Transcriptome-wide Mendelian randomization exploring dynamic CD4+ T cell gene expression in colorectal cancer development
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
AZV NU22J-03-00033
Ministry of Health of the Czech Republic
U01 CA167551
NIH HHS - United States
C18281/A29019
Cancer Research UK 25
C18281/A29019
CRUK Integrative Cancer Epidemiology Programme
U19 CA148107
NIH HHS - United States
C18281/A30905
Cancer Research UK Population Research Committee
HHSN268201200008C
NHLBI NIH HHS - United States
R01 CA081488
NCI NIH HHS - United States
HHSN268201200008I
NIH HHS - United States
U01 CA122839
NCI NIH HHS - United States
218495/Z/19/Z
Wellcome Trust - United Kingdom
U01 CA122839
NIH HHS - United States
MC_UU_00032/03
Medical Research Council - United Kingdom
U19 CA148107
NCI NIH HHS - United States
R01 CA81488
NIH HHS - United States
U01 CA167551
NCI NIH HHS - United States
R01 CA143247
NIH HHS - United States
Wellcome Trust - United Kingdom
University of Bristol
LX22NPO5102
National Institute for Cancer Research
HHSN268201200008I
NHLBI NIH HHS - United States
001
World Health Organization - International
PubMed
40974097
PubMed Central
PMC12571111
DOI
10.1093/jleuko/qiaf131
PII: 8257067
Knihovny.cz E-zdroje
- Klíčová slova
- CD4+ T cells, Mendelian randomization, colorectal cancer, gene expression, genetic epidemiology,
- MeSH
- aktivace lymfocytů genetika MeSH
- CD4-pozitivní T-lymfocyty * metabolismus imunologie MeSH
- genetická predispozice k nemoci MeSH
- kolorektální nádory * genetika imunologie patologie MeSH
- lidé MeSH
- mendelovská randomizace * MeSH
- regulace genové exprese u nádorů * MeSH
- transkriptom * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Recent research suggests higher circulating lymphocyte counts may protect against colorectal cancer (CRC). However, the role of specific lymphocyte subtypes and activation states remain unclear. CD4+ T cells-a highly dynamic lymphocyte subtype-undergo gene expression changes upon activation that are critical to their effector function. Previous studies using bulk tissue have limited our understanding of their role in CRC risk to static associations. We applied Mendelian randomization (MR) and genetic colocalisation to evaluate causal relationships of gene expression on CRC risk across multiple CD4+ T cell subtypes and activation states. Genetic proxies were obtained from single-cell transcriptomic data, allowing us to investigate the causal effect of expression of 1,805 genes across CD4+ T cell activation states on CRC risk (78,473 cases; 107,143 controls). Analyses were stratified by CRC anatomical subsites and sex, with sensitivity analyses assessing whether the observed effect estimates were likely to be CD4+ T cell-specific. We identified 6 genes-FADS2, FHL3, HLA-DRB1, HLA-DRB5, RPL28, and TMEM258-with strong evidence for a causal role in CRC development (FDR-P < 0.05; colocalisation H4 > 0.8). Causal estimates varied by CD4+ T cell subtype, activation state, CRC subsite and sex. However, many of genetic proxies used to instrument gene expression in CD4+ T cells also act as eQTLs in other tissues, highlighting the challenges of using genetic proxies to instrument tissue-specific expression changes. We demonstrate the importance of capturing the dynamic nature of CD4+ T cells in understanding CRC risk, and prioritize genes for further investigation in cancer prevention.
