Morphology, Ultrastructure, and Mitochondrial Genome of the Marine Non-Photosynthetic Bicosoecid Cafileria marina Gen. et sp. nov

. 2019 Aug 05 ; 7 (8) : . [epub] 20190805

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31387253

Grantová podpora
17-21409S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 31387253
PubMed Central PMC6723347
DOI 10.3390/microorganisms7080240
PII: microorganisms7080240
Knihovny.cz E-zdroje

In this paper, we describe a novel bacteriophagous biflagellate, Cafileria marina with two smooth flagellae, isolated from material collected from a rock surface in the Kvernesfjorden (Norway). This flagellate was characterized by scanning and transmission electron microscopy, fluorescence, and light microscopy. The sequence of the small subunit ribosomal RNA gene (18S) was used as a molecular marker for determining the phylogenetic position of this organism. Apart from the nuclear ribosomal gene, the whole mitochondrial genome was sequenced, assembled, and annotated. Morphological observations show that the newly described flagellate shares key ultrastructural characters with representatives of the family Bicosoecida (Heterokonta). Intriguingly, mitochondria of C. marina frequently associate with its nucleus through an electron-dense disc at the boundary of the two compartments. The function of this association remains unclear. Phylogenetic analyses corroborate the morphological data and place C. marina with other sequence data of representatives from the family Bicosoecida. We describe C. marina as a new species from a new genus in this family.

Zobrazit více v PubMed

Nakano S.I., Ishii N., Manage P.M., Kawabata Z. Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquat. Microb. Ecol. 1998;16:153–161. doi: 10.3354/ame016153. DOI

Sanders R.W., Porter K.G., Bennett S.J., Debiase A.E. Seasonal patterns by flagellates, ciliates, rotifers, and cladocerans in a freshwater community cladocerans planktonic and. Limnol. Oceanogr. 1989;34:673–687. doi: 10.4319/lo.1989.34.4.0673. DOI

Kopylov A.I., Kosolapov D.B., Romanenko A.V., Degermendzhy A.G. Structure of planktonic microbial food web in a brackish stratified Siberian lake. Aquat. Ecol. 2002;36:179–204. doi: 10.1023/A:1015678918611. DOI

Saccà A., Borrego C.M., Renda R., Triadó-Margarit X., Bruni V., Guglielmo L. Predation impact of ciliated and flagellated protozoa during a summer bloom of brown sulfur bacteria in a meromictic coastal lake. FEMS Microbiol. Ecol. 2009;70:42–53. doi: 10.1111/j.1574-6941.2009.00735.x. PubMed DOI

Yubuki N., Leander B.S., Silberman J.D. Ultrastructure and molecular phylogenetic position of a novel phagotrophic stramenopile from low oxygen environments: Rictus lutensis gen. et sp. nov. (Bicosoecida, incertae sedis) Protist. 2010;161:264–278. doi: 10.1016/j.protis.2009.10.004. PubMed DOI

Scheckenbach F., Wylezich C., Weitere M., Hausmann K., Arndt H. Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA. Aquat. Microb. Ecol. 2005;38:239–247. doi: 10.3354/ame038239. DOI

Park J.S., Cho B.C., Simpson A.G.B. Halocafeteria seosinensis gen. et sp. nov. (Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern. Extremophiles. 2006;10:493–504. doi: 10.1007/s00792-006-0001-x. PubMed DOI

Jones R.I. Mixotrophy in planktonic protists: An overview. Freshw. Biol. 2000;45:219–226. doi: 10.1046/j.1365-2427.2000.00672.x. DOI

Massana R., Terrado R., Forn I., Lovejoy C., Pedrós-Alió C. Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ. Microbiol. 2006;8:1515–1522. doi: 10.1111/j.1462-2920.2006.01042.x. PubMed DOI

Moriya M., Nakayama T., Inouye I. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae sedis) Protist. 2000;151:41–55. doi: 10.1078/1434-4610-00006. PubMed DOI

