Exciton Delocalization Promotes Far-Red Absorption in a Tetrameric Chlorophyll a Light-Harvesting Complex from Trachydiscus minutus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41388986
PubMed Central
PMC12752460
DOI
10.1021/jacs.5c17299
Knihovny.cz E-zdroje
- MeSH
- chlorofyl a * chemie MeSH
- chlorofyl * chemie MeSH
- Heterokontophyta * chemie metabolismus MeSH
- kvantová teorie MeSH
- molekulární modely MeSH
- světlosběrné proteinové komplexy * chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a * MeSH
- chlorofyl * MeSH
- světlosběrné proteinové komplexy * MeSH
Photosynthetic organisms employ light-harvesting complexes (LHCs) to optimize energy capture under variable light conditions. The freshwater eustigmatophyte Trachydiscus minutus accumulates a red-shifted violaxanthin-chlorophyll protein (rVCP) that contributes to far-red light harvesting using only chlorophyll (Chl) a molecules, without chemical modification or substitution of pigments. Based on high-resolution cryo-EM and multiscale quantum chemical calculations, we uncovered a heterodimer-based tetrameric architecture, representing a unique oligomerization mode among LHCs. Within each heterodimer, Chls a are distinctively arranged adjacent to the terminal emitter, forming an unprecedentedly extended chlorophyll cluster. Quantum chemical calculations reveal three strong exciton-coupled pigment domains, two of which reside in the large cluster and solely account for the intense far-red absorption near 700 nm without contributions from charge-transfer states. Our structural and quantum chemical characterizations of far-red light harvesting reveal a molecular mechanism of red spectral tuning that relies on protein-controlled excitonic coupling of identical Chl a pigments, as demonstrated here in this eustigmatophyte, highlighting diverse adaptations for harvesting spectrally shifted, low-energy light.
Dipartimento di Chimica e Chimica Industriale University of Pisa Via G Moruzzi 13 Pisa 56124 Italy
Graduate School of Frontier Biosciences The University of Osaka Yamadaoka Suita Osaka 565 0871 Japan
Graduate School of Science Osaka City University Sumiyoshi Osaka 558 8585 Japan
Graduate School of Science Osaka Metropolitan University Sumiyoshi Osaka 558 8585 Japan
Institute for Protein Research The University of Osaka Suita Osaka 565 0871 Japan
Zobrazit více v PubMed
Iwai M., Patel-Tupper D., Niyogi K. K.. Structural Diversity in Eukaryotic Photosynthetic Light Harvesting. Annu. Rev. Plant. Biol. 2024;75(1):119–152. doi: 10.1146/annurev-arplant-070623-015519. PubMed DOI
Nicol, L. ; Croce, R. ; van Grondelle, R. ; van Amerongen, H. ; van Stokkum, I. . Light Harvesting in Higher Plants and Green Algae. In Light harvesting in photosynthesis; CRC Press, 2018, pp. 59–76. DOI: 10.1201/9781351242899. DOI
Croce R., van Amerongen H.. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science. 2020;369(6506):eaay2058. doi: 10.1126/science.aay2058. PubMed DOI
Collini E.. Carotenoids in Photosynthesis: The Revenge of the “Accessory” Pigments. Chem. 2019;5:494–495. doi: 10.1016/j.chempr.2019.02.013. DOI
Stomp M., Huisman J., Stal L.. et al. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J. 2007;1:271–282. doi: 10.1038/ismej.2007.59. PubMed DOI
Wolf B. M., Blankenship R. E.. Far-red light acclimation in diverse oxygenic photosynthetic organisms. Photosynth. Res. 2019;142:349–359. doi: 10.1007/s11120-019-00653-6. PubMed DOI
Gisriel C. J.. Recent structural discoveries of photosystems I and II acclimated to absorb far-red light. Biochim. Biophys. Acta, Bioenerg. 2024;1865:149032. doi: 10.1016/j.bbabio.2024.149032. PubMed DOI PMC
Croce R., van Amerongen H.. Light-harvesting in photosystem I. Photosynth. Res. 2013;116:153–166. doi: 10.1007/s11120-013-9838-x. PubMed DOI PMC
