Mitochondrial translation is the primary determinant of secondary mitochondrial complex I deficiencies

. 2024 Aug 16 ; 27 (8) : 110560. [epub] 20240719

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39184436
Odkazy

PubMed 39184436
PubMed Central PMC11342289
DOI 10.1016/j.isci.2024.110560
PII: S2589-0042(24)01785-1
Knihovny.cz E-zdroje

Individual complexes of the mitochondrial oxidative phosphorylation system (OXPHOS) are not linked solely by their function; they also share dependencies at the maintenance/assembly level, where one complex depends on the presence of a different individual complex. Despite the relevance of this "interdependence" behavior for mitochondrial diseases, its true nature remains elusive. To understand the mechanism that can explain this phenomenon, we examined the consequences of the aberration of different OXPHOS complexes in human cells. We demonstrate here that the complete disruption of each of the OXPHOS complexes resulted in a decrease in the complex I (cI) level and that the major reason for this is linked to the downregulation of mitochondrial ribosomal proteins. We conclude that the secondary cI defect is due to mitochondrial protein synthesis attenuation, while the responsible signaling pathways could differ based on the origin of the OXPHOS defect.

Zobrazit více v PubMed

Signes A., Fernandez-Vizarra E. Assembly of mammalian oxidative phosphorylation complexes I–V and supercomplexes. Essays Biochem. 2018;62:255–270. doi: 10.1042/EBC20170098. PubMed DOI PMC

D’Souza A.R., Minczuk M. Mitochondrial transcription and translation: overview. Essays Biochem. 2018;62:309–320. doi: 10.1042/EBC20170102. PubMed DOI PMC

Hällberg B.M., Larsson N.G. Making proteins in the powerhouse. Cell Metabol. 2014;20:226–240. doi: 10.1016/j.cmet.2014.07.001. PubMed DOI

Rackham O., Filipovska A. Organization and expression of the mammalian mitochondrial genome. Nat. Rev. Genet. 2022;23:606–623. doi: 10.1038/s41576-022-00480-x. PubMed DOI

Kummer E., Ban N. Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol. 2021;22:307–325. doi: 10.1038/s41580-021-00332-2. PubMed DOI

Cagin U., Enriquez J.A. The complex crosstalk between mitochondria and the nucleus: What goes in between? Int. J. Biochem. Cell Biol. 2015;63:10–15. doi: 10.1016/j.biocel.2015.01.026. PubMed DOI

Dennerlein S., Wang C., Rehling P. Plasticity of Mitochondrial Translation. Trends Cell Biol. 2017;27:712–721. doi: 10.1016/j.tcb.2017.05.004. PubMed DOI

Schägger H., Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000;19:1777–1783. doi: 10.1093/emboj/19.8.1777. PubMed DOI PMC

Letts J.A., Fiedorczuk K., Sazanov L.A. The architecture of respiratory supercomplexes. Nature. 2016;537:644–648. doi: 10.1038/nature19774. PubMed DOI

Gu J., Wu M., Guo R., Yan K., Lei J., Gao N., Yang M. The architecture of the mammalian respirasome. Nature. 2016;537:639–643. doi: 10.1038/nature19359. PubMed DOI

Althoff T., Mills D.J., Popot J.-L., Kühlbrandt W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 2011;30:4652–4664. doi: 10.1038/emboj.2011.324. PubMed DOI PMC

Letts J.A., Fiedorczuk K., Degliesposti G., Skehel M., Sazanov L.A. Structures of Respiratory Supercomplex I+III2 Reveal Functional and Conformational Crosstalk. Mol. Cell. 2019;75:1131–1146.e6. doi: 10.1016/j.molcel.2019.07.022. PubMed DOI PMC

Vercellino I., Sazanov L.A. Structure and assembly of the mammalian mitochondrial supercomplex CIII2CIV. Nature. 2021;598:364–367. doi: 10.1038/s41586-021-03927-z. PubMed DOI

Guo R., Zong S., Wu M., Gu J., Yang M. Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2. Cell. 2017;170:1247–1257.e12. doi: 10.1016/j.cell.2017.07.050. PubMed DOI

