Silica Aerogels as a Promising Vehicle for Effective Water Splitting for Hydrogen Production
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
IGA_PrF_2025_022
Palacky University Olomouc
PubMed
40141989
PubMed Central
PMC11944295
DOI
10.3390/molecules30061212
PII: molecules30061212
Knihovny.cz E-zdroje
- Klíčová slova
- adsorbent, dye degradation, environmental remediation, hydrogen generation, silica aerogel,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This comprehensive review explores silica aerogels and their application in environmental remediation. Due to rapid growth in the consumption of energy and water resources, the purification of contaminated resources for use by humankind should be considered important. The primary objectives of this review are to assess the evolving landscape of silica aerogels, their preparation, and drying techniques, and to discuss the main findings from a wide range of empirical studies and theoretical perspectives. Based on a significant amount of research, this review provides information about aerogels' capabilities as an adsorbent and catalyst. The analysis spans a variety of contexts for the generation of hydrogen and the degradation of the dyes employed in industry, showing better performance in environmental remediation. The implications of this review point to the need for well-informed policies, innovative synthesis strategies, and ongoing research to harness the full potential for environmental management.
Zobrazit více v PubMed
Sonu S.S., Rai N., Chauhan I. Multifunctional Aerogels: A Comprehensive Review on Types, Synthesis and Applications of Aerogels. J. Sol-Gel Sci. Technol. 2023;105:324–336. doi: 10.1007/s10971-022-06026-1. DOI
Parale V.G., Kim T., Choi H., Phadtare V.D., Dhavale R.P., Kanamori K., Park H.H. Mechanically Strengthened Aerogels through Multiscale, Multicompositional, and Multidimensional Approaches: A Review. Adv. Mater. 2024;36:2307772. doi: 10.1002/adma.202307772. PubMed DOI
Alwin S., Sahaya Shajan X. Aerogels: Promising Nanostructured Materials for Energy Conversion and Storage Applications. Mater. Renew. Sustain. Energy. 2020;9:7. doi: 10.1007/s40243-020-00168-4. DOI
Akhter F., Soomro S.A., Inglezakis V.J. Silica Aerogels; a Review of Synthesis, Applications and Fabrication of Hybrid Composites. J. Porous Mater. 2021;28:1387–1400. doi: 10.1007/s10934-021-01091-3. DOI
Almeida C.M.R., Ghica M.E., Durães L. An Overview on Alumina-Silica-Based Aerogels. Adv. Colloid Interface Sci. 2020;282 doi: 10.1016/j.cis.2020.102189. PubMed DOI
Malakooti S., Zhao E., Tsao N., Bian N., Soni R.U., ud Doulah A.S., Sotiriou-Leventis C., Leventis N., Lu H. Synthesis of Aerogel Foams through a Pressurized Sol-Gel Method. Polymer. 2020;208:122925. doi: 10.1016/j.polymer.2020.122925. DOI
Huang C., Cheng X., Chen B., Wang J., Dai Y., Situ Y., Huang H. Preparation of Aerogel-like Silica Foam with the Hollow-Sphere-Based 3D Network Skeleton by the Cast-in Situ Method and Ambient Pressure Drying. Nano Lett. 2022;22:9290–9296. doi: 10.1021/acs.nanolett.2c02768. PubMed DOI
Maleki H., Durães L., Portugal A. An Overview on Silica Aerogels Synthesis and Different Mechanical Reinforcing Strategies. J. Non Cryst. Solids. 2014;385:55–74. doi: 10.1016/j.jnoncrysol.2013.10.017. DOI
Al-Hamamre Z., Karimzadeh Z., Ji S., Choi H., Maleki H. Aerogels-Inspired Based Photo and Electrocatalyst for Water Splitting to Produce Hydrogen. Appl. Mater. Today. 2022;29:101670. doi: 10.1016/j.apmt.2022.101670. DOI