Center for Cancer Research Medical University of Vienna Borschkegasse 8a Vienna 1090 Austria
Department of Clinical Genetics Karolinska University Hospital Solna Stockholm 171 64 Sweden
Institute of Environmental Medicine Karolinska Institutet Nobels väg 13 Solna Stockholm Sweden
Zobrazit více v PubMed
World Health Organization . Colorectal cancer; 2023. https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer
World Cancer Research Fund, American Institute for Cancer Research . Diet, Nutrition, Physical Activity and Colorectal Cancer: a Global Perspective. Continuous Update Project Expert Report 2018; 2018. dietandcancerreport.org
Wu J, et al. Values of applying white blood cell counts in the prognostic evaluation of resectable colorectal cancer. Mol Med Rep. 2019:19:2330–2340. 10.3892/mmr.2019.9844 PubMed DOI
Rosman Y, et al. Changes in peripheral blood eosinophils may predict colorectal cancer—a retrospective study. World Allergy Organ J. 2022:15:100696. 10.1016/j.waojou.2022.100696 PubMed DOI PMC
Idos GE, et al. The prognostic implications of tumor infiltrating lymphocytes in colorectal cancer: a systematic review and meta-analysis. Sci Rep. 2020:10:3360. 10.1038/s41598-020-60255-4 PubMed DOI PMC
Constantinescu AE, et al. Circulating white blood cell traits and colorectal cancer risk: a Mendelian randomisation study. Int J Cancer. 2024:154:94–103. 10.1002/ijc.34691 PubMed DOI PMC
Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Ther. 2021:28:5–17. 10.1038/s41417-020-0183-x PubMed DOI PMC
Soskic B, et al. Immune disease risk variants regulate gene expression dynamics during CD4+ T cell activation. Nat Genet. 2022:54:817–826. 10.1038/s41588-022-01066-3 PubMed DOI PMC
Davey Smith G, Ebrahim S. Mendelian randomization: can genetic epidemiology contribute to understanding environmental determinants of disease?. Int J Epidemiol. 2003:32:1–22. 10.1093/ije/dyg070 PubMed DOI
Fernandez-Rozadilla C, et al. Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries. Nat Genet. 2023:55:89–99. 10.1038/s41588-022-01222-9 PubMed DOI PMC
Huyghe JR, et al. Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut. 2021:70:1325–1334. 10.1136/gutjnl-2020-321534 PubMed DOI PMC
Huyghe JR, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019:51:76–87. 10.1038/s41588-018-0286-6 PubMed DOI PMC
Lawlor DA. Commentary: two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol. 2016:45:908–915. 10.1093/ije/dyw127 PubMed DOI PMC
Sanderson E, et al. Mendelian randomization. Nat Rev Methods Primers. 2022:2:6. 10.1038/s43586-021-00092-5 PubMed DOI PMC
Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011:40:755–764. 10.1093/ije/dyr036 PubMed DOI
Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017:13:e1007081. 10.1371/journal.pgen.1007081 PubMed DOI PMC
Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018:27:R195–R208. 10.1093/hmg/ddy163 PubMed DOI PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995:57:289–300. 10.1111/j.2517-6161.1995.tb02031.x DOI
Skrivankova VW, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization. JAMA. 2021:326:1614. 10.1001/jama.2021.18236 PubMed DOI
Skrivankova VW, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ. 2021:375:n2233. 10.1136/bmj.n2233 PubMed DOI PMC
Giambartolomei C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014:10:e1004383. 10.1371/journal.pgen.1004383 PubMed DOI PMC
Rasooly D, Peloso GM, Giambartolomei C. Bayesian genetic colocalization test of two traits using PubMed DOI