Milenkovic D., Misic J., Hevler J.F., Molinié T., Chung I., Atanassov I., Li X., Filograna R., Mesaros A., Mourier A., et al. Preserved respiratory chain capacity and physiology in mice with profoundly reduced levels of mitochondrial respirasomes. Cell Metabol. 2023;35:1799–1813.e7. doi: 10.1016/j.cmet.2023.07.015. PubMed DOI

Vercellino I., Sazanov L.A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 2022;23:141–161. doi: 10.1038/s41580-021-00415-0. PubMed DOI

Milenkovic D., Blaza J.N., Larsson N.-G., Hirst J. The Enigma of the Respiratory Chain Supercomplex. Cell Metabol. 2017;25:765–776. doi: 10.1016/j.cmet.2017.03.009. PubMed DOI

Fernández-Vizarra E., Ugalde C. Cooperative assembly of the mitochondrial respiratory chain. Trends Biochem. Sci. 2022;47:999–1008. doi: 10.1016/j.tibs.2022.07.005. PubMed DOI

Acín-Pérez R., Fernández-Silva P., Peleato M.L., Pérez-Martos A., Enriquez J.A. Respiratory Active Mitochondrial Supercomplexes. Mol. Cell. 2008;32:529–539. doi: 10.1016/j.molcel.2008.10.021. PubMed DOI

Fernandez-Vizarra E., Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett. 2021;595:1062–1106. doi: 10.1002/1873-3468.13995. PubMed DOI

Bruno C., Santorelli F.M., Assereto S., Tonoli E., Tessa A., Traverso M., Scapolan S., Bado M., Tedeschi S., Minetti C. Progressive exercise intolerance associated with a new muscle-restricted nonsense mutation (G142X) in the mitochondrial cytochrome b gene. Muscle Nerve. 2003;28:508–511. doi: 10.1002/mus.10429. PubMed DOI

Lamantea E., Carrara F., Mariotti C., Morandi L., Tiranti V., Zeviani M. A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul. Disord. 2002;12:49–52. doi: 10.1016/s0960-8966(01)00244-9. PubMed DOI

Acín-Pérez R., Bayona-Bafaluy M.P., Fernandez-Silva P., Moreno-Loshuertos R., Perez-Martos A., Bruno C., Moraes C.T., Enriquez J.A. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol. Cell. 2004;13:805–815. doi: 10.1016/s1097-2765(04)00124-8. PubMed DOI PMC

Carossa V., Ghelli A., Tropeano C.V., Valentino M.L., Iommarini L., Maresca A., Caporali L., La Morgia C., Liguori R., Barboni P., et al. A Novel in-Frame 18-bp Microdeletion in MT-CYB Causes a Multisystem Disorder with Prominent Exercise Intolerance. Hum. Mutat. 2014;35:954–958. doi: 10.1002/humu.22596. PubMed DOI

Protasoni M., Pérez-Pérez R., Lobo-Jarne T., Harbour M.E., Ding S., Peñas A., Diaz F., Moraes C.T., Fearnley I.M., Zeviani M., et al. Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. EMBO J. 2020;39 doi: 10.15252/embj.2019102817. PubMed DOI PMC

Diaz F., Fukui H., Garcia S., Moraes C.T. Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol. Cell Biol. 2006;26:4872–4881. doi: 10.1128/MCB.01767-05. PubMed DOI PMC

Li Y., D'Aurelio M., Deng J.H., Park J.S., Manfredi G., Hu P., Lu J., Bai Y. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J. Biol. Chem. 2007;282:17557–17562. doi: 10.1074/jbc.M701056200. PubMed DOI

Hornig-Do H.T., Tatsuta T., Buckermann A., Bust M., Kollberg G., Rötig A., Hellmich M., Nijtmans L., Wiesner R.J. Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly. EMBO J. 2012;31:1293–1307. doi: 10.1038/emboj.2011.477. PubMed DOI PMC

Guarás A., Perales-Clemente E., Calvo E., Acín-Pérez R., Loureiro-Lopez M., Pujol C., Martínez-Carrascoso I., Nuñez E., García-Marqués F., Rodríguez-Hernández M.A., et al. The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency. Cell Rep. 2016;15:197–209. doi: 10.1016/j.celrep.2016.03.009. PubMed DOI

