Multiple parallel origins of parasitic Marine Alveolates
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37923716
PubMed Central
PMC10624901
DOI
10.1038/s41467-023-42807-0
PII: 10.1038/s41467-023-42807-0
Knihovny.cz E-zdroje
- MeSH
- Dinoflagellata * genetika MeSH
- ekosystém MeSH
- fotosyntéza genetika MeSH
- fylogeneze MeSH
- paraziti * genetika MeSH
- plastidy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Microbial eukaryotes are important components of marine ecosystems, and the Marine Alveolates (MALVs) are consistently both abundant and diverse in global environmental sequencing surveys. MALVs are dinoflagellates that are thought to be parasites of other protists and animals, but the lack of data beyond ribosomal RNA gene sequences from all but a few described species means much of their biology and evolution remain unknown. Using single-cell transcriptomes from several MALVs and their free-living relatives, we show that MALVs evolved independently from two distinct, free-living ancestors and that their parasitism evolved in parallel. Phylogenomics shows one subgroup (MALV-II and -IV, or Syndiniales) is related to a novel lineage of free-living, eukaryovorous predators, the eleftherids, while the other (MALV-I, or Ichthyodinida) is related to the free-living predator Oxyrrhis and retains proteins targeted to a non-photosynthetic plastid. Reconstructing the evolution of photosynthesis, plastids, and parasitism in early-diverging dinoflagellates shows a number of parallels with the evolution of their apicomplexan sisters. In both groups, similar forms of parasitism evolved multiple times and photosynthesis was lost many times. By contrast, complete loss of the plastid organelle is infrequent and, when this does happen, leaves no residual genes.
AquaBioSafe Laboratory University of Tyumen Tyumen Russia
Department of Botany University of British Columbia Vancouver British Columbia Canada
Hakai Institute Heriot Bay British Columbia Canada
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Merton College University of Oxford Oxford UK
Papanin Institute for Biology of Inland Waters Russian Academy of Sciences Borok Russia
Zobrazit více v PubMed
Moon-van der Staay SY, De Wachter R, Vaulot D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature. 2001;409:607–610. doi: 10.1038/35054541. PubMed DOI
López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature. 2001;409:603–607. doi: 10.1038/35054537. PubMed DOI
de Vargas C, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605. doi: 10.1126/science.1261605. PubMed DOI
Massana R, et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing: Protist diversity in European coastal areas. Environ. Microbiol. 2015;17:4035–4049. doi: 10.1111/1462-2920.12955. PubMed DOI
Clarke LJ, Bestley S, Bissett A, Deagle BE. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 2019;13:734–737. doi: 10.1038/s41396-018-0306-7. PubMed DOI PMC
Holt CC, et al. Microscopic marine invertebrates are reservoirs for cryptic and diverse protists and fungi. Microbiome. 2022;10:161. doi: 10.1186/s40168-022-01363-3. PubMed DOI PMC
Guillou L, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata) Environ. Microbiol. 2008;10:3349–3365. doi: 10.1111/j.1462-2920.2008.01731.x. PubMed DOI
Rizos I, et al. Beyond the limits of the unassigned protist microbiome: inferring large-scale spatio-temporal patterns of Syndiniales marine parasites. ISME Commun. 2023;3:16. doi: 10.1038/s43705-022-00203-7. PubMed DOI PMC
Skovgaard A, Massana R, Balagué V, Saiz E. Phylogenetic position of the copepod-infesting parasite Syndinium turbo (Dinoflagellata, Syndinea) Protist. 2005;156:413–423. doi: 10.1016/j.protis.2005.08.002. PubMed DOI
Gestal C, Novoa B, Posada D, Figueras A, Azevedo C. Perkinsoide chabelardi n. gen., a protozoan parasite with an intermediate evolutionary position: possible cause of the decrease of sardine fisheries? Environ. Microbiol. 2006;8:1105–1114. doi: 10.1111/j.1462-2920.2006.01008.x. PubMed DOI