Robinson JW, et al. An efficient and robust tool for colocalisation: Pair-wise Conditional and Colocalisation (PWCoCo) [preprint]. bioRxiv 2022.08.08.503158. 10.1101/2022.08.08.503158 DOI
Lonsdale J, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013:45:580–585. 10.1038/ng.2653 PubMed DOI PMC
Graham DB, et al. TMEM258 is a component of the oligosaccharyltransferase Complex controlling ER stress and intestinal inflammation. Cell Rep. 2016:17:2955–2965. 10.1016/j.celrep.2016.11.042 PubMed DOI PMC
Li A, Song N-J, Riesenberg BP, Li Z. The emerging roles of endoplasmic Reticulum stress in balancing immunity and tolerance in health and diseases: mechanisms and opportunities. Front Immunol. 2020:10:3154. 10.3389/fimmu.2019.03154 PubMed DOI PMC
Park HG, Park WJ, Kothapalli KSD, Brenna JT. The fatty acid desaturase 2 ( PubMed DOI PMC
Aglago EK, et al. Consumption of fish and long-chain n-3 polyunsaturated fatty acids is associated with reduced risk of colorectal cancer in a large European cohort. Clin Gastroenterol Hepatol. 2020:18:654–666.e6. 10.1016/j.cgh.2019.06.031 PubMed DOI
Kim M, Park K. Dietary fat intake and risk of colorectal cancer: a systematic review and meta-analysis of prospective studies. Nutrients. 2018:10:1963. 10.3390/nu10121963 PubMed DOI PMC
Bull C, et al. Identifying metabolic features of colorectal cancer liability using Mendelian randomization. Elife. 2023:12:RP87894. 10.7554/eLife.87894.3 PubMed DOI PMC
Haycock PC, et al. The association between genetically elevated polyunsaturated fatty acids and risk of cancer. EBioMedicine. 2023:91:104510. 10.1016/j.ebiom.2023.104510 PubMed DOI PMC
Phan LM, Yeung S-CJ, Lee M-H. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med. 2014:11:1–19. 10.7497/j.issn.2095-3941.2014.01.001 PubMed DOI PMC
Dumitru C, Kabat AM, Maloy KJ. Metabolic adaptations of CD4+ T cells in inflammatory disease. Front Immunol. 2018:9:540. 10.3389/fimmu.2018.00540 PubMed DOI PMC
Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009:54:15–39. 10.1038/jhg.2008.5 PubMed DOI
Houtman M, et al. Haplotype-specific expression analysis of MHC class II genes in healthy individuals and rheumatoid arthritis patients. Front Immunol. 2021:12:707217. 10.3389/fimmu.2021.707217 PubMed DOI PMC
Dunne MR, et al. Characterising the prognostic potential of HLA-DR during colorectal cancer development. Cancer Immunol Immunother. 2020:69:1577–1588. 10.1007/s00262-020-02571-2 PubMed DOI PMC
Barnaba V. T cell memory in infection, cancer, and autoimmunity. Front Immunol. 2022:12:811968. 10.3389/fimmu.2021.811968 PubMed DOI PMC
Labriet A, et al. Germline variability and tumor expression level of ribosomal protein gene RPL28 are associated with survival of metastatic colorectal cancer patients. Sci Rep. 2019:9:13008. 10.1038/s41598-019-49477-3 PubMed DOI PMC
Coghill ID, et al. FHL3 is an actin-binding protein that regulates α-actinin-mediated actin bundling. J Biol Chem. 2003:278:24139–24152. 10.1074/jbc.M213259200 PubMed DOI
Huang Z, Yu C, Yu L, Shu H, Zhu X. The roles of FHL3 in cancer. Front Oncol. 2022:12:887828. 10.3389/fonc.2022.887828 PubMed DOI PMC
Tan X, et al. Immune-related gene expression with colorectal cancer risk: a Mendelian randomization analysis. Discov Oncol. 2025:16:617. 10.1007/s12672-025-02291-y PubMed DOI PMC
Cao G, et al. FHL3 contributes to EMT and chemotherapy resistance through up-regulation of slug and activation of TGFβ/Smad-independent pathways in gastric cancer. Front Oncol. 2021:11:649029. 10.3389/fonc.2021.649029 PubMed DOI PMC
Li P, et al. FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging (Albany NY). 2020:12:53–69. 10.18632/aging.102564 PubMed DOI PMC