Čunátová K., Reguera D.P., Vrbacký M., Fernández-Vizarra E., Ding S., Fearnley I.M., Zeviani M., Houštěk J., Mráček T., Pecina P. Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis. Cells. 2021;10 doi: 10.3390/cells10020369. PubMed DOI PMC

Lobo-Jarne T., Pérez-Pérez R., Fontanesi F., Timón-Gómez A., Wittig I., Peñas A., Serrano-Lorenzo P., García-Consuegra I., Arenas J., Martín M.A., et al. Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes. EMBO J. 2020;39 doi: 10.15252/embj.2019103912. PubMed DOI PMC

Mick D.U., Dennerlein S., Wiese H., Reinhold R., Pacheu-Grau D., Lorenzi I., Sasarman F., Weraarpachai W., Shoubridge E.A., Warscheid B., Rehling P. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell. 2012;151:1528–1541. doi: 10.1016/j.cell.2012.11.053. PubMed DOI

Richter-Dennerlein R., Oeljeklaus S., Lorenzi I., Ronsör C., Bareth B., Schendzielorz A.B., Wang C., Warscheid B., Rehling P., Dennerlein S. Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein. Cell. 2016;167:471–483.e10. doi: 10.1016/j.cell.2016.09.003. PubMed DOI PMC

Guerrero-Castillo S., Baertling F., Kownatzki D., Wessels H.J., Arnold S., Brandt U., Nijtmans L. The Assembly Pathway of Mitochondrial Respiratory Chain Complex I. Cell Metabol. 2017;25:128–139. doi: 10.1016/j.cmet.2016.09.002. PubMed DOI

Wang C., Richter-Dennerlein R., Pacheu-Grau D., Liu F., Zhu Y., Dennerlein S., Rehling P. MITRAC15/COA1 promotes mitochondrial translation in a ND2 ribosome–nascent chain complex. EMBO Rep. 2020;21 doi: 10.15252/embr.201948833. PubMed DOI PMC

Formosa L.E., Muellner-Wong L., Reljic B., Sharpe A.J., Jackson T.D., Beilharz T.H., Stojanovski D., Lazarou M., Stroud D.A., Ryan M.T. Dissecting the Roles of Mitochondrial Complex I Intermediate Assembly Complex Factors in the Biogenesis of Complex I. Cell Rep. 2020;31 doi: 10.1016/j.celrep.2020.107541. PubMed DOI

Condon K.,J., Orozco J.M., Adelmann C.H., Spinelli J.B., van der Helm P.W., Roberts J.M., Kunchok T., Sabatini D.M. Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA. 2021;118 doi: 10.1073/pnas.2022120118. PubMed DOI PMC

Hinchy E.C., Gruszczyk A.V., Willows R., Navaratnam N., Hall A.R., Bates G., Bright T.P., Krieg T., Carling D., Murphy M.P. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J. Biol. Chem. 2018;293:17208–17217. doi: 10.1074/jbc.RA118.002579. PubMed DOI PMC

Morita M., Gravel S.-P., Chénard V., Sikström K., Zheng L., Alain T., Gandin V., Avizonis D., Arguello M., Zakaria C., et al. mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell Metabol. 2013;18:698–711. doi: 10.1016/j.cmet.2013.10.001. PubMed DOI

Fessler E., Eckl E.-M., Schmitt S., Mancilla I.A., Meyer-Bender M.F., Hanf M., Philippou-Massier J., Krebs S., Zischka H., Jae L.T. A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature. 2020;579:433–437. doi: 10.1038/s41586-020-2076-4. PubMed DOI PMC

Guo X., Aviles G., Liu Y., Tian R., Unger B.A., Lin Y.-H.T., Wiita A.P., Xu K., Correia M.A., Kampmann M. Mitochondrial stress is relayed to the cytosol by an OMA1–DELE1–HRI pathway. Nature. 2020;579:427–432. doi: 10.1038/s41586-020-2078-2. PubMed DOI PMC