Harada A, Ohtsuka S, Horiguchi T. Species of the parasitic genus Duboscquella are members of the enigmatic Marine Alveolate Group I. Protist. 2007;158:337–347. doi: 10.1016/j.protis.2007.03.005. PubMed DOI
Strassert JFH, et al. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME J. 2018;12:304–308. doi: 10.1038/ismej.2017.167. PubMed DOI PMC
Jackson CJ, Gornik SG, Waller RF. The Mitochondrial genome and transcriptome of the basal dinoflagellate Hematodinium sp.: character evolution within the highly derived mitochondrial genomes of dinoflagellates. Genome Biol. Evol. 2012;4:59–72. doi: 10.1093/gbe/evr122. PubMed DOI PMC
Gornik SG, et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc. Natl Acad. Sci. USA. 2015;112:5767–5772. doi: 10.1073/pnas.1423400112. PubMed DOI PMC
Farhat S, et al. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol. 2021;19:1. doi: 10.1186/s12915-020-00927-9. PubMed DOI PMC
Xu P, et al. The genome of Cryptosporidium hominis. Nature. 2004;431:1107–1112. doi: 10.1038/nature02977. PubMed DOI
Waller RF, Kořený L. Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions. Adv. Bot. Res. 2017;84:105–143. doi: 10.1016/bs.abr.2017.06.004. DOI
Villar E, et al. The Ocean Gene Atlas: exploring the biogeography of plankton genes online. Nucleic Acids Res. 2018;46:W289–W295. doi: 10.1093/nar/gky376. PubMed DOI PMC
Duarte CM. Seafaring in the 21St century: The Malaspina 2010 circumnavigation expedition. Limnol. Oceanogr. Bull. 2015;24:11–14. doi: 10.1002/lob.10008. DOI
Cordier T, et al. Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. Sci. Adv. 2022;8:eabj9309. doi: 10.1126/sciadv.abj9309. PubMed DOI PMC
Yoo J, Coats DW, Kim S. Syndinean dinoflagellates of the genus Euduboscquella are paraphyletic. J. Eukaryot. Microbiol. 2023;70:e12953. doi: 10.1111/jeu.12953. PubMed DOI
Cachon J. Contribution a l'étude des péridiniens parasites. Cytologie, cycles évolutifs. Annales des. Sci. Naturelles, Zoologie, Paris, Série. 1964;12:1–158.
Coats, D. W. & Bachvaroff, T. R. Parasites of Tintinnids. In The biology and ecology of tintinnid ciliates: models for marine plankton (eds. Dolan, J. R., Montagnes, D. J. S., Agatha, S., Coats, D. W. & Stoecker, D. K.), 145–170 (Wiley, 2012).
Jung J-H, Choi JM, Coats DW, Kim Y-O. Euduboscquella costata n. sp. (Dinoflagellata, Syndinea), an intracellular parasite of the ciliate Schmidingerella arcuata: morphology, molecular phylogeny, life cycle, prevalence, and infection intensity. J. Eukaryot. Microbiol. 2016;63:3–15. doi: 10.1111/jeu.12231. PubMed DOI
Choi JM, Jung JH, Kim KH, Coats DW, Kim YO. A novel parasitic, syndinean dinoflagellate Euduboscquella triangula infecting the tintinnid Helicostomella longa. Front Mar. Sci. 2021;8:720424. doi: 10.3389/fmars.2021.720424. DOI
Kim S. Patterns in host range for two strains of Amoebophrya (dinophyta) infecting thecate dinoflagellates: Amoebophyra spp. ex Alexandrium affine and ex Gonyaulax polygramma. J. Phycol. 2006;42:1170–1173. doi: 10.1111/j.1529-8817.2006.00277.x. DOI
Park MG, Kim S, Shin E-Y, Yih W, Coats DW. Parasitism of harmful dinoflagellates in Korean coastal waters. Harmful Algae. 2013;30:S62–S74. doi: 10.1016/j.hal.2013.10.007. DOI
Delmont TO, et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genom. 2022;2:100123. doi: 10.1016/j.xgen.2022.100123. PubMed DOI PMC
Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma. 2018;255:297–357. doi: 10.1007/s00709-017-1147-3. PubMed DOI PMC
Gómez, F. Diversity and classification of dinoflagellates. Dinoflagellates. Classification, Evolution, Physiology, and Ecological Significance, 1-38 (Nova Science Publishers, 2020).
Cachon, J. & Cachon, M. Parasitic dinoflagellates. in The Biology of Dinoflagellates (ed. Taylor, F. J. R.), 571-610 (Blackwell Scientific Publications, 1987).
