Diplonemids are among the most abundant and species-rich protists in the oceans. Marine heterotrophic flagellates, including diplonemids, have been suggested to play important roles in global biogeochemical cycles. Diplonemids are also the sister taxon of kinetoplastids, home to trypanosomatid parasites of global health importance, and thus are informative about the evolution of kinetoplastid biology. However, the genomic and cellular complement that underpins diplonemids' highly successful lifestyle is underexplored. At the same time, our framework describing cellular processes may not be as broadly applicable as presumed, as it is largely derived from animal and fungal model organisms, a small subset of extant eukaryotic diversity. In addition to uniquely evolved machinery in animals and fungi, there exist components with sporadic (i.e., "patchy") distributions across other eukaryotes. A most intriguing subset are components ("jötnarlogs") stochastically present in a wide range of eukaryotes but lost in animal and/or fungal models. Such components are considered exotic curiosities but may be relevant to inferences about the complexity of the last eukaryotic common ancestor (LECA) and frameworks of modern cell biology. Here, we use comparative genomics and phylogenetics to comprehensively assess the membrane-trafficking system of diplonemids. They possess several proteins thought of as kinetoplastid specific, as well as an extensive set of patchy proteins, including jötnarlogs. Diplonemids apparently function with endomembrane machinery distinct from existing cell biological models but comparable with other free-living heterotrophic protists, highlighting the importance of including such exotic components when considering different models of ancient eukaryotic genomic complexity and the cell biology of non-opisthokont organisms.
- MeSH
- Biological Evolution MeSH
- Phylogeny MeSH
- Kinetoplastida * physiology genetics MeSH
- Publication type
- Journal Article MeSH
External factors affecting composition of the human gut microbiota have attracted considerable attention in recent years. Among these factors, habitat sharing with other humans and companion animals, especially dogs, is considered crucial together with the presence of intestinal protists. The Czech Republic, known for one of the highest rates of dog ownership in Europe, provides an ideal setting for studying such relationships. Here, we investigated the impact of dog ownership and lifestyle factors (residing in cities versus villages) on the gut microbiota (specifically bacteriome). In addition, we also investigated the influence of the common gut protist Blastocystis sp. on the human gut microbiota. Fecal DNAs from 118 humans and 54 dogs were subject to 16S rRNA gene sequencing using the Illumina MiSeq platform. Greater microbial diversity was observed in humans than in dogs. Owning a dog had no significant effect on the alpha and beta diversity of the human microbiota, although some bacterial genera were enriched in dog owners. In relation to lifestyle, urban dwellers had higher levels of Akkermansia, while people living in villages had a more diverse gut microbiota. The presence of Blastocystis sp. in humans correlated with specific microbial patterns, indicating an important role for this micro-eukaryote in the gut ecosystem. These findings highlight the intricate relationship between specific factors and the gut microbiota composition and emphasize the need for more extensive research in this area.
- Publication type
- Journal Article MeSH
UNLABELLED: Transmission of genetic material from one generation to the next is a fundamental feature of all living cells. In eukaryotes, a macromolecular complex called the kinetochore plays crucial roles during chromosome segregation by linking chromosomes to spindle microtubules. Little is known about this process in evolutionarily diverse protists. Within the supergroup Discoba, Euglenozoa forms a speciose group of unicellular flagellates-kinetoplastids, euglenids, and diplonemids. Kinetoplastids have an unconventional kinetochore system, while euglenids have subunits that are conserved among most eukaryotes. For diplonemids, a group of extremely diverse and abundant marine flagellates, it remains unclear what kind of kinetochores are present. Here, we employed deep homology detection protocols using profile-versus-profile Hidden Markov Model searches and AlphaFold-based structural comparisons to detect homologies that might have been previously missed. Interestingly, we still could not detect orthologs for most of the kinetoplastid or canonical kinetochore subunits with few exceptions including a putative centromere-specific histone H3 variant (cenH3/CENP-A), the spindle checkpoint protein Mad2, the chromosomal passenger complex members Aurora and INCENP, and broadly conserved proteins like CLK kinase and the meiotic synaptonemal complex proteins SYCP2/3 that also function at kinetoplastid kinetochores. We examined the localization of five candidate kinetochore-associated proteins in the model diplonemid, Paradiplonema papillatum. PpCENP-A shows discrete dots in the nucleus, implying that it is likely a kinetochore component. PpMad2, PpCLKKKT10/19, PpSYCP2L1KKT17/18, and PpINCENP reside in the nucleus, but no clear kinetochore localization was observed. Altogether, these results point to the possibility that diplonemids evolved a hitherto unknown type of kinetochore system. IMPORTANCE: A macromolecular assembly called the kinetochore is essential for the segregation of genetic material during eukaryotic cell division. Therefore, characterization of kinetochores across species is essential for understanding the mechanisms involved in this key process across the eukaryotic tree of life. In particular, little is known about kinetochores in divergent protists such as Euglenozoa, a group of unicellular flagellates that includes kinetoplastids, euglenids, and diplonemids, the latter being a highly diverse and abundant component of marine plankton. While kinetoplastids have an unconventional kinetochore system and euglenids have a canonical one similar to traditional model eukaryotes, preliminary searches detected neither unconventional nor canonical kinetochore components in diplonemids. Here, we employed state-of-the-art deep homology detection protocols but still could not detect orthologs for the bulk of kinetoplastid-specific nor canonical kinetochore proteins in diplonemids except for a putative centromere-specific histone H3 variant. Our results suggest that diplonemids evolved kinetochores that do not resemble previously known ones.