Bao X.R., Ong S.-E., Goldberger O., Peng J., Sharma R., Thompson D.A., Vafai S.B., Cox A.G., Marutani E., Ichinose F., et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. Elife. 2016;5 doi: 10.7554/eLife.10575. PubMed DOI PMC

Silva J.M., Wong A., Carelli V., Cortopassi G.A. Inhibition of mitochondrial function induces an integrated stress response in oligodendroglia. Neurobiol. Dis. 2009;34:357–365. doi: 10.1016/j.nbd.2009.02.005. PubMed DOI

Martínez-Reyes I., Sánchez-Aragó M., Cuezva J.M. AMPK and GCN2–ATF4 signal the repression of mitochondria in colon cancer cells. Biochem. J. 2012;444:249–259. doi: 10.1042/BJ20111829. PubMed DOI

Ryan D.G., Yang M., Prag H.A., Blanco G.R., Nikitopoulou E., Segarra-Mondejar M., Powell C.A., Young T., Burger N., Miljkovic J.L., et al. Disruption of the TCA cycle reveals an ATF4-dependent integration of redox and amino acid metabolism. Elife. 2021;10 doi: 10.7554/eLife.72593. PubMed DOI PMC

Quirós P.M., Prado M.A., Zamboni N., D'Amico D., Williams R.W., Finley D., Gygi S.P., Auwerx J. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 2017;216:2027–2045. doi: 10.1083/jcb.201702058. PubMed DOI PMC

Sasaki K., Uchiumi T., Toshima T., Yagi M., Do Y., Hirai H., Igami K., Gotoh K., Kang D. Mitochondrial translation inhibition triggers ATF4 activation, leading to integrated stress response but not to mitochondrial unfolded protein response. Biosci. Rep. 2020;40 doi: 10.1042/BSR20201289. PubMed DOI PMC

Pajuelo Reguera D., Čunátová K., Vrbacky M., Pecinova A., Houstek J., Mracek T., Pecina P. Cytochrome c Oxidase Subunit 4 Isoform Exchange Results in Modulation of Oxygen Affinity. Cells. 2020;9 doi: 10.3390/cells9020443. PubMed DOI PMC

Vidoni S., Harbour M.E., Guerrero-Castillo S., Signes A., Ding S., Fearnley I.M., Taylor R.W., Tiranti V., Arnold S., Fernandez-Vizarra E., Zeviani M. MR-1S Interacts with PET100 and PET117 in Module-Based Assembly of Human Cytochrome c Oxidase. Cell Rep. 2017;18:1727–1738. doi: 10.1016/j.celrep.2017.01.044. PubMed DOI

Kovalčíkova J., Vrbacký M., Pecina P., Tauchmannová K., Nůsková H., Kaplanová V., Brázdová A., Alán L., Eliáš J., Čunátová K., et al. TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme. FASEB J. 2019;33:14103–14117. doi: 10.1096/fj.201900685RR. PubMed DOI

Palenikova P., Harbour M.E., Prodi F., Minczuk M., Zeviani M., Ghelli A., Fernandez-Vizarra E. Duplexing complexome profiling with SILAC to study human respiratory chain assembly defects. Biochim. Biophys. Acta Bioenerg. 2021;1862 doi: 10.1016/j.bbabio.2021.148395. PubMed DOI

Young L., Shiba T., Harada S., Kita K., Albury M.S., Moore A.L. The alternative oxidases: simple oxidoreductase proteins with complex functions. Biochem. Soc. Trans. 2013;41:1305–1311. doi: 10.1042/BST20130073. PubMed DOI

Viscomi C., Moore A.L., Zeviani M., Szibor M. Xenotopic expression of alternative oxidase (AOX) to study mechanisms of mitochondrial disease. Biochim. Biophys. Acta Bioenerg. 2023;1864 doi: 10.1016/j.bbabio.2022.148947. PubMed DOI

Bajzikova M., Kovarova J., Coelho A.R., Boukalova S., Oh S., Rohlenova K., Svec D., Hubackova S., Endaya B., Judasova K., et al. Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metabol. 2019;29:399–416.e10. doi: 10.1016/j.cmet.2018.10.014. PubMed DOI PMC