Bodył A, Stiller JW, Mackiewicz P. Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol. Evol. 2009;24:119–121. doi: 10.1016/j.tree.2008.11.003. PubMed DOI
Ševčíková T, et al. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 2015;5:10134. doi: 10.1038/srep10134. PubMed DOI PMC
Mathur V, et al. Reconstruction of plastid proteomes of apicomplexans and close relatives reveals the major evolutionary outcomes of cryptic plastids. Mol. Biol. Evol. 2023;40:msad002. doi: 10.1093/molbev/msad002. PubMed DOI PMC
Okamoto N, Horák A, Keeling PJ. Description of two species of early branching dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp. PloS ONE. 2012;7:e34900. doi: 10.1371/journal.pone.0034900. PubMed DOI PMC
Janouškovec J, et al. Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc. Natl Acad. Sci. USA. 2017;114:E171–E180. doi: 10.1073/pnas.1614842114. PubMed DOI PMC
Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF. Plastid genes in a non-photosynthetic dinoflagellate. Protist. 2007;158:105–117. doi: 10.1016/j.protis.2006.09.004. PubMed DOI
Patron NJ, Waller RF, Archibald JM, Keeling PJ. Complex protein targeting to dinoflagellate plastids. J. Mol. Biol. 2005;348:1015–1024. doi: 10.1016/j.jmb.2005.03.030. PubMed DOI
Hehenberger E, Gast RJ, Keeling PJ. A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proc. Natl Acad. Sci. USA. 2019;116:17934–17942. doi: 10.1073/pnas.1910121116. PubMed DOI PMC
Hehenberger E, Imanian B, Burki F, Keeling PJ. Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts. Genome Biol. Evol. 2014;6:2321–2334. doi: 10.1093/gbe/evu182. PubMed DOI PMC
Dorrell RG, et al. Progressive and biased divergent evolution underpins the origin and diversification of peridinin dinoflagellate plastids. Mol. Biol. Evol. 2017;34:361–379. PubMed
Barylyuk K, et al. A comprehensive subcellular atlas of the Toxoplasma proteome via hyperLOPIT provides spatial context for protein functions. Cell Host Microbe. 2020;28:752–766.e9. doi: 10.1016/j.chom.2020.09.011. PubMed DOI PMC
Gavelis GS, et al. Microbial arms race: Ballistic “nematocysts” in dinoflagellates represent a new extreme in organelle complexity. Sci. Adv. 2017;3:e1602552. doi: 10.1126/sciadv.1602552. PubMed DOI PMC
Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. Dinoflagellates: a remarkable evolutionary experiment. Am. J. Bot. 2004;91:1523–1534. doi: 10.3732/ajb.91.10.1523. PubMed DOI
Gornik SG, et al. Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates. Curr. Biol. 2012;22:2303–2312. doi: 10.1016/j.cub.2012.10.036. PubMed DOI
Irwin NAT, et al. Viral proteins as a potential driver of histone depletion in dinoflagellates. Nat. Commun. 2018;9:1535. doi: 10.1038/s41467-018-03993-4. PubMed DOI PMC
Zhang H, et al. Spliced leader RNA trans-splicing in dinoflagellates. Proc. Natl Acad. Sci. USA. 2007;104:4618–4623. doi: 10.1073/pnas.0700258104. PubMed DOI PMC
Alacid E, et al. A diversified and segregated mRNA spliced-leader system in the parasitic Perkinsozoa. Open Biol. 2022;12:220126. doi: 10.1098/rsob.220126. PubMed DOI PMC
Miller JJ, Delwiche CF, Coats DW. Ultrastructure of Amoebophrya sp. and its changes during the course of infection. Protist. 2012;163:720–745. doi: 10.1016/j.protis.2011.11.007. PubMed DOI
Okamoto N, Keeling PJ. The 3D structure of the apical complex and association with the flagellar apparatus revealed by serial TEM tomography in Psammosa pacifica, a distant relative of the Apicomplexa. PloS ONE. 2014;9:e84653. doi: 10.1371/journal.pone.0084653. PubMed DOI PMC
Leander BS, Keeling PJ. Morphostasis in alveolate evolution. Trends Ecol. Evol. 2003;18:395–402. doi: 10.1016/S0169-5347(03)00152-6. DOI
Janouškovec J, et al. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife. 2019;8:e49662. doi: 10.7554/eLife.49662. PubMed DOI PMC
Mathur V, et al. Multiple independent origins of apicomplexan-like parasites. Curr. Biol. 2019;29:2936–2941.e5. doi: 10.1016/j.cub.2019.07.019. PubMed DOI
Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl Acad. Sci. USA. 2010;107:10949–10954. doi: 10.1073/pnas.1003335107. PubMed DOI PMC
Schön ME, et al. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat. Commun. 2021;12:6651. doi: 10.1038/s41467-021-26918-0. PubMed DOI PMC
Tikhonenkov DV, Mazeĭ YA, Embulaeva EA. Degradation succession of heterotrophic flagellate communities in microcosms. Zh. Obs Biol. 2008;69:57–64. PubMed