Toxoplasmosis is caused by Toxoplasma gondii (Nicolle et Manceaux, 1908), a coccidian protist (Apicomplexa). It has a strong predilection for infecting the central nervous system. Researchers have therefore investigated its association with several neurological and psychiatric disorders, including Alzheimer's disease, attention-deficit hyperactivity disorder, autism, bipolar disorder, cerebral palsy, depression, Guillain-Barre syndrome, multiple sclerosis, obsessive compulsive disorder, Parkinson's disease, personality disorders, and schizophrenia. Among these disorders the strongest evidence for a role of T. gondii exists for psychosis in general and schizophrenia in particular. This paper reviews the origins of this association, briefly summarises the current evidence in support, and discusses future research strategies.
- MeSH
- Humans MeSH
- Schizophrenia * MeSH
- Toxoplasma physiology MeSH
- Toxoplasmosis * complications MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Advanced imaging of microorganisms, including protists, is challenging due to their small size. Specimen expansion prior to imaging is thus beneficial to increase resolution and cellular details. Here, we present a sample preparation workflow for improved observations of the single-celled eukaryotic pathogen Giardia intestinalis (Excavata, Metamonada). The binucleated trophozoites colonize the small intestine of humans and animals and cause a diarrhoeal disease. Their remarkable morphology includes two nuclei and a pronounced microtubular cytoskeleton enabling cell motility, attachment and proliferation. By use of expansion and confocal microscopy, we resolved in a great detail subcellular structures and organelles of the parasite cell. The acquired spatial resolution enabled novel observations of centrin localization at Giardia basal bodies. Interestingly, non-luminal centrin localization between the Giardia basal bodies was observed, which is an atypical eukaryotic arrangement. Our protocol includes antibody staining and can be used for the localization of epitope-tagged proteins, as well as for differential organelle labelling by amino reactive esters. This fast and simple technique is suitable for routine use without a superresolution microscopy equipment.
Intestinal protists in the gut microbiome are increasingly studied, but their basic epidemiology is not well understood. We explored the prevalence, genetic diversity, and potential zoonotic transmission of two protists colonizing the large intestine - Blastocystis sp. and Dientamoeba fragilis - in 37 species of non-human primates (NHPs) and their caregivers in six zoos in the Czech Republic. We analyzed 179 fecal samples (159 from NHPs, 20 from humans) by qPCR. Blastocystis sp. was detected in 54.7% (98/179) of samples, in 24 NHP species and in 57.2% of NHP samples (prevalence ranged between 36 and 80%), and in 35% of human samples (prevalence ranged between 0 and 67%). Using next generation amplicon sequencing, nine Blastocystis subtypes (ST1-ST5, ST7, ST8, and two novel subtypes) were identified. The two new Blastocystis subtypes (named ST47 and ST48) were described using Nanopore sequencing to produce full-length reference sequences of the small subunit ribosomal RNA gene. Some subtypes were shared between NHPs and their caregivers, suggesting potential zoonotic transmission. Mixed subtype colonization was frequently observed, with 52% of sequenced samples containing two or more subtypes. Dientamoeba was found only in NHPs with a prevalence of 6%. This study emphasizes the critical role of molecular diagnostics in epidemiological and transmission studies of these protists and calls for further research to better understand their impact on public health.
