr;1857(4):370-9 PubMed
Biophys J. 2009 Mar 18;96(6):2261-7 PubMed
Photosynth Res. 2016 Dec;130(1-3):137-150 PubMed
Biochim Biophys Acta. 2007 Jan;1767(1):106-13 PubMed