Sekiguchi H., Moriya M., Nakayama T., Inouye I. Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae) Protist. 2002;153:157–167. doi: 10.1078/1434-4610-00094. PubMed DOI

Andersen R.A. Biology and systematics of heterokont and haptophyte algae. Am. J. Bot. 2004;91:1508–1522. doi: 10.3732/ajb.91.10.1508. PubMed DOI

Cavalier-Smith T., Chao E.E.-Y. Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista) J. Mol. Evol. 2006;62:388–420. doi: 10.1007/s00239-004-0353-8. PubMed DOI

Riisberg I., Orr R.J.S., Kluge R., Shalchian-Tabrizi K., Bowers H.A., Patil V., Edvardsen B., Jakobsen K.S. Seven Gene Phylogeny of Heterokonts. Protist. 2009;160:191–204. doi: 10.1016/j.protis.2008.11.004. PubMed DOI

Kamikawa R., Moog D., Zauner S., Tanifuji G., Ishida K.I., Miyashita H., Mayama S., Hashimoto T., Maier U.G., Archibald J.M., et al. A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol. Biol. Evol. 2017;34:2355–2366. doi: 10.1093/molbev/msx172. PubMed DOI

Kamikawa R., Azuma T., Ishii K.I., Matsuno Y., Miyashita H. Diversity of organellar genomes in non-photosynthetic diatoms. Protist. 2018;169:351–361. doi: 10.1016/j.protis.2018.04.009. PubMed DOI

Olefeld J.L., Majda S., Albach D.C., Marks S., Boenigk J. Genome size of chrysophytes varies with cell size and nutritional mode. Org. Divers Evol. 2018;18:163–173. doi: 10.1007/s13127-018-0365-7. DOI

Rottberger J., Gruber A., Boenigk J., Kroth P.G. Influence of nutrients and light on autotrophic, mixotrophic and heterotrophic freshwater chrysophytes. Aquat. Microb. Ecol. 2013;71:179–191. doi: 10.3354/ame01662. DOI

Dorrell R.G., Azuma T., Nomura M., Audren de Kerdrel G., Paoli L., Yang S., Bowler C., Ishii K.-I., Miyashita H., Gile G.H., et al. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc. Natl. Acad. Sci. USA. 2019;16:6914–6923. doi: 10.1073/pnas.1819976116. PubMed DOI PMC

Ševčíková T., Horák A., Klimeš V., Zbránková V., Demir-Hilton E., Sudek S., Jenkins J., Schmutz J., Přibyl P., Fousek J., et al. Updating algal evolutionary relationships through plastid genome sequencing: Did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 2015;5:10134. doi: 10.1038/srep10134. PubMed DOI PMC

Archibald J.M. Genomic perspectives on the birth and spread of plastids. Proc. Natl. Acad. Sci. USA. 2015;112:10147–10153. doi: 10.1073/pnas.1421374112. PubMed DOI PMC

Bodył A. Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis. Biol. Rev. 2018;93:201–222. doi: 10.1111/brv.12340. PubMed DOI

Burki F. Advances in Botanical Research. 1st ed. Elsevier Ltd.; Amsterdam, The Netherlands: 2017. The Convoluted Evolution of Eukaryotes With Complex Plastids; pp. 1–30.

Oborník M. The Birth of Red Complex Plastids: One, Three, or Four Times? Trends Parasitol. 2018;34:923–925. doi: 10.1016/j.pt.2018.09.001. PubMed DOI

Baurain D., Brinkmann H., Petersen J., Rodríguez-Ezpeleta N., Stechmann A., Demoulin V., Roger A.J., Burger G., Lang B.F., Philippe H. Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol. Biol. Evol. 2010;27:1698–1709. doi: 10.1093/molbev/msq059. PubMed DOI

Derelle R., López-garcía P., Timpano H., Moreira D. A phylogenomic framework to study the diversity and evolution of stramenopiles (=heterokonts) Mol. Biol. Evol. 2016;33:2890–2898. doi: 10.1093/molbev/msw168. PubMed DOI PMC

Bouwmeester K., Van Poppel P.M.J.A., Govers F. Genome Biology Cracks Enigmas of Oomycete Plant Pathogens. Annu. Plant Rev. Online. 2009;34:102–133.