Khan N.R., Sharmin T., Bin Rashid A. Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress. Heliyon. 2024;10:e23102. doi: 10.1016/j.heliyon.2023.e23102. PubMed DOI PMC
Ahmad S., Ahmad S., Sheikh J.N. Silica Centered Aerogels as Advanced Functional Material and Their Applications: A Review. J. Non Cryst. Solids. 2023;611:122322. doi: 10.1016/j.jnoncrysol.2023.122322. DOI
Randall J.P., Meador M.A.B., Jana S.C. Tailoring Mechanical Properties of Aerogels for Aerospace Applications. ACS Appl. Mater. Interfaces. 2011;3:613–626. doi: 10.1021/am200007n. PubMed DOI
Sharma S., Kaur A. Various Methods for Removal of Dyes from Industrial Effluents—A Review. Indian J. Sci. Technol. 2018;11:1–21. doi: 10.17485/ijst/2018/v11i12/120847. DOI
Vishnu D., Dhandapani B., Authilingam S., Sivakumar S.V. A Comprehensive Review of Effective Adsorbents Used for the Removal of Dyes from Wastewater. Curr. Anal. Chem. 2022;18:255–268. doi: 10.2174/1573411016999200831111155. DOI
Bal G., Thakur A. Distinct Approaches of Removal of Dyes from Wastewater: A Review. Mater. Today Proc. 2021;50:1575–1579. doi: 10.1016/j.matpr.2021.09.119. DOI
Al-Amrani W.A., Hanafiah M.A.K.M., Mohammed A.H.A. A Comprehensive Review of Anionic Azo Dyes Adsorption on Surface-Functionalised Silicas. Environ. Sci. Pollut. Res. 2022;29:76565–76610. doi: 10.1007/s11356-022-23062-0. PubMed DOI
Sarvalkar P.D., Vadanagekar A.S., Karvekar O.S., Kumbhar P.D., Terdale S.S., Thounaojam A.S., Kolekar S.S., Vhatkar R.S., Patil P.S., Sharma K.K.K. Thermodynamics of Azo Dye Adsorption on a Newly Synthesized Titania-Doped Silica Aerogel by Cogelation: A Comparative Investigation with Silica Aerogels and Activated Charcoal. ACS Omega. 2023;8:13285–13299. doi: 10.1021/acsomega.3c00552. PubMed DOI PMC
Shuang C., Li P., Li A., Zhou Q., Zhang M., Zhou Y. Quaternized Magnetic Microspheres for the Efficient Removal of Reactive Dyes. Water Res. 2012;46:4417–4426. doi: 10.1016/j.watres.2012.05.052. PubMed DOI
Saiz J., Bringas E., Ortiz I. Functionalized Magnetic Nanoparticles as New Adsorption Materials for Arsenic Removal from Polluted Waters. J. Chem. Technol. Biotechnol. 2014;89:909–918. doi: 10.1002/jctb.4331. DOI
Zhai Q.Z. Studies of Adsorption of Crystal Violet from Aqueous Solution by Nano Mesocellular Foam Silica: Process Equilibrium, Kinetic, Isotherm, and Thermodynamic Studies. Water Sci. Technol. 2020;81:2092–2108. doi: 10.2166/wst.2020.267. PubMed DOI
Meléndez-Ortiz H.I., Puente-Urbina B., Mercado-Silva J.A., García-Uriostegui L. Adsorption Performance of Mesoporous Silicas towards a Cationic Dye. Influence of Mesostructure on Adsorption Capacity. Int. J. Appl. Ceram. Technol. 2019;16:1533–1543. doi: 10.1111/ijac.13179. DOI
Vinayakumar K., Palliyarayil A., Kumar N.S., Sil S. Processing of Aerogels and Their Applications toward CO2 Adsorption and Electrochemical Reduction: A Review. Environ. Sci. Pollut. Res. 2022;29:47942–47968. doi: 10.1007/s11356-022-20355-2. PubMed DOI
Du A., Zhou B., Zhang Z., Shen J. A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel. Materials. 2013;6:941–968. doi: 10.3390/ma6030941. PubMed DOI PMC
Niculescu A.G., Tudorache D.I., Bocioagă M., Mihaiescu D.E., Hadibarata T., Grumezescu A.M. An Updated Overview of Silica Aerogel-Based Nanomaterials. Nanomaterials. 2024;14:469. doi: 10.3390/nano14050469. PubMed DOI PMC
Normal M.T., Amor N., Ali A., Petrik S., Coufal R., Adach K., Fijalkowski M. Aerogels for Biomedical, Energy and Sensing Applications. Gels. 2021;7:264. doi: 10.3390/gels7040264. PubMed DOI PMC