Herbstová M., Bína D., Koník P., Gardian Z., Vácha F., Litvín R.. Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum . Biochim. Biophys. Acta. 2015;1847(6–7):534–543. doi: 10.1016/j.bbabio.2015.02.016. PubMed DOI
Litvín R., Bína D., Herbstová M., Pazderník M., Kotabová E., Gardian Z., Trtílek M., Prášil O., Vácha F.. Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila) Photosynth. Res. 2019;142(2):137–151. doi: 10.1007/s11120-019-00662-5. PubMed DOI
Chen M., Blankenship R. E.. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 2011;16(8):427–431. doi: 10.1016/j.tplants.2011.03.011. PubMed DOI
Ort D. R.. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. U. S. A. 2015;112:8529–8536. doi: 10.1073/pnas.1424031112. PubMed DOI PMC
Walter J., Kromdijk J.. Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. J. Integr. Plant Biol. 2022;64:564–591. doi: 10.1111/jipb.13206. PubMed DOI PMC
Romero E., Mozzo M., van Stokkum I. H., Dekker J. P., van Grondelle R., Croce R.. The origin of the low-energy form of photosystem I light-harvesting complex Lhca4: mixing of the lowest exciton with a charge-transfer state. Biophys. J. 2009;96(5):L35–7. doi: 10.1016/j.bpj.2008.11.043. PubMed DOI PMC
Sláma V., Cupellini L., Mascoli V., Liguori N., Croce R., Mennucci B.. Origin of Low-Lying Red States in the Lhca4 Light-Harvesting Complex of Photosystem I. J. Phys. Chem. Lett. 2023;14(37):8345–8352. doi: 10.1021/acs.jpclett.3c02091. PubMed DOI PMC
Saito K., Kosugi M., Qiu L., Minagawa J., Ishikita H.. Identification and design principles of far-red-absorbing chlorophyll in the light-harvesting complex. J. Biol. Chem. 2025;301(6):108518. doi: 10.1016/j.jbc.2025.108518. PubMed DOI PMC
Maistro, S. ; Broady, P. ; Andreoli, C. ; Negrisolo, E. . Xanthophyceae. In Handbook of the Protists; Archibald, J. , et al. , Ed.; Springer: Cham, 2016. DOI: 10.1007/978-3-319-32669-6_30-1. DOI
Llansola-Portoles M. J., Litvín R., Ilioaia C., Pascal A. A., Bína D., Robert B.. Pigment structure in the violaxanthin–chlorophyll-a-binding protein VCP. Photosynth. Res. 2017;134:51–58. doi: 10.1007/s11120-017-0407-6. PubMed DOI
Keşan G., Litvín R., Bína D., Durchan M., Šlouf V., Polívka T.. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica . Biochim. Biophys. Acta, Bioenerg. 2016;1857:370–379. doi: 10.1016/j.bbabio.2015.12.011. PubMed DOI
Bína D., Durchan M., Kuznetsova V., Vácha F., Litvín R., Polívka T.. Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex. Biochim. Biophys. Acta, Bioenerg. 2019;1860:111–120. doi: 10.1016/j.bbabio.2018.11.006. PubMed DOI
Agostini A., Bína D., Barcytė D., Bortolus M., Eliáš M., Carbonera D., Litvín R.. Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes. Commun. Biol. 2024;7:1406. doi: 10.1038/s42003-024-07101-9. PubMed DOI PMC
Liu Z.. et al. Crystal Structure of Spinach Major Light-Harvesting Complex at 2.72 Å Resolution. Nature. 2004;18:287–292. doi: 10.1038/nature02373. PubMed DOI
Standfuss J., Van Scheltinga A. C. T., Lamborghini M., Kühlbrandt W.. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 2005;24(5):919–928. doi: 10.1038/sj.emboj.7600585. PubMed DOI PMC
Wang W.. et al. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science. 2019;363(6427):eaav0365. doi: 10.1126/science.aav0365. PubMed DOI
Zhou C.. et al. Structural and spectroscopic insights into fucoxanthin chlorophyll a/c-binding proteins of diatoms in diverse oligomeric states. Plant Commun. 2024;5(11):101041. doi: 10.1016/j.xplc.2024.101041. PubMed DOI PMC
La Rocca R., Kato K., Tsai P. C.. et al. Structure of a photosystem II-FCPII supercomplex from a haptophyte reveals a distinct antenna organization. Nat. Commun. 2025;16:4175. doi: 10.1038/s41467-025-59512-9. PubMed DOI PMC
Kosugi M., Kawasaki M., Shibata Y., Hara K., Takaichi S., Moriya T., Adachi N., Kamei Y., Kashino Y., Kudoh S., Koike H., Senda T.. Uphill energy transfer mechanism for photosynthesis in an Antarctic alga. Nat. Commun. 2023;14:730. doi: 10.1038/s41467-023-36245-1. PubMed DOI PMC
