Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35428810
PubMed Central
PMC9012820
DOI
10.1038/s41598-022-10406-6
PII: 10.1038/s41598-022-10406-6
Knihovny.cz E-zdroje
- MeSH
- Accipitridae * MeSH
- algoritmy MeSH
- neuronové sítě MeSH
- oxid zinečnatý * MeSH
- propylaminy MeSH
- sulfidy MeSH
- textilie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-(4-methylthiophenyl)-2-aminopropane MeSH Prohlížeč
- oxid zinečnatý * MeSH
- propylaminy MeSH
- sulfidy MeSH
This paper introduces a novel technique to evaluate comfort properties of zinc oxide nanoparticles (ZnO NPs) coated woven fabrics. The proposed technique combines artificial neural network (ANN) and golden eagle optimizer (GEO) to ameliorate the training process of ANN. Neural networks are state-of-the-art machine learning models used for optimal state prediction of complex problems. Recent studies showed that the use of metaheuristic algorithms improve the prediction accuracy of ANN. GEO is the most advanced methaheurstic algorithm inspired by golden eagles and their intelligence for hunting by tuning their speed according to spiral trajectory. From application point of view, this study is a very first attempt where GEO is applied along with ANN to improve the training process of ANN for any textiles and composites application. Furthermore, the proposed algorithm ANN with GEO (ANN-GEO) was applied to map out the complex input-output conditions for optimal results. Coated amount of ZnO NPs, fabric mass and fabric thickness were selected as input variables and comfort properties were evaluated as output results. The obtained results reveal that ANN-GEO model provides high performance accuracy than standard ANN model, ANN models trained with latest metaheuristic algorithms including particle swarm optimizer and crow search optimizer, and conventional multiple linear regression.
Zobrazit více v PubMed
Noman, M. T. & Petr PubMed PMC
Dong S, et al. A novel and high-performance double Z-scheme photocatalyst ZnO-SnO PubMed DOI
Noman, M. T., Amor, N., Petr PubMed PMC
Noman, M., Petr
Amor, N., Noman, M. T., Ismail, A, Petr PubMed PMC
Azeem, M., Noman, M. T., Wiener, J., Petr
Khude P, Majumdar A, Butola BS. Modelling and prediction of antibacterial activity of knitted fabrics made from silver nanocomposite fibres using soft computing approaches. Neural Comput. Appl. 2019;32:9509–9519. doi: 10.1007/s00521-019-04463-8. DOI
Kanat ZE, Özdil N. Application of artificial neural network (ANN) for the prediction of thermal resistance of knitted fabrics at different moisture content. J. Text. Inst. 2018;109:1247–1253. doi: 10.1080/00405000.2017.1423003. DOI
Lu D, Yu W. Predicting the tensile strength of single wool fibers using artificial neural network and multiple linear regression models based on acoustic emission. Text. Res. J. 2021;91:533–542. doi: 10.1177/0040517520948200. DOI
Malik SA, et al. Analysis and prediction of air permeability of woven barrier fabrics with respect to material, fabric construction and process parameters. Fibers Polym. 2017;18:2005–2017. doi: 10.1007/s12221-017-7241-5. DOI
Malik SA, Kocaman RT, Gereke T, Aibibu D, Cherif C. Prediction of the porosity of barrier woven fabrics with respect to material, construction and processing parameters and its relation with air permeability. Fibres Text. Eastern Eur. 2018;26:71–79. doi: 10.5604/01.3001.0011.7306. DOI
Wong A, Li Y, Yeung P. Predicting clothing sensory comfort with artificial intelligence hybrid models. Text. Res. J. 2004;74:13–19. doi: 10.1177/004051750407400103. DOI
Mishra S. Prediction of yarn strength utilization in cotton woven fabrics using artificial neural network. J. Inst. Eng. (India) Ser. E. 2015;96:151–157. doi: 10.1007/s40034-014-0049-6. DOI
El-Geiheini A, ElKateb S, Abd-Elhamied MR. Yarn tensile properties modeling using artificial intelligence. Alex. Eng. J. 2020;59:4435–4440. doi: 10.1016/j.aej.2020.07.049. DOI
Erbil Y, Babaarslan O, İlhami Ilhan. A comparative prediction for tensile properties of ternary blended open-end rotor yarns using regression and neural network models. J. Text. Inst. 2018;109:560–568. doi: 10.1080/00405000.2017.1361164. DOI
Breuer K, Stommel M. Prediction of short fiber composite properties by an artificial neural network trained on an rve database. Fibers. 2021 doi: 10.3390/fib9020008. DOI
Wang F, et al. A model for predicting the tensile strength of ultrafine glass fiber felts with mathematics and artificial neural network. J. Text. Inst. 2021;112:783–791. doi: 10.1080/00405000.2020.1779167. DOI
Farooq A, et al. Predicting cotton fibre maturity by using artificial neural network. Autex Res. J. 2018;18:429–433. doi: 10.1515/aut-2018-0024. DOI
Unal P, Üreyen M, Mecit D. Predicting properties of single jersey fabrics using regression and artificial neural network models. Fibers Polym. 2012;13:87–95. doi: 10.1007/s12221-012-0087-y. DOI
Farooq A, Irshad F, Azeemi R, Iqbal N. Prognosticating the shade change after softener application using artificial neural networks. Autex Res. J. 2020 doi: 10.2478/aut-2020-0019. DOI
Amor, N., Noman, M. T. & Petr PubMed PMC
Amor, N., Noman, M. T. & Petr PubMed PMC
Malik SA, Gereke T, Farooq A, Aibibu D, Cherif C. Prediction of yarn crimp in pes multifilament woven barrier fabrics using artificial neural network. J. Text. Inst. 2018;109:942–951. doi: 10.1080/00405000.2017.1393786. DOI
Xiao, Q. et al. Prediction of pilling of polyester-cotton blended woven fabric using artificial neural network models. J. Eng. Fibers Fabr.10.1177/1558925019900152 (2020).
