-
Je něco špatně v tomto záznamu ?
Mitochondrial dynamics in parasitic protists
L. Voleman, P. Doležal,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 2005
Public Library of Science (PLoS)
od 2005
PubMed Central
od 2005
Europe PubMed Central
od 2005
ProQuest Central
od 2005-09-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-09-01
Medline Complete (EBSCOhost)
od 2005-09-01
Health & Medicine (ProQuest)
od 2005-09-01
ROAD: Directory of Open Access Scholarly Resources
od 2005
- MeSH
- mitochondriální dynamika * MeSH
- parazitární nemoci epidemiologie parazitologie patofyziologie MeSH
- paraziti patogenita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The shape and number of mitochondria respond to the metabolic needs during the cell cycle of the eukaryotic cell. In the best-studied model systems of animals and fungi, the cells contain many mitochondria, each carrying its own nucleoid. The organelles, however, mostly exist as a dynamic network, which undergoes constant cycles of division and fusion. These mitochondrial dynamics are driven by intricate protein machineries centered around dynamin-related proteins (DRPs). Here, we review recent advances on the dynamics of mitochondria and mitochondrion-related organelles (MROs) of parasitic protists. In contrast to animals and fungi, many parasitic protists from groups of Apicomplexa or Kinetoplastida carry only a single mitochondrion with a single nucleoid. In these groups, mitochondrial division is strictly coupled to the cell cycle, and the morphology of the organelle responds to the cell differentiation during the parasite life cycle. On the other hand, anaerobic parasitic protists such as Giardia, Entamoeba, and Trichomonas contain multiple MROs that have lost their organellar genomes. We discuss the function of DRPs, the occurrence of mitochondrial fusion, and mitophagy in the parasitic protists from the perspective of eukaryote evolution.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20005678
- 003
- CZ-PrNML
- 005
- 20200518132022.0
- 007
- ta
- 008
- 200511s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.ppat.1008008 $2 doi
- 035 __
- $a (PubMed)31751405
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Voleman, Luboš $u Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic.
- 245 10
- $a Mitochondrial dynamics in parasitic protists / $c L. Voleman, P. Doležal,
- 520 9_
- $a The shape and number of mitochondria respond to the metabolic needs during the cell cycle of the eukaryotic cell. In the best-studied model systems of animals and fungi, the cells contain many mitochondria, each carrying its own nucleoid. The organelles, however, mostly exist as a dynamic network, which undergoes constant cycles of division and fusion. These mitochondrial dynamics are driven by intricate protein machineries centered around dynamin-related proteins (DRPs). Here, we review recent advances on the dynamics of mitochondria and mitochondrion-related organelles (MROs) of parasitic protists. In contrast to animals and fungi, many parasitic protists from groups of Apicomplexa or Kinetoplastida carry only a single mitochondrion with a single nucleoid. In these groups, mitochondrial division is strictly coupled to the cell cycle, and the morphology of the organelle responds to the cell differentiation during the parasite life cycle. On the other hand, anaerobic parasitic protists such as Giardia, Entamoeba, and Trichomonas contain multiple MROs that have lost their organellar genomes. We discuss the function of DRPs, the occurrence of mitochondrial fusion, and mitophagy in the parasitic protists from the perspective of eukaryote evolution.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a mitochondriální dynamika $7 D063154
- 650 _2
- $a paraziti $x patogenita $7 D010271
- 650 _2
- $a parazitární nemoci $x epidemiologie $x parazitologie $x patofyziologie $7 D010272
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Doležal, Pavel $u Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic.
- 773 0_
- $w MED00008922 $t PLoS pathogens $x 1553-7374 $g Roč. 15, č. 11 (2019), s. e1008008
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31751405 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200518132022 $b ABA008
- 999 __
- $a ok $b bmc $g 1524536 $s 1095734
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 15 $c 11 $d e1008008 $e 20191121 $i 1553-7374 $m PLOS pathogens $n PLoS Pathog $x MED00008922
- LZP __
- $a Pubmed-20200511