Del Campo J., Sieracki M.E., Molestina R., Keeling P., Massana R., Ruiz-Trillo I. The others: Our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 2014;29:252–259. doi: 10.1016/j.tree.2014.03.006. PubMed DOI PMC

Del Campo J., Massana R. Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist. 2011;162:435–448. doi: 10.1016/j.protis.2010.10.003. PubMed DOI

Shiratori T., Thakur R., Ishida K.-I. Pseudophyllomitus vesiculosus (Larsen and Patterson 1990) Lee, 2002, a poorly studied phagotrophic biflagellate is the first characterized member of Stramenopile environmental clade MAST-6. Protist. 2017;168:439–451. doi: 10.1016/j.protis.2017.06.004. PubMed DOI

Aleoshin V.V., Mylnikov A.P., Mirzaeva G.S., Mikhailov K.V., Karpov S.A. Heterokont predator Develorapax marinus gen. et sp. nov.—A model of the ochrophyte ancestor. Front. Microbiol. 2016;7:1–14. doi: 10.3389/fmicb.2016.01194. PubMed DOI PMC

Seeleuthner Y., Mondy S., Lombard V., Carradec Q., Pelletier E., Wessner M., Leconte J., Mangot J.-F., Poulain J., Labadie K., et al. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat. Commun. 2018;9:1–10. doi: 10.1038/s41467-017-02235-3. PubMed DOI PMC

Moestrup Ø. Current status of chrysophyte ‘splinter groups’: Synurophytes, pedinellids, silicoflagellates. In: Sandgren C., Smol J.P., Kristiansen J., editors. Chrysophyte algae: Ecology, Phylogeny, Development. Cambridge University Press; Cambridge, UK: 1995. pp. 75–91.

Preisig H.R. A modern concept of chrysophyte classification. In: Sandgren C., Smol J.P., Kristiansen J., editors. Chrysophyte algae: Ecology, Phylogeny, Development. Cambridge University Press; Cambridge, UK: 1995. pp. 47–74.

O’Kelly C.J., Patterson D.J. The flagellar apparatus of Cafeteria roenbergensis Fenchel & Patterson, 1988 (Bicosoecales = Bicosoecida) Eur. J. Protistol. 1996;32:216–226.

Karpov S.A., Kersanach R., Williams D.M. Ultrastructure and 18S rRNA gene sequence of a small heterotrophic flagellate Siluania monomastiga gen. et sp. nov. (Bicosoecida) Eur. J. Protistol. 1998;34:415–425. doi: 10.1016/S0932-4739(98)80010-2. DOI

Harder C.B., Ekelund F., Karpov S.A. Ultrastructure and Phylogenetic Position of Regin rotiferus and Otto terricolus Genera et Species Novae (Bicosoecida, Heterokonta/Stramenopiles) Protist. 2014;165:144–160. doi: 10.1016/j.protis.2014.01.004. PubMed DOI

Guillard R.R.L., Ryther J.H. Studies on marine planktonic diatoms I. Cyclotella nana (Hustedt) and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 1962;8:229–239. doi: 10.1139/m62-029. PubMed DOI

Guillard R.R.L. Culture of phytoplankton for feeding marine invertebrates. In: Smith W.L., Chanley M.H., editors. Culture of Marine Invertebrate Animals. Plenum Press; New York, NY, USA: 1975. pp. 29–60.