Smirnova I., Gurikov P. Aerogel Production: Current Status, Research Directions, and Future Opportunities. J. Supercrit. Fluids. 2018;134:228–233. doi: 10.1016/j.supflu.2017.12.037. DOI
Sharma J., Sheikh J., Behera B.K. Aerogel Composites and Blankets with Embedded Fibrous Material by Ambient Drying: Reviewing Their Production, Characteristics, and Potential Applications. Dry. Technol. 2023;41:915–947. doi: 10.1080/07373937.2022.2162918. DOI
Danks A.E., Hall S.R., Schnepp Z. The Evolution of “sol-Gel” Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016;3:91–112. doi: 10.1039/C5MH00260E. DOI
Sarvalkar P.D., Barawkar S.D., Karvekar O.S., Patil P.D., Prasad S.R., Sharma K.K., Prasad N.R., Vhatkar R.S. A Review on Multifunctional Nanotechnological Aspects in Modern Textile. J. Text. Inst. 2022;114:470–487. doi: 10.1080/00405000.2022.2046304. DOI
Rashid A.B., Shishir S.I., Mahfuz M.A., Hossain M.T., Hoque M.E. Silica Aerogel: Synthesis, Characterization, Applications, and Recent Advancements. Part. Part. Syst. Charact. 2023;40:2200186. doi: 10.1002/ppsc.202200186. DOI
Banoth P., Kandula C., Kollu P. Introduction to Electrocatalysts. ACS Symp. Ser. 2022;1432:1–37. doi: 10.1021/bk-2022-1432.ch001. DOI
Aruchamy G., Kim B.K. Recent Trends and Perspectives in Single-Entity Electrochemistry: A Review with Focus on a Water Splitting Reaction. Crit. Rev. Anal. Chem. 2024:1–17. doi: 10.1080/10408347.2024.2358492. PubMed DOI
Guzel Kaya G., Deveci H. Synergistic Effects of Silica Aerogels/Xerogels on Properties of Polymer Composites: A Review. J. Ind. Eng. Chem. 2020;89:13–27. doi: 10.1016/j.jiec.2020.05.019. DOI
Karamikamkar S., Naguib H.E., Park C.B. Advances in Precursor System for Silica-Based Aerogel Production toward Improved Mechanical Properties, Customized Morphology, and Multifunctionality: A Review. Adv. Colloid Interface Sci. 2020;276:102101. doi: 10.1016/j.cis.2020.102101. PubMed DOI
Abebe A.M., Soraru G.D., Thothadri G., Andoshe D.M., Zambotti A., Ahmed G.M.S., Tirth V., Algahtani A. Synthesis and Characterization of High Surface Area Transparent SiOC Aerogels from Hybrid Silicon Alkoxide A Comparison between Ambient Pressure and Supercritical Drying. Materials. 2022;15:1277. doi: 10.3390/ma15041277. PubMed DOI PMC
Linhares T., Pessoa De Amorim M.T., Durães L. Silica Aerogel Composites with Embedded Fibres: A Review on Their Preparation, Properties and Applications. J. Mater. Chem. A. 2019;7:22768–22802. doi: 10.1039/C9TA04811A. DOI
Heinrich T., Klett U., Fricke J. Aerogels-Nanoporous Materials Part I: Sol-Gel Process and Drying of Gels. J. Porous Mater. 1995;1:7–17. doi: 10.1007/BF00486520. DOI
El-Naggar M.E., Othman S.I., Allam A.A., Morsy O.M. Synthesis, Drying Process and Medical Application of Polysaccharide-Based Aerogels. Int. J. Biol. Macromol. 2020;145:1115–1128. doi: 10.1016/j.ijbiomac.2019.10.037. PubMed DOI
Fijalkowski M., Coufal R., Ali A., Adach K., Petrik S., Bu H., Karl C.W. Flexible Hybrid and Single-Component Aerogels: Synthesis, Characterization, and Applications. Langmuir. 2023;39:16760–16775. doi: 10.1021/acs.langmuir.3c01811. PubMed DOI PMC
Ettema R., Kirkil G., Daly S. Frazil Ice Concerns for Channels, Pump-Lines, Penstocks, Siphons, and Tunnels in Mountainous Regions. Cold Reg. Sci. Technol. 2009;55:202–211. doi: 10.1016/j.coldregions.2008.04.008. DOI
Faez T., Yaghmaee M.S., Sarkar S. The State of Art and Possible New Applications of Nano/Meso Porous Silica Aerogel. Electron. J. Biol. 2005;1:76–80.