Tikhonenkov DV, et al. Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom.nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PLoS One. 2014;9:e95467. doi: 10.1371/journal.pone.0095467. PubMed DOI PMC
Picelli S, et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 2014;9:171–181. doi: 10.1038/nprot.2014.006. PubMed DOI
Andrews, S. FastQC: A quality control tool for high throughput sequence data. version 0.10.1. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–620. doi: 10.1093/bioinformatics/btt593. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Grabherr MG, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 2013;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J. Comput Biol. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Bankevich A, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Camacho C, et al. BLAST+: Architecture and applications. BMC Bioinforma. 2009;10:1–9. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Burki F, et al. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of centrohelida, haptophyta and cryptista. Proc. R. Soc. B Biol. Sci. 2016;283:20152802. doi: 10.1098/rspb.2015.2802. PubMed DOI PMC
Johnson LK, Alexander H, Brown CT. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. Gigascience. 2019;8:1–12. doi: 10.1093/gigascience/giy158. PubMed DOI PMC
Richter DJ, et al. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022;2:e56. doi: 10.24072/pcjournal.173. DOI
Sarai C, et al. Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc. Natl Acad. Sci. USA. 2020;117:5364–5375. doi: 10.1073/pnas.1911884117. PubMed DOI PMC
Cooney EC, et al. Single-cell transcriptomics of Abedinium reveals a new earlybranching dinoflagellate lineage. Genome Biol. Evol. 2020;12:2417–2428. doi: 10.1093/gbe/evaa196. PubMed DOI PMC
Byadgi O, et al. Transcriptome analysis of Amyloodinium ocellatum tomonts revealed basic information on the major potential virulence factors. Genes. 2020;11:1252. doi: 10.3390/genes11111252. PubMed DOI PMC
Cooney EC, Leander BS, Keeling PJ. Phylogenomics shows unique traits in Noctilucales are derived rather than ancestral. PNAS Nexus. 2022;1:pgac202. doi: 10.1093/pnasnexus/pgac202. PubMed DOI PMC
John U, et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci. Adv. 2019;5:1–12. doi: 10.1126/sciadv.aav1110. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Roure B, Rodriguez-Ezpeleta N, Philippe H. SCaFoS: A tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol. Biol. 2007;7:1–12. doi: 10.1186/1471-2148-7-S1-S2. PubMed DOI PMC
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).
Yu G, Smith DK, Zhu H, Guan Y, Lam TT. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017;8:28–36. doi: 10.1111/2041-210X.12628. DOI
Wang L-G, et al. Treeio: An R package for phylogenetic tree input and output with richly annotated and associated data. Mol. Biol. Evol. 2020;37:599–603. doi: 10.1093/molbev/msz240. PubMed DOI PMC
Seemann T. barrnap 0.9: rapid ribosomal RNA prediction. https://github.com/tseemann/barrnap
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: Accelerated for clustering the nextgeneration sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Whelan S, Irisarri I, Burki F. PREQUAL: Detecting non-homologous characters in sets of unaligned homologous sequences. Bioinformatics. 2018;34:3929–3930. doi: 10.1093/bioinformatics/bty448. PubMed DOI
Ali RH, Bogusz M, Whelan S, Tamura K. Identifying clusters of high confidence homologies in multiple sequence alignments. Mol. Biol. Evol. 2019;36:2340–2351. doi: 10.1093/molbev/msz142. PubMed DOI PMC
Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC
Dyrløv Bendtsen J, Nielsen H, Von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004;340:783–795. doi: 10.1016/j.jmb.2004.05.028. PubMed DOI
Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen. J. Mol. Biol. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Albanese D, Fontana P, De Filippo C, Cavalieri D, Donati C. MICCA: A complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 2015;5:1–7. doi: 10.1038/srep09743. PubMed DOI PMC
Bolyen E, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Callahan BJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Massicotte P, South A. rnaturalearth: World map data from natural earth. R package version0.3.2.9000, https://docs.ropensci.org/rnaturalearth/https://github.com/ropensci/rnaturalearth (2023).
figshare
10.6084/m9.figshare.24293662