Moore R.B., Oborník M., Janouškovec J., Chrudimský T., Vancová M., Green D.H., Wright S.W., Davies N.M., Bolch C.J.S., Heimann K., et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature. 2008;451:959–963. doi: 10.1038/nature06635. PubMed DOI

Oborník M., Vancová M., Lai D.H., Janouškovec J., Keeling P.J., Lukeš J. Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist. 2011;162:115–130. doi: 10.1016/j.protis.2010.02.004. PubMed DOI

Medlin L., Elwood H.J., Stickel S., Sogin M.L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 1988;71:491–499. doi: 10.1016/0378-1119(88)90066-2. PubMed DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Laetsch D.R., Blaxter M.L. BlobTools: Interrogation of genome assemblies. F1000Research. 2017;1287:1–16. doi: 10.12688/f1000research.12232.1. DOI

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012;19 doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Lowe T.M., Chan P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44:W54–W57. doi: 10.1093/nar/gkw413. PubMed DOI PMC

Peabody D.S. Translation Initiation at Non-AUG Triplets in Mammalian Cells. J. Biol. Chem. 1969;264:5031–5035. PubMed

Lohse M., Drechsel O., Kahlau S., Bock R. OrganellarGenomeDRAW—A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013;41:575–581. doi: 10.1093/nar/gkt289. PubMed DOI PMC

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Katoh K., Kuma K.I., Toh H., Miyata T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC

Posada D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI

Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Rambaut A., Drummond A.J. Tracer V1.5. [(accessed on 5 August 2019)]; Available online: http//beast.bio.ed.ac.uk/Tracer 2009.

Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI

Rambaut A. FigTree v1.4.3. Mol. Evol. Phylogenetics Epidemiol. [(accessed on 5 August 2019)]; Available online: http://tree.bio.ed.ac.uk/software/figtree/

Campelo F., van Galen J., Turacchio G., Parashuraman S., Kozlov M.M., García-Parajo M.F., Malhotra V. Sphingomyelin metabolism controls the shape and function of the golgi cisternae. eLife. 2017;6:e24603. doi: 10.7554/eLife.24603. PubMed DOI PMC

Tachikawa M., Mochizuki A. Golgi apparatus self-organizes into the characteristic shape via postmitotic reassembly dynamics. Proc. Natl. Acad. Sci. USA. 2017;114:5177–5182. doi: 10.1073/pnas.1619264114. PubMed DOI PMC

Gruber A., Rocap G., Kroth P.G., Armbrust E.V., Mock T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015;81:519–528. doi: 10.1111/tpj.12734. PubMed DOI PMC

Bendtsen J.D., Nielsen H., Von Heijne G., Brunak S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004;340:783–795. doi: 10.1016/j.jmb.2004.05.028. PubMed DOI

Ševčíková T., Klimeš V., Zbránková V., Strnad H., Hroudová M., Vlček Č., Eliáš M. A comparative analysis of mitochondrial genomes in eustigmatophyte algae. Genome Biol. Evol. 2016;8:705–722. doi: 10.1093/gbe/evw027. PubMed DOI PMC

Griessmann K. Uber marine Flagellaten. Arch. Protistenk. 1913;32:1–78.

Larsen J., Patterson D.J. Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist. 1990;24:801–937. doi: 10.1080/00222939000770571. DOI

O’Kelly C.J., Nerad T.A. Kinetid architecture and bicosoecid affinities of the marine heterotrophic nanoflagellate Caecitellus parvulus (Griessmann, 1913) Patterson et al., 1993. Eur. J. Protistol. 1998;34:369–375.

Andersen R.A. Synurophyceae classis nov., a new class of algae. Am. J. Bot. 1987;74:337–353. doi: 10.1002/j.1537-2197.1987.tb08616.x. DOI

Andersen R.A. The cytoskeleton of chromophyte algae. Protoplasma. 1991;164:143–159. doi: 10.1007/BF01320820. DOI

Dzeja P.P., Bortolon R., Perez-Terzic C., Holmuhamedov E.L., Terzic A. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc. Natl. Acad. Sci. USA. 2002;99:10156–10161. doi: 10.1073/pnas.152259999. PubMed DOI PMC