Perales-Clemente E., Bayona-Bafaluy M.P., Pérez-Martos A., Barrientos A., Fernández-Silva P., Enriquez J.A. Restoration of electron transport without proton pumping in mammalian mitochondria. Proc. Natl. Acad. Sci. USA. 2008;105:18735–18739. doi: 10.1073/pnas.0810518105. PubMed DOI PMC

Rath S., Sharma R., Gupta R., Ast T., Chan C., Durham T.J., Goodman R.P., Grabarek Z., Haas M.E., Hung W.H.W., et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49 doi: 10.1093/nar/gkaa1011. D1541–d1547. PubMed DOI PMC

Cogliati S., Frezza C., Soriano M.E., Varanita T., Quintana-Cabrera R., Corrado M., Cipolat S., Costa V., Casarin A., Gomes L.C., et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155:160–171. doi: 10.1016/j.cell.2013.08.032. PubMed DOI PMC

Vanišová M., Burská D., Křížová J., Daňhelovská T., Dosoudilová Ž., Zeman J., Stibůrek L., Hansíková H. Stable COX17 Downregulation Leads to Alterations in Mitochondrial Ultrastructure, Decreased Copper Content and Impaired Cytochrome c Oxidase Biogenesis in HEK293 Cells. Folia Biol. 2019;65:181–187. PubMed

Antonicka H., Mattman A., Carlson C.G., Glerum D.M., Hoffbuhr K.C., Leary S.C., Kennaway N.G., Shoubridge E.A. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am. J. Hum. Genet. 2003;72:101–114. doi: 10.1086/345489. PubMed DOI PMC

Paumard P., Vaillier J., Coulary B., Schaeffer J., Soubannier V., Mueller D.M., Brèthes D., di Rago J.P., Velours J. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 2002;21:221–230. doi: 10.1093/emboj/21.3.221. PubMed DOI PMC

Willows R., Sanders M.J., Xiao B., Patel B.R., Martin S.R., Read J., Wilson J.R., Hubbard J., Gamblin S.J., Carling D. Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells. Biochem. J. 2017;474:3059–3073. doi: 10.1042/bcj20170458. PubMed DOI PMC

Gilkerson R., De La Torre P., St. Vallier S. Mitochondrial OMA1 and OPA1 as Gatekeepers of Organellar Structure/Function and Cellular Stress Response. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/fcell.2021.626117. PubMed DOI PMC

Nuskova H., Mikesova J., Efimova I., Pecinova A., Pecina P., Drahota Z., Houstek J., Mracek T. Biochemical thresholds for pathological presentation of ATP synthase deficiencies. Biochem. Biophys. Res. Commun. 2020;521:1036–1041. doi: 10.1016/j.bbrc.2019.11.033. PubMed DOI

Tauchmannová K., Ho D., Nůsková H., Pecinová A., Alán L., Rodinová M., Koňaříková E., Vrbacký M., Puertas G., Kaplanová V., et al. MLQ is responsible for stabilisation of subunit a in the holoenzyme of mammalian ATP synthase. bioRxiv. 2020 doi: 10.1101/2020.02.03.931709. Preprint at. DOI

Lamantea E., Carrara F., Mariotti C., Morandi L., Tiranti V., Zeviani M. A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul. Disord. 2002;12:49–52. doi: 10.1016/S0960-8966(01)00244-9. PubMed DOI

Carossa V., Ghelli A., Tropeano C.V., Valentino M.L., Iommarini L., Maresca A., Caporali L., La Morgia C., Liguori R., Barboni P., et al. A novel in-frame 18-bp microdeletion in MT-CYB causes a multisystem disorder with prominent exercise intolerance. Hum. Mutat. 2014;35:954–958. doi: 10.1002/humu.22596. PubMed DOI

Hart M.L., Quon E., Vigil A.L.B.G., Engstrom I.A., Newsom O.J., Davidsen K., Hoellerbauer P., Carlisle S.M., Sullivan L.B. Mitochondrial redox adaptations enable alternative aspartate synthesis in SDH-deficient cells. Elife. 2023;12 doi: 10.7554/eLife.78654. PubMed DOI PMC