Wang J., Yu L. J., Wang W., Yan Q., Kuang T., Qin X., Shen J. R.. Structure of plant photosystem I-light harvesting complex I supercomplex at 2.4 angstrom resolution. J. Integr. Plant Biol. 2021;63:1367–1381. doi: 10.1111/jipb.13095. PubMed DOI
Cupellini L., Lipparini F., Cao J.. Absorption and circular dichroism spectra of molecular aggregates with the full cumulant expansion. J. Phys. Chem. B. 2020;124(39):8610–8617. doi: 10.1021/acs.jpcb.0c05180. PubMed DOI PMC
Prandi I. G., Sláma V., Pecorilla C.. et al. Structure of the stress-related LHCSR1 complex determined by an integrated computational strategy. Commun. Biol. 2022;5(1):145. PubMed PMC
Sláma V., Cupellini L., Mennucci B.. Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description. Phys. Chem. Chem. Phys. 2020;22:16783–16795. doi: 10.1039/D0CP02492A. PubMed DOI
Saraceno P., Sardar S., Caferri R., Camargo F. V. A., Dall’osto L., D’Andrea C., Bassi R., Cupellini L., Cerullo G., Mennucci B.. Probing the Effect of Mutations on Light Harvesting in CP29 by Transient Absorption and First-Principles Simulations. J. Phys. Chem. Lett. 2024;15(24):6398–6408. doi: 10.1021/acs.jpclett.4c01040. PubMed DOI
Wientjes E., Roest G., Croce R.. From red to blue to far-red in Lhca4: How does the protein modulate the spectral properties of the pigments? Biochim. Biophys. Acta, Bioenerg. 2012;1817:711–717. doi: 10.1016/j.bbabio.2012.02.030. PubMed DOI
Rankelytė G., Gelzinis A., Robert B., Valkunas L., Chmeliov J.. Environment-dependent chlorophyll–chlorophyll charge transfer states in Lhca4 pigment–protein complex. Front. Plant Sci. 2024;15:1412750. doi: 10.3389/fpls.2024.1412750. PubMed DOI PMC
Morosinotto T., Mozzo M., Bassi R., Croce R.. Pigment-Pigment Interactions in Lhca4 Antenna Complex of Higher Plants Photosystem I. J. Biol. Chem. 2005;280:20612–20619. doi: 10.1074/jbc.M500705200. PubMed DOI
Cupellini L., Caprasecca S., Guido C. A., Müh F., Renger T., Mennucci B.. Coupling to Charge Transfer States is the Key to Modulate the Optical Bands for Efficient Light Harvesting in Purple Bacteria. J. Phys. Chem. Lett. 2018;9(23):6892–6899. doi: 10.1021/acs.jpclett.8b03233. PubMed DOI
Kennis J. T., Streltsov A. M., Vulto S. I., Aartsma T. J., Nozawa T., Amesz J.. Femtosecond dynamics in isolated LH2 complexes of various species of purple bacteria. J. Phys. Chem. B. 1997;101(39):7827–7834. doi: 10.1021/jp963359b. DOI
Nagao R., Kato K., Kumazawa M., Ifuku K., Yokono M., Suzuki T., Dohmae N., Akita F., Akimoto S., Miyazaki N., Shen J. R.. Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex. Nat. Commun. 2022;13:1764. doi: 10.1038/s41467-022-29294-5. PubMed DOI PMC
Polivka T., Sundström V.. Ultrafast Dynamics of Carotenoid Excited States-From Solution to Natural and Artificial Systems. Chem. Rev. 2004;104(4):2021–2072. doi: 10.1021/cr020674n. PubMed DOI
Macernis M., Streckaite S., Litvin R., Pascal A. A., Llansola-Portoles M. J., Robert B., Valkunas L.. Electronic and Vibrational Properties of Allene Carotenoids. J. Phys. Chem. A. 2022;126:813–824. doi: 10.1021/acs.jpca.1c09393. PubMed DOI PMC
Schulte T.. et al. Identification of a single peridinin sensing Chl-a excitation in reconstituted PCP by crystallography and spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2009;106:20764–20769. doi: 10.1073/pnas.0908938106. PubMed DOI PMC
Sauer V., Cupellini L., Sutter M., Bondanza M., Domínguez Martin M. A., Kirst H., Bína D., Koh A. F., Kotecha A., Greber B. J., Nogales E., Polívka T., Mennucci B., Kerfeld C. A.. Structural and Quantum Chemical Basis for OCP-Mediated Quenching of Phycobilisomes. Sci. Adv. 2024;10(14):eadk7535. doi: 10.1126/sciadv.adk7535. PubMed DOI PMC
Fujimoto K. J., Seki T., Minoda T., Yanai T.. Spectral Tuning and Excitation-Energy Transfer by Unique Carotenoids in Diatom Light-Harvesting Antenna. J. Am. Chem. Soc. 2024;146:3984–3991. doi: 10.1021/jacs.3c12045. PubMed DOI PMC