Dashti M, Derhami V, Ekhtiyari E. Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms. J. AI Data Min. 2014;2:73–78. doi: 10.22044/jadm.2014.187. DOI
Majumdar A, Das A, Hatua P, Ghosh A. Optimization of woven fabric parameters for ultraviolet radiation protection and comfort using artificial neural network and genetic algorithm. Neural Comput. Appl. 2016;27:2567–2576. doi: 10.1007/s00521-015-2025-6. DOI
Ni C, et al. Online sorting of the film on cotton based on deep learning and hyperspectral imaging. IEEE Access. 2020;8:93028–93038. doi: 10.1109/ACCESS.2020.2994913. DOI
Lazzús JA. Neural network-particle swarm modeling to predict thermal properties. Math. Comput. Modell. 2013;57:2408–2418. doi: 10.1016/j.mcm.2012.01.003. DOI
Amor, N., Noman, M. T., Petr PubMed PMC
Mohammadi-Balani A, Dehghan Nayeri M, Azar A, Taghizadeh-Yazdi M. Golden eagle optimizer: a nature-inspired metaheuristic algorithm. Comput. Ind. Eng. 2021;152:107050. doi: 10.1016/j.cie.2020.107050. DOI
Noman MT, Militky J, Wiener J, Saskova J, Ashraf AA, Jamshaid H, Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI
Noman MT, Wiener J, Saskova J, Ashraf AA, Viková M, Jamshaid H, Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40(Pt A):41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI
Amor, N., Noman, M. T. & Petr PubMed PMC
Pishro, A. A. et al. Application of artificial neural networks and multiple linear regression on local bond stress equation of uhpc and reinforcing steel bars. Sci. Rep.11 (2021). PubMed PMC
Wang Z, Di Massimo C, Tham MT, Julian Morris A. A procedure for determining the topology of multilayer feedforward neural networks. Neural Netw. 1994;7:291–300. doi: 10.1016/0893-6080(94)90023-X. DOI
Kalantary, S., Jahani, A. & Jahani, R. Mlr and ann approaches for prediction of synthetic/natural nanofibers diameter in the environmental and medical applications. Sci. Rep.10 (2020). PubMed PMC
Jeon JH, Yang SS, Kang YJ. Estimation of sound absorption coefficient of layered fibrous material using artificial neural networks. Appl. Acoust. 2020;169:107476. doi: 10.1016/j.apacoust.2020.107476. DOI
Doran EC, Sahin C. The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and support vector machines. Text. Res. J. 2020;90:1558–1580. doi: 10.1177/0040517519896761. DOI
Daniel GG. Artificial Neural Network, 143–143. Netherlands, Dordrecht: Springer; 2013.
Briot J-P. From artificial neural networks to deep learning for music generation: history, concepts and trends. Neural Comput. Appl. 2021;33:39–65. doi: 10.1007/s00521-020-05399-0. DOI
Ayres L, Gomez F, Linton J, Silva M, Garcia C. Taking the leap between analytical chemistry and artificial intelligence: A tutorial review. Anal. Chim. Acta. 2021 doi: 10.1016/j.aca.2021.338403. PubMed DOI
Jain AK, Jianchang Mao, Mohiuddin KM. Artificial neural networks: a tutorial. Computer. 1996;29:31–44. doi: 10.1109/2.485891. DOI
Golnaraghi S, Zangenehmadar Z, Moselhi O, Alkass S. Application of artificial neural network(s) in predicting formwork labour productivity. Adv. Civ. Eng. 2019;2019:1–11. doi: 10.1155/2019/5972620. DOI
Rezaee MJ, Jozmaleki M, Valipour M. Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange. Phys. A Stat. Mech. Appl. 2018 doi: 10.1016/j.physa.2017.07.017. DOI
Das S, Ghosh A, Majumdar A, Banerjee D. Yarn engineering using hybrid artificial neural network-genetic algorithm model. Fibers Polym. 2013;14:1220–1226. doi: 10.1007/s12221-013-1220-2. DOI
Ecer, F., Ardabili, S., Band, S. S. & Mosavi, A. Training multilayer perceptron with genetic algorithms and particle swarm optimization for modeling stock price index prediction. Entropy10.3390/e22111239 (2020). PubMed PMC
Ansari A, Ahmad IS, Bakar AA, Yaakub MR. A hybrid metaheuristic method in training artificial neural network for bankruptcy prediction. IEEE Access. 2020;8:176640–176650. doi: 10.1109/ACCESS.2020.3026529. DOI
Ram Jethmalani CH, Simon SP, Sundareswaran K, Nayak PSR, Padhy NP. Auxiliary hybrid PSO-BPNN-based transmission system loss estimation in generation scheduling. IEEE Trans. Ind. Inf. 2017;13:1692–1703. doi: 10.1109/TII.2016.2614659. DOI
Noman, M. T., Amor, N. & Petr
Balram D, Lian KY, Sebastian N, Mahmood FS, Noman MT. Ultrasensitive detection of food colorant sunset yellow using nickel nanoparticles promoted lettuce-like spinel Co PubMed DOI
Sebastian N, Yu WC, Balram D, Mahmood FS, Noman MT. Functionalization of CNFs surface with DOI