Parale V.G., Lee K.Y., Park H.H. Flexible and Transparent Silica Aerogels: An Overview. J. Korean Ceram. Soc. 2017;54:184–199. doi: 10.4191/kcers.2017.54.3.12. DOI
Ji C., Zhu S., Zhang E., Li W., Liu Y., Zhang W., Su C., Gu Z., Zhang H. Research Progress and Applications of Silica-Based Aerogels—A Bibliometric Analysis. RSC Adv. 2022;12:14137–14153. doi: 10.1039/D2RA01511K. PubMed DOI PMC
Majeed S.S., Othuman Mydin M.A., Bahrami A., Dulaimi A., Özkılıç Y.O., Omar R., Jagadesh P. Development of Ultra-Lightweight Foamed Concrete Modified with Silicon Dioxide (SiO2) Nanoparticles: Appraisal of Transport, Mechanical, Thermal, and Microstructural Properties. J. Mater. Res. Technol. 2024;30:3308–3327. doi: 10.1016/j.jmrt.2024.01.282. DOI
Zhang X., Shakeel M., Li B., Wang L. Fabrication of Foamed Zinc Oxide-Silica Spheres Coupled with Ag–AgBr for High-Efficiency Photo-Electrocatalytic Overall Water Splitting. Electrochim. Acta. 2020;331:135369. doi: 10.1016/j.electacta.2019.135369. DOI
Gurav J.L., Jung I.K., Park H.H., Kang E.S., Nadargi D.Y. Silica Aerogel: Synthesis and Applications. J. Nanomater. 2010;2010:409310. doi: 10.1155/2010/409310. DOI
Gaweł B., Gaweł K., Øye G. Sol-Gel Synthesis of Non-Silica Monolithic Materials. Materials. 2010;3:2815–2833. doi: 10.3390/ma3042815. DOI
Zhan W., Chen L., Kong Q., Li L., Chen M., Jiang J., Li W., Shi F., Xu Z. The Synthesis and Polymer-Reinforced Mechanical Properties of SiO 2 Aerogels: A Review. Molecules. 2023;28:5534. doi: 10.3390/molecules28145534. PubMed DOI PMC
Brinker C.J., Scherer G.W., editors. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press; Boston, MA, USA: 2013. 908p
Aslam S., Rani S., Lal K., Fatima M., Hardwick T., Shirinfar B., Ahmed N. Electrochemical Hydrogen Production: Sustainable Hydrogen Economy. Green Chem. 2023;25:9543–9573. doi: 10.1039/D3GC02849F. DOI
Vidas L., Castro R. Recent Developments on Hydrogen Production Technologies: State-of-the-Art Review with a Focus on Green-Electrolysis. Appl. Sci. 2021;11:1363. doi: 10.3390/app112311363. DOI
Sharma M., Pramanik A., Bhowmick G.D., Tripathi A., Ghangrekar M.M., Pandey C., Kim B.S. Premier, Progress and Prospects in Renewable Hydrogen Generation: A Review. Fermentation. 2023;9:537. doi: 10.3390/fermentation9060537. DOI
Mohanty B., Bhanja P., Jena B.K. An Overview on Advances in Design and Development of Materials for Electrochemical Generation of Hydrogen and Oxygen. Mater. Today Energy. 2022;23:100902. doi: 10.1016/j.mtener.2021.100902. DOI
Solanki R., Patra I., Ahmad N., Kumar N.B., Parra R.M.R., Zaidi M., Yasin G., Anil Kumar T.C., Hussein H.A., Sivaraman R., et al. Investigation of Recent Progress in Metal-Based Materials as Catalysts toward Electrochemical Water Splitting. J. Environ. Chem. Eng. 2022;10:108207. doi: 10.1016/j.jece.2022.108207. DOI
Sun F., Tang Q., Jiang D.E. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catal. 2022;12:8404–8433. doi: 10.1021/acscatal.2c02081. DOI
