Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model

. 2022 Apr 15 ; 12 (1) : 6350. [epub] 20220415

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35428810
Odkazy

PubMed 35428810
PubMed Central PMC9012820
DOI 10.1038/s41598-022-10406-6
PII: 10.1038/s41598-022-10406-6
Knihovny.cz E-zdroje

This paper introduces a novel technique to evaluate comfort properties of zinc oxide nanoparticles (ZnO NPs) coated woven fabrics. The proposed technique combines artificial neural network (ANN) and golden eagle optimizer (GEO) to ameliorate the training process of ANN. Neural networks are state-of-the-art machine learning models used for optimal state prediction of complex problems. Recent studies showed that the use of metaheuristic algorithms improve the prediction accuracy of ANN. GEO is the most advanced methaheurstic algorithm inspired by golden eagles and their intelligence for hunting by tuning their speed according to spiral trajectory. From application point of view, this study is a very first attempt where GEO is applied along with ANN to improve the training process of ANN for any textiles and composites application. Furthermore, the proposed algorithm ANN with GEO (ANN-GEO) was applied to map out the complex input-output conditions for optimal results. Coated amount of ZnO NPs, fabric mass and fabric thickness were selected as input variables and comfort properties were evaluated as output results. The obtained results reveal that ANN-GEO model provides high performance accuracy than standard ANN model, ANN models trained with latest metaheuristic algorithms including particle swarm optimizer and crow search optimizer, and conventional multiple linear regression.

Zobrazit více v PubMed

Noman, M. T. & Petr PubMed PMC

Dong S, et al. A novel and high-performance double Z-scheme photocatalyst ZnO-SnO PubMed DOI

Noman, M. T., Amor, N., Petr PubMed PMC

Noman, M. T., Petr PubMed PMC

Noman, M., Petr

Amor, N., Noman, M. T., Ismail, A, Petr PubMed PMC

Azeem, M., Noman, M. T., Wiener, J., Petr

Noman, M. T., Petr PubMed PMC

Khude P, Majumdar A, Butola BS. Modelling and prediction of antibacterial activity of knitted fabrics made from silver nanocomposite fibres using soft computing approaches. Neural Comput. Appl. 2019;32:9509–9519. doi: 10.1007/s00521-019-04463-8. DOI

Kanat ZE, Özdil N. Application of artificial neural network (ANN) for the prediction of thermal resistance of knitted fabrics at different moisture content. J. Text. Inst. 2018;109:1247–1253. doi: 10.1080/00405000.2017.1423003. DOI

Lu D, Yu W. Predicting the tensile strength of single wool fibers using artificial neural network and multiple linear regression models based on acoustic emission. Text. Res. J. 2021;91:533–542. doi: 10.1177/0040517520948200. DOI

Malik SA, et al. Analysis and prediction of air permeability of woven barrier fabrics with respect to material, fabric construction and process parameters. Fibers Polym. 2017;18:2005–2017. doi: 10.1007/s12221-017-7241-5. DOI

Malik SA, Kocaman RT, Gereke T, Aibibu D, Cherif C. Prediction of the porosity of barrier woven fabrics with respect to material, construction and processing parameters and its relation with air permeability. Fibres Text. Eastern Eur. 2018;26:71–79. doi: 10.5604/01.3001.0011.7306. DOI

Wong A, Li Y, Yeung P. Predicting clothing sensory comfort with artificial intelligence hybrid models. Text. Res. J. 2004;74:13–19. doi: 10.1177/004051750407400103. DOI

Mishra S. Prediction of yarn strength utilization in cotton woven fabrics using artificial neural network. J. Inst. Eng. (India) Ser. E. 2015;96:151–157. doi: 10.1007/s40034-014-0049-6. DOI

El-Geiheini A, ElKateb S, Abd-Elhamied MR. Yarn tensile properties modeling using artificial intelligence. Alex. Eng. J. 2020;59:4435–4440. doi: 10.1016/j.aej.2020.07.049. DOI

Erbil Y, Babaarslan O, İlhami Ilhan. A comparative prediction for tensile properties of ternary blended open-end rotor yarns using regression and neural network models. J. Text. Inst. 2018;109:560–568. doi: 10.1080/00405000.2017.1361164. DOI

Breuer K, Stommel M. Prediction of short fiber composite properties by an artificial neural network trained on an rve database. Fibers. 2021 doi: 10.3390/fib9020008. DOI

Wang F, et al. A model for predicting the tensile strength of ultrafine glass fiber felts with mathematics and artificial neural network. J. Text. Inst. 2021;112:783–791. doi: 10.1080/00405000.2020.1779167. DOI

Farooq A, et al. Predicting cotton fibre maturity by using artificial neural network. Autex Res. J. 2018;18:429–433. doi: 10.1515/aut-2018-0024. DOI

Unal P, Üreyen M, Mecit D. Predicting properties of single jersey fabrics using regression and artificial neural network models. Fibers Polym. 2012;13:87–95. doi: 10.1007/s12221-012-0087-y. DOI

Farooq A, Irshad F, Azeemi R, Iqbal N. Prognosticating the shade change after softener application using artificial neural networks. Autex Res. J. 2020 doi: 10.2478/aut-2020-0019. DOI

Amor, N., Noman, M. T. & Petr PubMed PMC

Amor, N., Noman, M. T. & Petr PubMed PMC

Malik SA, Gereke T, Farooq A, Aibibu D, Cherif C. Prediction of yarn crimp in pes multifilament woven barrier fabrics using artificial neural network. J. Text. Inst. 2018;109:942–951. doi: 10.1080/00405000.2017.1393786. DOI

Xiao, Q. et al. Prediction of pilling of polyester-cotton blended woven fabric using artificial neural network models. J. Eng. Fibers Fabr.10.1177/1558925019900152 (2020).