Letts J.A., Sazanov L.A. Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 2017;24:800–808. doi: 10.1038/nsmb.3460. PubMed DOI

Stenton S.L., Sheremet N.L., Catarino C.B., Andreeva N.A., Assouline Z., Barboni P., Barel O., Berutti R., Bychkov I., Caporali L., et al. Impaired complex I repair causes recessive Leber's hereditary optic neuropathy. J. Clin. Invest. 2021;131 doi: 10.1172/JCI138267. PubMed DOI PMC

Rötig A. Human diseases with impaired mitochondrial protein synthesis. Biochim. Biophys. Acta. 2011;1807:1198–1205. doi: 10.1016/j.bbabio.2011.06.010. PubMed DOI

Bomba-Warczak E., Edassery S.L., Hark T.J., Savas J.N. Long-lived mitochondrial cristae proteins in mouse heart and brain. J. Cell Biol. 2021;220 doi: 10.1083/jcb.202005193. PubMed DOI PMC

Wittig I., Heidler J., Strecker V. Protein turnover within mitochondrial complexes. Biochim. Biophys. Acta Bioenerg. 2018;1859 doi: 10.1016/j.bbabio.2018.09.162. DOI

Martin J., Mahlke K., Pfanner N. Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences. J. Biol. Chem. 1991;266:18051–18057. PubMed

Schäfer J.A., Bozkurt S., Michaelis J.B., Klann K., Münch C. Global mitochondrial protein import proteomics reveal distinct regulation by translation and translocation machinery. Mol. Cell. 2022;82:435–446.e437. doi: 10.1016/j.molcel.2021.11.004. PubMed DOI PMC

Kovářová N., Pecina P., Nuskova H., Vrbacky M., Zeviani M., Mracek T., Viscomi C., Houstek J. Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects. Biochim. Biophys. Acta. 2016;1862:705–715. doi: 10.1016/j.bbadis.2016.01.007. PubMed DOI PMC

Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell. Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Schägger H. Tricine–SDS-PAGE. Nat. Protoc. 2006;1:16–22. doi: 10.1038/nprot.2006.4. PubMed DOI

Wittig I., Braun H.-P., Schägger H. Blue native PAGE. Nat. Protoc. 2006;1:418–428. doi: 10.1038/nprot.2006.62. PubMed DOI

Bentlage H.A.C.M., Wendel U., Schagger H., ter Laak H.J., Janssen A.J.M., Trijbels J.M.F. Lethal infantile mitochondrial disease with isolated complex I deficiency in fibroblasts but with combined complex I and IV deficiencies in muscle. Neurology. 1996;47:243–248. PubMed

Gutscher M., Sobotta M.C., Wabnitz G.H., Ballikaya S., Meyer A.J., Samstag Y., Dick T.P. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 2009;284:31532–31540. doi: 10.1074/jbc.M109.059246. PubMed DOI PMC

Teixeira R.B., Karbasiafshar C., Sabra M., Abid M.R. Optimization of mito-roGFP protocol to measure mitochondrial oxidative status in human coronary artery endothelial cells. STAR Protoc. 2021;2 doi: 10.1016/j.xpro.2021.100753. PubMed DOI PMC

Mráček T., Pecina P., Vojtíšková A., Kalous M., Šebesta O., Houštěk J. Two components in pathogenic mechanism of mitochondrial ATPase deficiency: Energy deprivation and ROS production. Exp. Gerontol. 2006;41:683–687. doi: 10.1016/j.exger.2006.02.009. PubMed DOI

Flachs P., Novotný J., Baumruk F., Bardová K., Bourová L., Miksík I., Sponarová J., Svoboda P., Kopecký J. Impaired noradrenaline-induced lipolysis in white fat of aP2-Ucp1 transgenic mice is associated with changes in G-protein levels. Biochem. J. 2002;364:369–376. doi: 10.1042/BJ20011438. PubMed DOI PMC

Chaudhry A., Shi R., Luciani D.S. A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 2020;318 doi: 10.1152/ajpendo.00457.2019. E87–e101. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...