Gao C., Zhang X., Zhan J., Cai B. Engineering of Aerogel-Based Electrocatalysts for Oxygen Evolution Reaction. Electrochem. Sci. Adv. 2022;2:e2100113. doi: 10.1002/elsa.202100113. DOI
Anwar S., Khan F., Zhang Y., Djire A. Recent Development in Electrocatalysts for Hydrogen Production through Water Electrolysis. Int. J. Hydrogen Energy. 2021;46:32284–32317. doi: 10.1016/j.ijhydene.2021.06.191. DOI
Yan Y., Xia B.Y., Zhao B., Wang X. A Review on Noble-Metal-Free Bifunctional Heterogeneous Catalysts for Overall Electrochemical Water Splitting. J. Mater. Chem. A. 2016;4:17587–17603. doi: 10.1039/C6TA08075H. DOI
Miao L., Jia W., Cao X., Jiao L. Computational Chemistry for Water-Splitting Electrocatalysis. Chem. Soc. Rev. 2024;53:2771–2807. doi: 10.1039/D2CS01068B. PubMed DOI
Raveendran A., Chandran M., Dhanusuraman R. A Comprehensive Review on the Electrochemical Parameters and Recent Material Development of Electrochemical Water Splitting Electrocatalysts. RSC Adv. 2023;13:3843–3876. doi: 10.1039/D2RA07642J. PubMed DOI PMC
Pierre A.C., Pajonk G.M. Chemistry of Aerogels and Their Applications. Chem. Rev. 2002;102:4243–4265. doi: 10.1021/cr0101306. PubMed DOI
Khan M.A., Zhao H., Zou W., Chen Z., Cao W., Fang J., Xu J., Zhang L., Zhang J. Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochem. Energy Rev. 2018;1:483–530. doi: 10.1007/s41918-018-0014-z. DOI
Zinola C.F., Martins M.E., Tejera E.P., Neves N.P. Electrocatalysis: Fundamentals and Applications. Int. J. Electrochem. 2012;2012:1–2. doi: 10.1155/2012/874687. DOI
Yu P.J., Lee M.H., Hsu H.M., Tsai H.M., Chen-Yang Y.W. Silica Aerogel-Supported Cobalt Nanocomposites as Efficient Catalysts toward Hydrogen Generation from Aqueous Ammonia Borane. RSC Adv. 2015;5:13985–13992. doi: 10.1039/C4RA14002H. DOI
Yue X., Li H., Qiu Y., Xiao Z., Yu X., Xue C., Xiang J. A Facile Synthesis Method of TiO2@SiO2 Porous Core Shell Structure for Photocatalytic Hydrogen Evolution. J. Solid State Chem. 2021;300:122250. doi: 10.1016/j.jssc.2021.122250. DOI
Somakli S., Butun Sengel S. Hydro(Solvo)Thermal-Supported Nano/Microparticle-Doped Silica Aerogels: Synthesis, Characterization and Catalyst Applications for H2 Production. Silicon. 2023;15:7069–7083. doi: 10.1007/s12633-023-02546-9. DOI
Joshi M.M., Labhsetwar N.K., Parwate D.V., Rayalu S.S. Efficient Photocatalytic Hydrogen Generation by Silica Supported and Platinum Promoted Titanium Dioxide. Mater. Res. Bull. 2013;48:3545–3552. doi: 10.1016/j.materresbull.2013.05.057. DOI
Domínguez M., Taboada E., Idriss H., Molins E., Llorca J. Fast and Efficient Hydrogen Generation Catalyzed by Cobalt Talc Nanolayers Dispersed in Silica Aerogel. J. Mater. Chem. 2010;20:4875–4883. doi: 10.1039/c0jm00184h. DOI
Gores H.J., Schweiger H. Encyclopedia of Applied Electrochemistry. Springer; New York, NY, USA: 2014.