Pettai H., Oja V., Freiberg A., Laisk A.. Photosynthetic Activity of Far-Red Light in Green Plants. Biochim. Biophys. Acta Bioenerg. 2005;1708(3):311–321. doi: 10.1016/j.bbabio.2005.05.005. PubMed DOI
Elias E., Brache K., Schäfers J., Croce R.. Coloring Outside the Lines: Exploiting Pigment–Protein Synergy for Far-Red Absorption in Plant Light-Harvesting Complexes. J. Am. Chem. Soc. 2024;146(5):3508–3520. doi: 10.1021/jacs.3c13373. PubMed DOI PMC
Croce R., Chojnicka A., Morosinotto T., Ihalainen J. A., van Mourik F.. et al. The Low-Energy Forms of Photosystem I Light-Harvesting Complexes: Spectroscopic Properties and Pigment-Pigment Interaction Characteristics. Biophys. J. 2007;93:2418–2428. doi: 10.1529/biophysj.107.106955. PubMed DOI PMC
Mastronarde D. N.. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. doi: 10.1016/j.jsb.2005.07.007. PubMed DOI
Snijder J., Borst A. J., Dosey A., Walls A. C., Burrell A., Reddy V. S., Kollman J. M., Veesler D.. Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids. J. Struct. Biol. 2017;198:38–42. doi: 10.1016/j.jsb.2017.02.008. PubMed DOI PMC
Yonekura K., Maki-Yonekura S., Naitow H., Hamaguchi T., Takaba K.. Machine learning-based real-time object locator/evaluator for cryo-EM data collection. Commun. Biol. 2021;4:1044. doi: 10.1038/s42003-021-02577-1. PubMed DOI PMC
Zivanov J., Nakane T., Forsberg B. O., Kimanius D., Hagen W. J. H., Lindahl E., Scheres S. H. W.. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife. 2018;7:e42166. doi: 10.7554/eLife.42166. PubMed DOI PMC
Punjani A., Rubinstein J. L., Fleet D. J., Brubaker M. A.. CryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017;14:290–296. doi: 10.1038/nmeth.4169. PubMed DOI
Emsley P., Lohkamp B., Scott W. G., Cowtan K.. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Adams P. D.. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt M., Meng E. C., Ferrin T. E.. UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25(13):1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Bondanza M., Nottoli M., Cupellini L., Lipparini F., Mennucci B.. Polarizable Embedding QM/MM: The Future Gold Standard for Complex (Bio)Systems? Phys. Chem. Chem. Phys. 2020;22:14433–14448. doi: 10.1039/D0CP02119A. PubMed DOI
Nottoli M., Cupellini L., Lipparini F., Granucci G., Mennucci B.. Multiscale Models for Light-Driven Processes. Annu. Rev. Phys. Chem. 2021;72:489–513. doi: 10.1146/annurev-physchem-090419-104031. PubMed DOI
Lipparini F.. General Linear Scaling Implementation of Polarizable Embedding Schemes. J. Chem. Theory Comput. 2019;15(8):4312–4317. doi: 10.1021/acs.jctc.9b00585. PubMed DOI
Zhao Y., Truhlar D. G.. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x. DOI
Cupellini L., Corbella M., Mennucci B., Curutchet C.. Electronic Energy Transfer in Biomacromolecules. WIREs Comput. Mol. Sci. 2019;9:e1392. doi: 10.1002/wcms.1392. DOI
Ma J., Cao J.. Förster Resonance Energy Transfer, Absorption and Emission Spectra in Multichromophoric Systems. I. Full Cumulant Expansions and System-Bath Entanglement. J. Chem. Phys. 2015;142(9):094106. doi: 10.1063/1.4908599. PubMed DOI
Novoderezhkin V. I., Palacios M. A., van Amerongen H., van Grondelle R.. Energy-Transfer Dynamics in the LHCII Complex of Higher Plants: Modified Redfield Approach. J. Phys. Chem. B. 2004;108(29):10363–10375. doi: 10.1021/jp0496001. PubMed DOI
Betti E., Saraceno P., Cignoni E., Cupellini L., Mennucci B.. Insights into Energy Transfer in Light-Harvesting Complex II Through Machine-Learning Assisted Simulations. J. Phys. Chem. B. 2024;128(21):5188–5200. doi: 10.1021/acs.jpcb.4c01494. PubMed DOI
McNicholas S., Potterton E., Wilson K. S., Noble M. E. M.. Presenting Your Structures: The CCP4mg Molecular-Graphics Software. Acta Crystallogr. D Biol. Crystallogr. 2011;67:386–394. doi: 10.1107/S0907444911007281. PubMed DOI PMC