Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28994824
PubMed Central
PMC5739020
DOI
10.1038/ismej.2017.167
PII: ismej2017167
Knihovny.cz E-zdroje
- MeSH
- analýza jednotlivých buněk MeSH
- Dinoflagellata klasifikace genetika MeSH
- fylogeneze MeSH
- genomika MeSH
- geny rRNA MeSH
- Publikační typ
- časopisecké články MeSH
Marine alveolates (MALVs) are diverse and widespread early-branching dinoflagellates, but most knowledge of the group comes from a few cultured species that are generally not abundant in natural samples, or from diversity analyses of PCR-based environmental SSU rRNA gene sequences. To more broadly examine MALV genomes, we generated single cell genome sequences from seven individually isolated cells. Genes expected of heterotrophic eukaryotes were found, with interesting exceptions like presence of proteorhodopsin and vacuolar H+-pyrophosphatase. Phylogenetic analysis of concatenated SSU and LSU rRNA gene sequences provided strong support for the paraphyly of MALV lineages. Dinoflagellate viral nucleoproteins were found only in MALV groups that branched as sister to dinokaryotes. Our findings indicate that multiple independent origins of several characteristics early in dinoflagellate evolution, such as a parasitic life style, underlie the environmental diversity of MALVs, and suggest they have more varied trophic modes than previously thought.
Biosciences University of Exeter Exeter UK
Department of Botany University of British Columbia Vancouver British Columbia Canada
Department of Ecology Evolution and Marine Biology University of California Santa Barbara CA USA
Institute of Parasitology Biology Centre CAS České Budějovice Czech Republic
Monterey Bay Aquarium Research Institute Moss Landing CA USA
Zobrazit více v PubMed
Chambouvet A, Morin P, Marie D, Guillou L. (2008). Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322: 1254–1257. PubMed
Gornik SG, Febrimarsa, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z et al. (2015). Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci USA 112: 5767–5772. PubMed PMC
Gornik SG, Ford KL, Mulhern TD, Bacic A, McFadden GI, Waller RF. (2012). Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates. Curr Biol 22: 2303–2312. PubMed
Guillou L, Alves-de-Souza C, Siano R, González H. (2010). The ecological significance of small, eukaryotic parasites in marine ecosystems. Microbiol Today 37: 92–95.
Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R et al. (2008). Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10: 3349–3365. PubMed
Harada A, Ohtsuka S, Horiguchi T. (2007). Species of the parasitic genus Duboscquella are members of the enigmatic Marine Alveolate Group I. Protist 158: 337–347. PubMed
Horiguchi T. (2015) Diversity and phylogeny of marine parasitic dinoflagellates. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F (eds). Marine Protists: Diversity and Dynamics. Springer Japan: Tokyo, pp 397–419.
Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolísko M, Mylnikov AP et al. (2015). Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci USA 112: 10200–10207. PubMed PMC
López-García P, Rodriguez-Valera F, Pedrós-Alió C, Moreira D. (2001). Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409: 603–607. PubMed
Marinov GK, Lynch M. (2015). Diversity and divergence of dinoflagellate histone proteins. G3 (Bethesda) 6: 397–422. PubMed PMC
Massana R, Karniol B, Pommier T, Bodaker I, Beja O. (2008). Metagenomic retrieval of a ribosomal DNA repeat array from an uncultured marine alveolate. Environ Microbiol 10: 1335–1343. PubMed
Moon-van der Staay SY, de Wachter R, Vaulot D. (2001). Oceanic 18 S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409: 607–610. PubMed
Okamoto N, Keeling PJ. (2014. a). The 3D structure of the apical complex and association with the flagellar apparatus revealed by serial TEM tomography in Psammosa pacifica, a distant relative of the apicomplexa. PLoS One 9: e84653. PubMed PMC
Okamoto N, Keeling PJ. (2014. b). A comparative overview of the flagellar apparatus of dinoflagellates, perkinsids, and colpodellids. Microorganisms 2: 73–91. PubMed PMC
Skovgaard A, Massana R, Balagué V, Saiz E. (2005). Phylogenetic position of the copepod-infesting parasite Syndinium turbo (Dinoflagellata, Syndinea). Protist 156: 413–423. PubMed
Skovgaard A, Meneses I, Angelico MM. (2009). Identifying the lethal fish egg parasite Ichthyodinium chabelardi as a member of Marine Alveolate Group I. Environ Microbiol 11: 2030–2041. PubMed
Slamovits CH, Okamoto N, Burri L, James ER, Keeling PJ. (2011). A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat Commun 2: 183. PubMed
de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R et al. (2015). Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348: 1261605. PubMed
Waller RF, Gornik SG, Koreny L, Pain A. (2015). Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol 9: e1116653. PubMed PMC
Wisecaver JH, Hackett JD. (2011). Dinoflagellate genome evolution. Annu Rev Microbiol 65: 369–387. PubMed