Ye S-B, et al. High-throughput proteomics profiling-derived signature associated with chemotherapy response and survival for stage II/III colorectal cancer. NPJ Precis Oncol. 2023:7:50. 10.1038/s41698-023-00400-0 PubMed DOI PMC
Blomhoff A, et al. Linkage disequilibrium and haplotype blocks in the MHC vary in an HLA haplotype specific manner assessed mainly by DRB1*03 and DRB1*04 haplotypes. Genes Immun. 2006:7:130–140. 10.1038/sj.gene.6364272 PubMed DOI
Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014:23:R89–R98. 10.1093/hmg/ddu328 PubMed DOI PMC
Butler-Laporte G, et al. An accurate genetic colocalization method for the HLA locus [preprint], medRxiv 2024.11.05.24316783. 10.1101/2024.11.05.24316783 DOI
Kjaergaard AD, Smith GD, Stewart P. Mendelian randomization studies in endocrinology: raising the quality bar for submissions and publications in the journal of clinical endocrinology & metabolism. J Clin Endocrinol Metab. 2024:109:1–3. 10.1210/clinem/dgad569 PubMed DOI
Stender S, Gellert-Kristensen H, Smith GD. Reclaiming Mendelian randomization from the deluge of papers and misleading findings. Vol. 23, lipids in health and disease. BioMed Central Ltd; 2024. 10.1186/s12944-024-02284-w PubMed DOI PMC
Smith GD, Ebrahim S. Mendelian Randomisation at 20 years: how can it avoid hubris, while achieving more? Vol. 12, The Lancet Diabetes and Endocrinology. Elsevier Ltd; 2024. p. 14–17. 10.1016/S2213-8587(23)00348-0 PubMed DOI
Sanderson E, et al. Mendelian Randomization. Vol. 2, Nature Reviews Methods Primers. Springer Nature; 2022. 10.1038/s43586-021-00092-5 PubMed DOI PMC
R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2023. https://www.R-project.org/
Hemani G, et al. The MR-base platform supports systematic causal inference across the human phenome. Elife. 2018:7:34408. 10.7554/eLife.34408 PubMed DOI PMC
Richardson N, et al. arrow: Integration to ‘Apache’; 2024. https://CRAN.R-project.org/package=arrow
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat Protoc. 2009:4:1184–1191. 10.1038/nprot.2009.97 PubMed DOI PMC
Durinck S, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005:21:3439–3440. 10.1093/bioinformatics/bti525 PubMed DOI
Barrett T et al. et al. data.table: Extension of ‘data.frame’; 2024. https://CRAN.R-project.org/package=data.table
Wickham H, François R, Henry L, Müller K, Vaughan D. dplyr: A Grammar of Data Manipulation; 2023. https://CRAN.R-project.org/package=dplyr
Lawrence M, et al. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013:9:e1003118. 10.1371/journal.pcbi.1003118 PubMed DOI PMC
Hemani G. gwasvcf: Tools for Dealing with GWAS Summary Data in VCF Format; 2024. https://github.com/mrcieu/gwasvcf
Lawrence M, Gentleman R, Carey V. Rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009:25:1841–1842. 10.1093/bioinformatics/btp328 PubMed DOI PMC
Wickham H. stringr: Simple, Consistent Wrappers for Common String Operations; 2023. https://CRAN.R-project.org/package=stringr
Wickham H, Vaughan D, Girlich M. tidyr: Tidy Messy Data; 2024. https://CRAN.R-project.org/package=tidyr
Carey V. gwascat: representing and modeling data in the EMBL-EBI GWAS catalog. doi:10.18129/B9.bioc.gwascat, R package version 2.40.0; 2025. https://bioconductor.org/packages/gwascat.
Slowikowski K. ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2'; 2024. https://CRAN.R-project.org/package=ggrepel
Wickham H. Ggplot2: elegant graphics for data analysis. Springer-Verlag; 2016.
Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015:4:7. 10.1186/s13742-015-0047-8 PubMed DOI PMC