Al-Mehdi A.-B., Pastukh V.M., Swiger B.M., Reed D.J., Patel M.R., Bardwell G.C., Pastukh V.V., Alexeyev M.F., Gillespie M.N. Perinuclear Mitochondrial Clustering Creates an Oxidant-Rich Nuclear Domain Required for Hypoxia-Induced Transcription. Sci. Signal. 2012;5:1–20. doi: 10.1126/scisignal.2002712. PubMed DOI PMC

Picard M. Mitochondrial synapses: Intracellular communication and signal integration. Trends Neurosci. 2015;38:468–474. doi: 10.1016/j.tins.2015.06.001. PubMed DOI

Prachař J. Intimate contacts of mitochondria with nuclear envelope as a potential energy gateway for nucleo-cytoplasmic mRNA transport. Gen. Physiol. Biophys. 2003;22:525–534. PubMed

Delprat B., Rieusset J., Delettre C. Defective Endoplasmic Reticulum–Mitochondria Connection Is a Hallmark of Wolfram Syndrome. Contact. 2019;2:251525641984740. doi: 10.1177/2515256419847407. DOI

Rowland A.A., Voeltz G.K. Endoplasmic reticulum-mitochondria contacts: Function of the junction. Nat. Rev. Mol. Cell Biol. 2012;13:607–615. doi: 10.1038/nrm3440. PubMed DOI PMC

Elbaz Y., Schuldiner M. Staying in touch: The molecular era of organelle contact sites. Trends Biochem. Sci. 2011;36:616–623. doi: 10.1016/j.tibs.2011.08.004. PubMed DOI

Friedman J.R., Lackner L.L., West M., DiBenedetto J.R., Nunnari J., Voeltz G.K. ER tubules mark sites of mitochondrial division. Science. 2011;334:358–362. doi: 10.1126/science.1207385. PubMed DOI PMC

Salazar-Roa M., Malumbres M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017;27:69–81. doi: 10.1016/j.tcb.2016.08.009. PubMed DOI

Hancock K., Jahduk S.L. The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J. Biol. Chem. 1990;265:19208–19215. PubMed

Tan T.H.P., Pach R., Crausaz A., Ivens A., Schneider A. tRNAs in Trypanosoma brucei: Genomic organization, expression, and mitochondrial import. Mol. Cell. Biol. 2002;22:3707–3717. doi: 10.1128/MCB.22.11.3707-3716.2002. PubMed DOI PMC

Zabezhinsky D., Slobodin B., Rapaport D., Gerst J.E. An essential role for COPI in mRNA localization to mitochondria and mitochondrial function. Cell Rep. 2016;15:540–549. doi: 10.1016/j.celrep.2016.03.053. PubMed DOI

Michaud M., Maréchal-Drouard L., Duchêne A.M. Targeting of cytosolic mRNA to mitochondria: Naked RNA can bind to the mitochondrial surface. Biochimie. 2014;100:159–166. doi: 10.1016/j.biochi.2013.11.007. PubMed DOI

Fogarty N.M.E., Ferguson-Smith A.C., Burton G.J. Syncytial knots (Tenney-parker changes) in the human placenta: Evidence of loss of transcriptional activity and oxidative damage. Am. J. Pathol. 2013;183:144–152. doi: 10.1016/j.ajpath.2013.03.016. PubMed DOI

Liu X., Weaver D., Shirihai O., Hajnóczky G. Mitochondrial kiss-and-run: Interplay between mitochondrial motility and fusion-fission dynamics. EMBO J. 2009;28:3074–3089. doi: 10.1038/emboj.2009.255. PubMed DOI PMC

Giorgi C., Missiroli S., Patergnani S., Duszynski J., Wieckowski M.R., Pinton P. Mitochondria-Associated Membranes: Composition, Molecular Mechanisms, and Physiopathological Implications. Antioxid. Redox Signal. 2015;22:995–1019. doi: 10.1089/ars.2014.6223. PubMed DOI

Campelo F., Arnarez C., Marrink S.J., Kozlov M.M. Helfrich model of membrane bending: From Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv. Colloid. Interface Sci. 2014;208:25–33. doi: 10.1016/j.cis.2014.01.018. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...