Wu H., Huang Q., Shi Y., Chang J., Lu S. Electrocatalytic Water Splitting Mechanism and Electrocatalyst Design. Nano Res. 2023;16:9142–9157. doi: 10.1007/s12274-023-5502-8. DOI
Krishnan A., Ajay R., Anakha J., Namboothiri U.S.K. Understanding Defect Chemistry in TMOS Involved Electrocatalytic OER; an Analysis for Advancement. Surf. Interfaces. 2022;30:101942. doi: 10.1016/j.surfin.2022.101942. DOI
Xu C., Zhang M., Yin X., Gao Q., Jiang S., Cheng J., Kong X., Liu B., Peng H.Q. Recent Advances in Two-Dimensional Nanomaterials as Bifunctional Electrocatalysts for Full Water Splitting. J. Mater. Chem. A. 2023;11:18502–18529. doi: 10.1039/D3TA02293E. DOI
Ďurovič M., Hnát J., Bouzek K. Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline and Neutral Media. A Comparative Review. J. Power Sources. 2021;493 doi: 10.1016/j.jpowsour.2021.229708. DOI
Wen N., Jiao X., Xia Y., Chen D. Electrocatalysts for the Oxygen Evolution Reaction: Mechanism, Innovative Strategies, and Beyond. Mater. Chem. Front. 2023;7:4833–4864. doi: 10.1039/D3QM00423F. DOI
Inocêncio C.V.M., Holade Y., Morais C., Kokoh K.B., Napporn T.W. Electrochemical Hydrogen Generation Technology: Challenges in Electrodes Materials for a Sustainable Energy. Electrochem. Sci. Adv. 2023;3:e2100206. doi: 10.1002/elsa.202100206. DOI
Guan D., Wang B., Zhang J., Shi R., Jiao K., Li L., Wang Y., Xie B., Zhang Q., Yu J., et al. Hydrogen Society: From Present to Future. Energy Environ. Sci. 2023;16:4926–4943. doi: 10.1039/D3EE02695G. DOI
Sun F., Xu D., Xie Y., Liu F., Wang W., Shao H., Ma Q., Yu H., Yu W., Dong X. Tri-Functional Aerogel Photocatalyst with an S-Scheme Heterojunction for the Efficient Removal of Dyes and Antibiotic and Hydrogen Generation. J. Colloid Interface Sci. 2022;628:614–626. doi: 10.1016/j.jcis.2022.08.089. PubMed DOI
Sait Izgi M., Ece M.Ş., Kazici H.Ç., Şahin Ö., Onat E. Hydrogen Production by Using Ru Nanoparticle Decorated with Fe3O4@SiO2–NH2 Core-Shell Microspheres. Int. J. Hydrogen Energy. 2020;45:30415–30430. doi: 10.1016/j.ijhydene.2020.08.043. DOI
Yu J., Li Z., Liu T., Zhao S., Guan D., Chen D., Shao Z., Ni M. Morphology Control and Electronic Tailoring of CoxAy (A = P, S, Se) Electrocatalysts for Water Splitting. Chem. Eng. J. 2023;460:141674. doi: 10.1016/j.cej.2023.141674. DOI
Lu D., Fan H., Kondamareddy K.K., Yu H., Wang A., Hao H., Li M., Shen J. Highly Efficient Visible-Light-Induced Photocatalytic Production of Hydrogen for Magnetically Retrievable Fe3O4@SiO2@MoS2/g-C3N4 Hierarchical Microspheres. ACS Sustain. Chem. Eng. 2018;6:9903–9911. doi: 10.1021/acssuschemeng.8b01118. DOI
Kim H.R., Park H.H. The Effect of Ar+ Ion Bombardment on SiO2 Aerogel Film. Jpn. J. Appl. Phys. 1998;37:6955–6958. doi: 10.1143/JJAP.37.6955. DOI
Kim J.J., Park H.H., Hyun S.H. Effects of Plasma Treatment on SiO2 Aerogel Film Using Various Reactive (O2, H2, N2) and Non-Reactive (He, Ar) Gases. Thin Solid Film. 2000;377–378:525–529. doi: 10.1016/S0040-6090(00)01295-5. DOI