- Publication type
- Journal Article MeSH
Environmental mismatches are defined as changes in the environment that induce public health crises. Well known mismatches leading to chronic disease include the availability of technologies that facilitate unhealthy diets and sedentary lifestyles, both factors that adversely affect cardiovascular health. This commentary puts these mismatches in context with biota alteration, an environmental mismatch involving hygiene-related technologies necessary for avoidance of infectious disease. Implementation of hygiene-related technologies causes a loss of symbiotic helminths and protists, profoundly affecting immune function and facilitating a variety of chronic conditions, including allergic disorders, autoimmune diseases, and several inflammation-associated neuropsychiatric conditions. Unfortunately, despite an established understanding of the biology underpinning this and other environmental mismatches, public health agencies have failed to stem the resulting tide of increased chronic disease burden. Both biomedical research and clinical practice continue to focus on an ineffective and reactive pharmaceutical-based paradigm. It is argued that the healthcare of the future could take into account the biology of today, effectively and proactively dealing with environmental mismatch and the resulting chronic disease burden.
- MeSH
- Chronic Disease MeSH
- Humans MeSH
- Immune System Diseases * MeSH
- Environment MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Molecular identification of micro- and macroorganisms based on nuclear markers has revolutionized our understanding of their taxonomy, phylogeny and ecology. Today, research on the diversity of eukaryotes in global ecosystems heavily relies on nuclear ribosomal RNA (rRNA) markers. Here, we present the research community-curated reference database EUKARYOME for nuclear ribosomal 18S rRNA, internal transcribed spacer (ITS) and 28S rRNA markers for all eukaryotes, including metazoans (animals), protists, fungi and plants. It is particularly useful for the identification of arbuscular mycorrhizal fungi as it bridges the four commonly used molecular markers-ITS1, ITS2, 18S V4-V5 and 28S D1-D2 subregions. The key benefits of this database over other annotated reference sequence databases are that it is not restricted to certain taxonomic groups and it includes all rRNA markers. EUKARYOME also offers a number of reference long-read sequences that are derived from (meta)genomic and (meta)barcoding-a unique feature that can be used for taxonomic identification and chimera control of third-generation, long-read, high-throughput sequencing data. Taxonomic assignments of rRNA genes in the database are verified based on phylogenetic approaches. The reference datasets are available in multiple formats from the project homepage, http://www.eukaryome.org.
- MeSH
- Databases, Genetic MeSH
- Databases, Nucleic Acid MeSH
- Eukaryota * genetics MeSH
- Phylogeny MeSH
- Genes, rRNA genetics MeSH
- RNA, Ribosomal, 18S genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Pharmacophores such as hydroxyethylamine (HEA) and phthalimide (PHT) have been identified as potential synthons for the development of compounds against various parasitic infections. In order to further advance our progress, we conducted an experiment utilising a collection of PHT and HEA derivatives through phenotypic screening against a diverse set of protist parasites. This approach led to the identification of a number of compounds that exhibited significant effects on the survival of Entamoeba histolytica, Trypanosoma brucei, and multiple life-cycle stages of Leishmania spp. The Leishmania hits were pursued due to the pressing necessity to expand our repertoire of reliable, cost-effective, and efficient medications for the treatment of leishmaniases. Antileishmanials must possess the essential capability to efficiently penetrate the host cells and their compartments in the disease context, to effectively eliminate the intracellular parasite. Hence, we performed a study to assess the effectiveness of eradicating L. infantum intracellular amastigotes in a model of macrophage infection. Among eleven L. infantum growth inhibitors with low-micromolar potency, PHT-39, which carries a trifluoromethyl substitution, demonstrated the highest efficacy in the intramacrophage assay, with an EC50 of 1.2 +/- 3.2 μM. Cytotoxicity testing of PHT-39 in HepG2 cells indicated a promising selectivity of over 90-fold. A chemogenomic profiling approach was conducted using an orthology-based method to elucidate the mode of action of PHT-39. This genome-wide RNA interference library of T. brucei identified sensitivity determinants for PHT-39, which included a P-type ATPase that is crucial for the uptake of miltefosine and amphotericin, strongly indicating a shared route for cellular entry. Notwithstanding the favourable properties and demonstrated efficacy in the Plasmodium berghei infection model, PHT-39 was unable to eradicate L. major infection in a murine infection model of cutaneous leishmaniasis. Currently, PHT-39 is undergoing derivatization to optimize its pharmacological characteristics.
- MeSH
- Amphotericin B therapeutic use MeSH
- Antiprotozoal Agents * pharmacology therapeutic use MeSH
- Phthalimides pharmacology therapeutic use MeSH
- Leishmania infantum * MeSH
- Leishmania * MeSH
- Leishmaniasis, Cutaneous * parasitology MeSH
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.
- MeSH
- Eukaryota * physiology MeSH
- Osmoregulation physiology MeSH
- Vacuoles * MeSH
- Publication type
- Journal Article MeSH
- Review MeSH