Dashti M, Derhami V, Ekhtiyari E. Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms. J. AI Data Min. 2014;2:73–78. doi: 10.22044/jadm.2014.187. DOI

Majumdar A, Das A, Hatua P, Ghosh A. Optimization of woven fabric parameters for ultraviolet radiation protection and comfort using artificial neural network and genetic algorithm. Neural Comput. Appl. 2016;27:2567–2576. doi: 10.1007/s00521-015-2025-6. DOI

Ni C, et al. Online sorting of the film on cotton based on deep learning and hyperspectral imaging. IEEE Access. 2020;8:93028–93038. doi: 10.1109/ACCESS.2020.2994913. DOI

Lazzús JA. Neural network-particle swarm modeling to predict thermal properties. Math. Comput. Modell. 2013;57:2408–2418. doi: 10.1016/j.mcm.2012.01.003. DOI

Amor, N., Noman, M. T., Petr PubMed PMC

Mohammadi-Balani A, Dehghan Nayeri M, Azar A, Taghizadeh-Yazdi M. Golden eagle optimizer: a nature-inspired metaheuristic algorithm. Comput. Ind. Eng. 2021;152:107050. doi: 10.1016/j.cie.2020.107050. DOI

Noman MT, Militky J, Wiener J, Saskova J, Ashraf AA, Jamshaid H, Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI

Noman MT, Wiener J, Saskova J, Ashraf AA, Viková M, Jamshaid H, Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40(Pt A):41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI

Amor, N., Noman, M. T. & Petr PubMed PMC

Pishro, A. A. et al. Application of artificial neural networks and multiple linear regression on local bond stress equation of uhpc and reinforcing steel bars. Sci. Rep.11 (2021). PubMed PMC

Wang Z, Di Massimo C, Tham MT, Julian Morris A. A procedure for determining the topology of multilayer feedforward neural networks. Neural Netw. 1994;7:291–300. doi: 10.1016/0893-6080(94)90023-X. DOI

Kalantary, S., Jahani, A. & Jahani, R. Mlr and ann approaches for prediction of synthetic/natural nanofibers diameter in the environmental and medical applications. Sci. Rep.10 (2020). PubMed PMC

Jeon JH, Yang SS, Kang YJ. Estimation of sound absorption coefficient of layered fibrous material using artificial neural networks. Appl. Acoust. 2020;169:107476. doi: 10.1016/j.apacoust.2020.107476. DOI

Doran EC, Sahin C. The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and support vector machines. Text. Res. J. 2020;90:1558–1580. doi: 10.1177/0040517519896761. DOI

Daniel GG. Artificial Neural Network, 143–143. Netherlands, Dordrecht: Springer; 2013.

Briot J-P. From artificial neural networks to deep learning for music generation: history, concepts and trends. Neural Comput. Appl. 2021;33:39–65. doi: 10.1007/s00521-020-05399-0. DOI

Ayres L, Gomez F, Linton J, Silva M, Garcia C. Taking the leap between analytical chemistry and artificial intelligence: A tutorial review. Anal. Chim. Acta. 2021 doi: 10.1016/j.aca.2021.338403. PubMed DOI

Jain AK, Jianchang Mao, Mohiuddin KM. Artificial neural networks: a tutorial. Computer. 1996;29:31–44. doi: 10.1109/2.485891. DOI

Golnaraghi S, Zangenehmadar Z, Moselhi O, Alkass S. Application of artificial neural network(s) in predicting formwork labour productivity. Adv. Civ. Eng. 2019;2019:1–11. doi: 10.1155/2019/5972620. DOI

Rezaee MJ, Jozmaleki M, Valipour M. Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange. Phys. A Stat. Mech. Appl. 2018 doi: 10.1016/j.physa.2017.07.017. DOI

Das S, Ghosh A, Majumdar A, Banerjee D. Yarn engineering using hybrid artificial neural network-genetic algorithm model. Fibers Polym. 2013;14:1220–1226. doi: 10.1007/s12221-013-1220-2. DOI

Ecer, F., Ardabili, S., Band, S. S. & Mosavi, A. Training multilayer perceptron with genetic algorithms and particle swarm optimization for modeling stock price index prediction. Entropy10.3390/e22111239 (2020). PubMed PMC

Ansari A, Ahmad IS, Bakar AA, Yaakub MR. A hybrid metaheuristic method in training artificial neural network for bankruptcy prediction. IEEE Access. 2020;8:176640–176650. doi: 10.1109/ACCESS.2020.3026529. DOI

Ram Jethmalani CH, Simon SP, Sundareswaran K, Nayak PSR, Padhy NP. Auxiliary hybrid PSO-BPNN-based transmission system loss estimation in generation scheduling. IEEE Trans. Ind. Inf. 2017;13:1692–1703. doi: 10.1109/TII.2016.2614659. DOI

Noman, M. T., Amor, N. & Petr

Balram D, Lian KY, Sebastian N, Mahmood FS, Noman MT. Ultrasensitive detection of food colorant sunset yellow using nickel nanoparticles promoted lettuce-like spinel Co PubMed DOI

Sebastian N, Yu WC, Balram D, Mahmood FS, Noman MT. Functionalization of CNFs surface with DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...