Jung S.B., Park H.H. Improvement of Electrical Properties of Surfactant-Templated Mesoporous Silica Thin Films by Plasma Treatment. Thin Solid Film. 2006;506–507:360–363. doi: 10.1016/j.tsf.2005.08.082. DOI
Jung S.B., Park H.H., Kim H. The Role of Vacuum Ultraviolet in H 2 Plasma Treatment on SiO 2 Aerogel Film. Appl. Surf. Sci. 2003;216:156–162. doi: 10.1016/S0169-4332(03)00508-7. DOI
Kim H.R., Park H.H., Hyun S.H., Yeom G.Y. Effect of O2 Plasma Treatment on the Properties of SiO2 Aerogel Film. Thin Solid Film. 1998;332:444–448. doi: 10.1016/S0040-6090(98)01044-X. DOI
Pan G.T., Chong S., Yang T.C.K., Yang Y.L., Arjun N. Surface Modification of Amorphous SiO2 Nanoparticles by Oxygen-Plasma and Nitrogen-Plasma Treatments. Chem. Eng. Commun. 2016;203:1666–1670. doi: 10.1080/00986445.2016.1230104. DOI
Cho A.T., Tsai T.G., Yang C.M., Chao K.J., Pan F.M. Plasma Treatments of Molecularly Templated Nanoporous Silica Films. Electrochem. Solid-State Lett. 2001;4 doi: 10.1149/1.1354698. DOI
Wu H., Zhang H., Zhang G., Liu J., Liu Z., Du F. Study on Preparation and Performance of Advanced Aerogel Foamed Concrete with Ultra-Light Aerogel. Constr. Build. Mater. 2023;366:130166. doi: 10.1016/j.conbuildmat.2022.130166. DOI
Kayal U., Mohanty B., Bhanja P., Chatterjee S., Chandra D., Hara M., Kumar Jena B., Bhaumik A. Ag Nanoparticle-Decorated, Ordered Mesoporous Silica as an Efficient Electrocatalyst for Alkaline Water Oxidation Reaction. Dalt. Trans. 2019;48:2220–2227. doi: 10.1039/C8DT04159H. PubMed DOI
Nawaz K., Schmidt S.J., Jacobi A.M. Effect of Catalyst and Substrate on the Moisture Diffusivity of Silica-Aerogel-Coated Metal Foams. Int. J. Heat Mass Transf. 2014;73:634–644. doi: 10.1016/j.ijheatmasstransfer.2014.02.048. DOI
Huo W.L., Zhang X., Hu Z., Chen Y., Wang Y., Yang J. Silica Foams with Ultra-Large Specific Surface Area Structured by Hollow Mesoporous Silica Spheres. J. Am. Ceram. Soc. 2019;102:955–961. doi: 10.1111/jace.16115. DOI
Zhao M., Wang Y., Liu Z., Cui D., Bian X. Properties of Immobilized Laccase on Mesostructured Cellular Foam Silica and Its Use in Dye Decolorization. J. Macromol. Sci. Part A Pure Appl. Chem. 2011;48:447–453. doi: 10.1080/10601325.2011.573330. DOI
Zhai Q.Z., Dong Y. Adsorption Properties of Aqueous Methylene Blue on Mesocellular Foam Silica: Equilibrium, Kinetic, Isotherm, and Thermodynamic Characterization. Instrum. Sci. Technol. 2019;47:467–484. doi: 10.1080/10739149.2019.1597734. DOI
Liu Q., Liu Y., Zhang Z., Wang X., Shen J. Adsorption of Cationic Dyes from Aqueous Solution Using Hydrophilic Silica Aerogel via Ambient Pressure Drying. Chin. J. Chem. Eng. 2020;28:2467–2473. doi: 10.1016/j.cjche.2020.04.023. DOI
Shi W., Tao S., Yu Y., Wang Y., Ma W. High Performance Adsorbents Based on Hierarchically Porous Silica for Purifying Multicomponent Wastewater. J. Mater. Chem. 2011;21:15567–15574. doi: 10.1039/c1jm12142a. DOI