A two-component nonphotochemical fluorescence quenching in eustigmatophyte algae

. 2017 Jan ; 131 (1) : 65-77. [epub] 20160802

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27485797
Odkazy

PubMed 27485797
DOI 10.1007/s11120-016-0299-x
PII: 10.1007/s11120-016-0299-x
Knihovny.cz E-zdroje

Eustigmatophyte algae represent an interesting model system for the study of the regulation of the excitation energy flow due to their use of violaxanthin both as a major light-harvesting pigment and as the basis of xanthophyll cycle. Fluorescence induction kinetics was studied in an oleaginous marine alga Nannochloropsis oceanica. Nonphotochemical fluorescence quenching was analyzed in detail with respect to the state of the cellular xanthophyll pool. Two components of nonphotochemical fluorescence quenching (NPQ), both dependent on the presence of zeaxanthin, were clearly resolved, denoted as slow and fast NPQ based on kinetics of their formation. The slow component was shown to be in direct proportion to the amount of zeaxanthin, while the fast NPQ component was transiently induced in the presence of membrane potential on subsecond timescales. The applicability of these observations to other eustigmatophyte species is demonstrated by measurements of other representatives of this algal group, both marine and freshwater.

Zobrazit více v PubMed

FEBS Lett. 2002 Jul 17;523(1-3):163-6 PubMed

Biotechnol Bioeng. 2001 Oct 5;75(1):1-12 PubMed

Biochim Biophys Acta. 2009 Jul;1787(7):929-38 PubMed

Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13674-8 PubMed

J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):377-85 PubMed

Photosynth Res. 1986 Jan;10(3):303-8 PubMed

Photosynth Res. 2009 Feb;99(2):115-25 PubMed

New Phytol. 2007;173(3):526-36 PubMed

Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18214-9 PubMed

Biochim Biophys Acta. 2013 Mar;1827(3):427-37 PubMed

Bioresour Technol. 2011 May;102(10):6026-32 PubMed

Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):534-43 PubMed

Photosynth Res. 2002;72(3):255-62 PubMed

J Biol Chem. 2004 May 28;279(22):22866-74 PubMed

Adv Exp Med Biol. 2010;675:139-59 PubMed

Biochim Biophys Acta. 2010 Apr;1797(4):466-75 PubMed

J Plant Physiol. 2015 Jan 1;172:13-32 PubMed

Arch Mikrobiol. 1970;71(2):164-90 PubMed

Photosynth Res. 2012 Mar;111(1-2):19-28 PubMed

Photosynth Res. 1993 Jan;35(1):67-78 PubMed

Can J Microbiol. 1962 Apr;8:229-39 PubMed

Photosynth Res. 2008 Feb-Mar;95(2-3):229-35 PubMed

FEBS Lett. 2011 Jun 23;585(12):1941-5 PubMed

Biochim Biophys Acta. 2013 Mar;1827(3):294-302 PubMed

New Phytol. 2013 Apr;198(2):398-407 PubMed

J Plant Physiol. 2006 Mar;163(5):585-90 PubMed

Photosynth Res. 2012 Mar;111(1-2):157-63 PubMed

Photosynth Res. 2004;81(1):67-76 PubMed

Plant Physiol. 2001 Apr;125(4):1558-66 PubMed

FEBS Lett. 2013 May 2;587(9):1310-5 PubMed

Plant Cell Physiol. 2008 Aug;49(8):1217-25 PubMed

Plant Physiol. 2010 Dec;154(4):1905-20 PubMed

Plant Physiol. 1994 Oct;106(2):763-770 PubMed

Biochim Biophys Acta. 2014 Jun;1837(6):802-10 PubMed

BMC Evol Biol. 2010 Nov 26;10:365 PubMed

Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130241 PubMed

Biochim Biophys Acta. 2016 Apr;1857(4):370-9 PubMed

Biophys J. 2009 Mar 18;96(6):2261-7 PubMed

Photosynth Res. 2016 Dec;130(1-3):137-150 PubMed

Biochim Biophys Acta. 2007 Jan;1767(1):106-13 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace