Mitochondrial translation is the primary determinant of secondary mitochondrial complex I deficiencies
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39184436
PubMed Central
PMC11342289
DOI
10.1016/j.isci.2024.110560
PII: S2589-0042(24)01785-1
Knihovny.cz E-zdroje
- Klíčová slova
- Biochemistry, Cell biology, Molecular biology,
- Publikační typ
- časopisecké články MeSH
Individual complexes of the mitochondrial oxidative phosphorylation system (OXPHOS) are not linked solely by their function; they also share dependencies at the maintenance/assembly level, where one complex depends on the presence of a different individual complex. Despite the relevance of this "interdependence" behavior for mitochondrial diseases, its true nature remains elusive. To understand the mechanism that can explain this phenomenon, we examined the consequences of the aberration of different OXPHOS complexes in human cells. We demonstrate here that the complete disruption of each of the OXPHOS complexes resulted in a decrease in the complex I (cI) level and that the major reason for this is linked to the downregulation of mitochondrial ribosomal proteins. We conclude that the secondary cI defect is due to mitochondrial protein synthesis attenuation, while the responsible signaling pathways could differ based on the origin of the OXPHOS defect.
Department of Biomedical Sciences University of Padova 35131 Padova Italy
Department of Cell Biology Faculty of Science Charles University 12800 Prague Czech Republic
Department of Physiology Faculty of Science Charles University 12800 Prague Czech Republic
School of Pharmacy and Medical Science Griffith University Southport Qld 4222 Australia
Zobrazit více v PubMed
Signes A., Fernandez-Vizarra E. Assembly of mammalian oxidative phosphorylation complexes I–V and supercomplexes. Essays Biochem. 2018;62:255–270. doi: 10.1042/EBC20170098. PubMed DOI PMC
D’Souza A.R., Minczuk M. Mitochondrial transcription and translation: overview. Essays Biochem. 2018;62:309–320. doi: 10.1042/EBC20170102. PubMed DOI PMC
Hällberg B.M., Larsson N.G. Making proteins in the powerhouse. Cell Metabol. 2014;20:226–240. doi: 10.1016/j.cmet.2014.07.001. PubMed DOI
Rackham O., Filipovska A. Organization and expression of the mammalian mitochondrial genome. Nat. Rev. Genet. 2022;23:606–623. doi: 10.1038/s41576-022-00480-x. PubMed DOI
Kummer E., Ban N. Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol. 2021;22:307–325. doi: 10.1038/s41580-021-00332-2. PubMed DOI
Cagin U., Enriquez J.A. The complex crosstalk between mitochondria and the nucleus: What goes in between? Int. J. Biochem. Cell Biol. 2015;63:10–15. doi: 10.1016/j.biocel.2015.01.026. PubMed DOI
Dennerlein S., Wang C., Rehling P. Plasticity of Mitochondrial Translation. Trends Cell Biol. 2017;27:712–721. doi: 10.1016/j.tcb.2017.05.004. PubMed DOI
Schägger H., Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000;19:1777–1783. doi: 10.1093/emboj/19.8.1777. PubMed DOI PMC
Letts J.A., Fiedorczuk K., Sazanov L.A. The architecture of respiratory supercomplexes. Nature. 2016;537:644–648. doi: 10.1038/nature19774. PubMed DOI
Gu J., Wu M., Guo R., Yan K., Lei J., Gao N., Yang M. The architecture of the mammalian respirasome. Nature. 2016;537:639–643. doi: 10.1038/nature19359. PubMed DOI
Althoff T., Mills D.J., Popot J.-L., Kühlbrandt W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 2011;30:4652–4664. doi: 10.1038/emboj.2011.324. PubMed DOI PMC
Letts J.A., Fiedorczuk K., Degliesposti G., Skehel M., Sazanov L.A. Structures of Respiratory Supercomplex I+III2 Reveal Functional and Conformational Crosstalk. Mol. Cell. 2019;75:1131–1146.e6. doi: 10.1016/j.molcel.2019.07.022. PubMed DOI PMC
Vercellino I., Sazanov L.A. Structure and assembly of the mammalian mitochondrial supercomplex CIII2CIV. Nature. 2021;598:364–367. doi: 10.1038/s41586-021-03927-z. PubMed DOI
Guo R., Zong S., Wu M., Gu J., Yang M. Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2. Cell. 2017;170:1247–1257.e12. doi: 10.1016/j.cell.2017.07.050. PubMed DOI
Milenkovic D., Misic J., Hevler J.F., Molinié T., Chung I., Atanassov I., Li X., Filograna R., Mesaros A., Mourier A., et al. Preserved respiratory chain capacity and physiology in mice with profoundly reduced levels of mitochondrial respirasomes. Cell Metabol. 2023;35:1799–1813.e7. doi: 10.1016/j.cmet.2023.07.015. PubMed DOI
Vercellino I., Sazanov L.A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 2022;23:141–161. doi: 10.1038/s41580-021-00415-0. PubMed DOI
Milenkovic D., Blaza J.N., Larsson N.-G., Hirst J. The Enigma of the Respiratory Chain Supercomplex. Cell Metabol. 2017;25:765–776. doi: 10.1016/j.cmet.2017.03.009. PubMed DOI
Fernández-Vizarra E., Ugalde C. Cooperative assembly of the mitochondrial respiratory chain. Trends Biochem. Sci. 2022;47:999–1008. doi: 10.1016/j.tibs.2022.07.005. PubMed DOI
Acín-Pérez R., Fernández-Silva P., Peleato M.L., Pérez-Martos A., Enriquez J.A. Respiratory Active Mitochondrial Supercomplexes. Mol. Cell. 2008;32:529–539. doi: 10.1016/j.molcel.2008.10.021. PubMed DOI
Fernandez-Vizarra E., Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett. 2021;595:1062–1106. doi: 10.1002/1873-3468.13995. PubMed DOI
Bruno C., Santorelli F.M., Assereto S., Tonoli E., Tessa A., Traverso M., Scapolan S., Bado M., Tedeschi S., Minetti C. Progressive exercise intolerance associated with a new muscle-restricted nonsense mutation (G142X) in the mitochondrial cytochrome b gene. Muscle Nerve. 2003;28:508–511. doi: 10.1002/mus.10429. PubMed DOI
Lamantea E., Carrara F., Mariotti C., Morandi L., Tiranti V., Zeviani M. A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul. Disord. 2002;12:49–52. doi: 10.1016/s0960-8966(01)00244-9. PubMed DOI
Acín-Pérez R., Bayona-Bafaluy M.P., Fernandez-Silva P., Moreno-Loshuertos R., Perez-Martos A., Bruno C., Moraes C.T., Enriquez J.A. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol. Cell. 2004;13:805–815. doi: 10.1016/s1097-2765(04)00124-8. PubMed DOI PMC
Carossa V., Ghelli A., Tropeano C.V., Valentino M.L., Iommarini L., Maresca A., Caporali L., La Morgia C., Liguori R., Barboni P., et al. A Novel in-Frame 18-bp Microdeletion in MT-CYB Causes a Multisystem Disorder with Prominent Exercise Intolerance. Hum. Mutat. 2014;35:954–958. doi: 10.1002/humu.22596. PubMed DOI
Protasoni M., Pérez-Pérez R., Lobo-Jarne T., Harbour M.E., Ding S., Peñas A., Diaz F., Moraes C.T., Fearnley I.M., Zeviani M., et al. Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. EMBO J. 2020;39 doi: 10.15252/embj.2019102817. PubMed DOI PMC
Diaz F., Fukui H., Garcia S., Moraes C.T. Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol. Cell Biol. 2006;26:4872–4881. doi: 10.1128/MCB.01767-05. PubMed DOI PMC
Li Y., D'Aurelio M., Deng J.H., Park J.S., Manfredi G., Hu P., Lu J., Bai Y. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J. Biol. Chem. 2007;282:17557–17562. doi: 10.1074/jbc.M701056200. PubMed DOI
Hornig-Do H.T., Tatsuta T., Buckermann A., Bust M., Kollberg G., Rötig A., Hellmich M., Nijtmans L., Wiesner R.J. Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly. EMBO J. 2012;31:1293–1307. doi: 10.1038/emboj.2011.477. PubMed DOI PMC
Guarás A., Perales-Clemente E., Calvo E., Acín-Pérez R., Loureiro-Lopez M., Pujol C., Martínez-Carrascoso I., Nuñez E., García-Marqués F., Rodríguez-Hernández M.A., et al. The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency. Cell Rep. 2016;15:197–209. doi: 10.1016/j.celrep.2016.03.009. PubMed DOI
Čunátová K., Reguera D.P., Vrbacký M., Fernández-Vizarra E., Ding S., Fearnley I.M., Zeviani M., Houštěk J., Mráček T., Pecina P. Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis. Cells. 2021;10 doi: 10.3390/cells10020369. PubMed DOI PMC
Lobo-Jarne T., Pérez-Pérez R., Fontanesi F., Timón-Gómez A., Wittig I., Peñas A., Serrano-Lorenzo P., García-Consuegra I., Arenas J., Martín M.A., et al. Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes. EMBO J. 2020;39 doi: 10.15252/embj.2019103912. PubMed DOI PMC
Mick D.U., Dennerlein S., Wiese H., Reinhold R., Pacheu-Grau D., Lorenzi I., Sasarman F., Weraarpachai W., Shoubridge E.A., Warscheid B., Rehling P. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell. 2012;151:1528–1541. doi: 10.1016/j.cell.2012.11.053. PubMed DOI
Richter-Dennerlein R., Oeljeklaus S., Lorenzi I., Ronsör C., Bareth B., Schendzielorz A.B., Wang C., Warscheid B., Rehling P., Dennerlein S. Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein. Cell. 2016;167:471–483.e10. doi: 10.1016/j.cell.2016.09.003. PubMed DOI PMC
Guerrero-Castillo S., Baertling F., Kownatzki D., Wessels H.J., Arnold S., Brandt U., Nijtmans L. The Assembly Pathway of Mitochondrial Respiratory Chain Complex I. Cell Metabol. 2017;25:128–139. doi: 10.1016/j.cmet.2016.09.002. PubMed DOI
Wang C., Richter-Dennerlein R., Pacheu-Grau D., Liu F., Zhu Y., Dennerlein S., Rehling P. MITRAC15/COA1 promotes mitochondrial translation in a ND2 ribosome–nascent chain complex. EMBO Rep. 2020;21 doi: 10.15252/embr.201948833. PubMed DOI PMC
Formosa L.E., Muellner-Wong L., Reljic B., Sharpe A.J., Jackson T.D., Beilharz T.H., Stojanovski D., Lazarou M., Stroud D.A., Ryan M.T. Dissecting the Roles of Mitochondrial Complex I Intermediate Assembly Complex Factors in the Biogenesis of Complex I. Cell Rep. 2020;31 doi: 10.1016/j.celrep.2020.107541. PubMed DOI
Condon K.,J., Orozco J.M., Adelmann C.H., Spinelli J.B., van der Helm P.W., Roberts J.M., Kunchok T., Sabatini D.M. Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA. 2021;118 doi: 10.1073/pnas.2022120118. PubMed DOI PMC
Hinchy E.C., Gruszczyk A.V., Willows R., Navaratnam N., Hall A.R., Bates G., Bright T.P., Krieg T., Carling D., Murphy M.P. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J. Biol. Chem. 2018;293:17208–17217. doi: 10.1074/jbc.RA118.002579. PubMed DOI PMC
Morita M., Gravel S.-P., Chénard V., Sikström K., Zheng L., Alain T., Gandin V., Avizonis D., Arguello M., Zakaria C., et al. mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell Metabol. 2013;18:698–711. doi: 10.1016/j.cmet.2013.10.001. PubMed DOI
Fessler E., Eckl E.-M., Schmitt S., Mancilla I.A., Meyer-Bender M.F., Hanf M., Philippou-Massier J., Krebs S., Zischka H., Jae L.T. A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature. 2020;579:433–437. doi: 10.1038/s41586-020-2076-4. PubMed DOI PMC
Guo X., Aviles G., Liu Y., Tian R., Unger B.A., Lin Y.-H.T., Wiita A.P., Xu K., Correia M.A., Kampmann M. Mitochondrial stress is relayed to the cytosol by an OMA1–DELE1–HRI pathway. Nature. 2020;579:427–432. doi: 10.1038/s41586-020-2078-2. PubMed DOI PMC
Bao X.R., Ong S.-E., Goldberger O., Peng J., Sharma R., Thompson D.A., Vafai S.B., Cox A.G., Marutani E., Ichinose F., et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. Elife. 2016;5 doi: 10.7554/eLife.10575. PubMed DOI PMC
Silva J.M., Wong A., Carelli V., Cortopassi G.A. Inhibition of mitochondrial function induces an integrated stress response in oligodendroglia. Neurobiol. Dis. 2009;34:357–365. doi: 10.1016/j.nbd.2009.02.005. PubMed DOI
Martínez-Reyes I., Sánchez-Aragó M., Cuezva J.M. AMPK and GCN2–ATF4 signal the repression of mitochondria in colon cancer cells. Biochem. J. 2012;444:249–259. doi: 10.1042/BJ20111829. PubMed DOI
Ryan D.G., Yang M., Prag H.A., Blanco G.R., Nikitopoulou E., Segarra-Mondejar M., Powell C.A., Young T., Burger N., Miljkovic J.L., et al. Disruption of the TCA cycle reveals an ATF4-dependent integration of redox and amino acid metabolism. Elife. 2021;10 doi: 10.7554/eLife.72593. PubMed DOI PMC
Quirós P.M., Prado M.A., Zamboni N., D'Amico D., Williams R.W., Finley D., Gygi S.P., Auwerx J. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 2017;216:2027–2045. doi: 10.1083/jcb.201702058. PubMed DOI PMC
Sasaki K., Uchiumi T., Toshima T., Yagi M., Do Y., Hirai H., Igami K., Gotoh K., Kang D. Mitochondrial translation inhibition triggers ATF4 activation, leading to integrated stress response but not to mitochondrial unfolded protein response. Biosci. Rep. 2020;40 doi: 10.1042/BSR20201289. PubMed DOI PMC
Pajuelo Reguera D., Čunátová K., Vrbacky M., Pecinova A., Houstek J., Mracek T., Pecina P. Cytochrome c Oxidase Subunit 4 Isoform Exchange Results in Modulation of Oxygen Affinity. Cells. 2020;9 doi: 10.3390/cells9020443. PubMed DOI PMC
Vidoni S., Harbour M.E., Guerrero-Castillo S., Signes A., Ding S., Fearnley I.M., Taylor R.W., Tiranti V., Arnold S., Fernandez-Vizarra E., Zeviani M. MR-1S Interacts with PET100 and PET117 in Module-Based Assembly of Human Cytochrome c Oxidase. Cell Rep. 2017;18:1727–1738. doi: 10.1016/j.celrep.2017.01.044. PubMed DOI
Kovalčíkova J., Vrbacký M., Pecina P., Tauchmannová K., Nůsková H., Kaplanová V., Brázdová A., Alán L., Eliáš J., Čunátová K., et al. TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme. FASEB J. 2019;33:14103–14117. doi: 10.1096/fj.201900685RR. PubMed DOI
Palenikova P., Harbour M.E., Prodi F., Minczuk M., Zeviani M., Ghelli A., Fernandez-Vizarra E. Duplexing complexome profiling with SILAC to study human respiratory chain assembly defects. Biochim. Biophys. Acta Bioenerg. 2021;1862 doi: 10.1016/j.bbabio.2021.148395. PubMed DOI
Young L., Shiba T., Harada S., Kita K., Albury M.S., Moore A.L. The alternative oxidases: simple oxidoreductase proteins with complex functions. Biochem. Soc. Trans. 2013;41:1305–1311. doi: 10.1042/BST20130073. PubMed DOI
Viscomi C., Moore A.L., Zeviani M., Szibor M. Xenotopic expression of alternative oxidase (AOX) to study mechanisms of mitochondrial disease. Biochim. Biophys. Acta Bioenerg. 2023;1864 doi: 10.1016/j.bbabio.2022.148947. PubMed DOI
Bajzikova M., Kovarova J., Coelho A.R., Boukalova S., Oh S., Rohlenova K., Svec D., Hubackova S., Endaya B., Judasova K., et al. Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metabol. 2019;29:399–416.e10. doi: 10.1016/j.cmet.2018.10.014. PubMed DOI PMC
Perales-Clemente E., Bayona-Bafaluy M.P., Pérez-Martos A., Barrientos A., Fernández-Silva P., Enriquez J.A. Restoration of electron transport without proton pumping in mammalian mitochondria. Proc. Natl. Acad. Sci. USA. 2008;105:18735–18739. doi: 10.1073/pnas.0810518105. PubMed DOI PMC
Rath S., Sharma R., Gupta R., Ast T., Chan C., Durham T.J., Goodman R.P., Grabarek Z., Haas M.E., Hung W.H.W., et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49 doi: 10.1093/nar/gkaa1011. D1541–d1547. PubMed DOI PMC
Cogliati S., Frezza C., Soriano M.E., Varanita T., Quintana-Cabrera R., Corrado M., Cipolat S., Costa V., Casarin A., Gomes L.C., et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155:160–171. doi: 10.1016/j.cell.2013.08.032. PubMed DOI PMC
Vanišová M., Burská D., Křížová J., Daňhelovská T., Dosoudilová Ž., Zeman J., Stibůrek L., Hansíková H. Stable COX17 Downregulation Leads to Alterations in Mitochondrial Ultrastructure, Decreased Copper Content and Impaired Cytochrome c Oxidase Biogenesis in HEK293 Cells. Folia Biol. 2019;65:181–187. PubMed
Antonicka H., Mattman A., Carlson C.G., Glerum D.M., Hoffbuhr K.C., Leary S.C., Kennaway N.G., Shoubridge E.A. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am. J. Hum. Genet. 2003;72:101–114. doi: 10.1086/345489. PubMed DOI PMC
Paumard P., Vaillier J., Coulary B., Schaeffer J., Soubannier V., Mueller D.M., Brèthes D., di Rago J.P., Velours J. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 2002;21:221–230. doi: 10.1093/emboj/21.3.221. PubMed DOI PMC
Willows R., Sanders M.J., Xiao B., Patel B.R., Martin S.R., Read J., Wilson J.R., Hubbard J., Gamblin S.J., Carling D. Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells. Biochem. J. 2017;474:3059–3073. doi: 10.1042/bcj20170458. PubMed DOI PMC
Gilkerson R., De La Torre P., St. Vallier S. Mitochondrial OMA1 and OPA1 as Gatekeepers of Organellar Structure/Function and Cellular Stress Response. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/fcell.2021.626117. PubMed DOI PMC
Nuskova H., Mikesova J., Efimova I., Pecinova A., Pecina P., Drahota Z., Houstek J., Mracek T. Biochemical thresholds for pathological presentation of ATP synthase deficiencies. Biochem. Biophys. Res. Commun. 2020;521:1036–1041. doi: 10.1016/j.bbrc.2019.11.033. PubMed DOI
Tauchmannová K., Ho D., Nůsková H., Pecinová A., Alán L., Rodinová M., Koňaříková E., Vrbacký M., Puertas G., Kaplanová V., et al. MLQ is responsible for stabilisation of subunit a in the holoenzyme of mammalian ATP synthase. bioRxiv. 2020 doi: 10.1101/2020.02.03.931709. Preprint at. DOI
Lamantea E., Carrara F., Mariotti C., Morandi L., Tiranti V., Zeviani M. A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul. Disord. 2002;12:49–52. doi: 10.1016/S0960-8966(01)00244-9. PubMed DOI
Carossa V., Ghelli A., Tropeano C.V., Valentino M.L., Iommarini L., Maresca A., Caporali L., La Morgia C., Liguori R., Barboni P., et al. A novel in-frame 18-bp microdeletion in MT-CYB causes a multisystem disorder with prominent exercise intolerance. Hum. Mutat. 2014;35:954–958. doi: 10.1002/humu.22596. PubMed DOI
Hart M.L., Quon E., Vigil A.L.B.G., Engstrom I.A., Newsom O.J., Davidsen K., Hoellerbauer P., Carlisle S.M., Sullivan L.B. Mitochondrial redox adaptations enable alternative aspartate synthesis in SDH-deficient cells. Elife. 2023;12 doi: 10.7554/eLife.78654. PubMed DOI PMC
Letts J.A., Sazanov L.A. Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 2017;24:800–808. doi: 10.1038/nsmb.3460. PubMed DOI
Stenton S.L., Sheremet N.L., Catarino C.B., Andreeva N.A., Assouline Z., Barboni P., Barel O., Berutti R., Bychkov I., Caporali L., et al. Impaired complex I repair causes recessive Leber's hereditary optic neuropathy. J. Clin. Invest. 2021;131 doi: 10.1172/JCI138267. PubMed DOI PMC
Rötig A. Human diseases with impaired mitochondrial protein synthesis. Biochim. Biophys. Acta. 2011;1807:1198–1205. doi: 10.1016/j.bbabio.2011.06.010. PubMed DOI
Bomba-Warczak E., Edassery S.L., Hark T.J., Savas J.N. Long-lived mitochondrial cristae proteins in mouse heart and brain. J. Cell Biol. 2021;220 doi: 10.1083/jcb.202005193. PubMed DOI PMC
Wittig I., Heidler J., Strecker V. Protein turnover within mitochondrial complexes. Biochim. Biophys. Acta Bioenerg. 2018;1859 doi: 10.1016/j.bbabio.2018.09.162. DOI
Martin J., Mahlke K., Pfanner N. Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences. J. Biol. Chem. 1991;266:18051–18057. PubMed
Schäfer J.A., Bozkurt S., Michaelis J.B., Klann K., Münch C. Global mitochondrial protein import proteomics reveal distinct regulation by translation and translocation machinery. Mol. Cell. 2022;82:435–446.e437. doi: 10.1016/j.molcel.2021.11.004. PubMed DOI PMC
Kovářová N., Pecina P., Nuskova H., Vrbacky M., Zeviani M., Mracek T., Viscomi C., Houstek J. Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects. Biochim. Biophys. Acta. 2016;1862:705–715. doi: 10.1016/j.bbadis.2016.01.007. PubMed DOI PMC
Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell. Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schägger H. Tricine–SDS-PAGE. Nat. Protoc. 2006;1:16–22. doi: 10.1038/nprot.2006.4. PubMed DOI
Wittig I., Braun H.-P., Schägger H. Blue native PAGE. Nat. Protoc. 2006;1:418–428. doi: 10.1038/nprot.2006.62. PubMed DOI
Bentlage H.A.C.M., Wendel U., Schagger H., ter Laak H.J., Janssen A.J.M., Trijbels J.M.F. Lethal infantile mitochondrial disease with isolated complex I deficiency in fibroblasts but with combined complex I and IV deficiencies in muscle. Neurology. 1996;47:243–248. PubMed
Gutscher M., Sobotta M.C., Wabnitz G.H., Ballikaya S., Meyer A.J., Samstag Y., Dick T.P. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 2009;284:31532–31540. doi: 10.1074/jbc.M109.059246. PubMed DOI PMC
Teixeira R.B., Karbasiafshar C., Sabra M., Abid M.R. Optimization of mito-roGFP protocol to measure mitochondrial oxidative status in human coronary artery endothelial cells. STAR Protoc. 2021;2 doi: 10.1016/j.xpro.2021.100753. PubMed DOI PMC
Mráček T., Pecina P., Vojtíšková A., Kalous M., Šebesta O., Houštěk J. Two components in pathogenic mechanism of mitochondrial ATPase deficiency: Energy deprivation and ROS production. Exp. Gerontol. 2006;41:683–687. doi: 10.1016/j.exger.2006.02.009. PubMed DOI
Flachs P., Novotný J., Baumruk F., Bardová K., Bourová L., Miksík I., Sponarová J., Svoboda P., Kopecký J. Impaired noradrenaline-induced lipolysis in white fat of aP2-Ucp1 transgenic mice is associated with changes in G-protein levels. Biochem. J. 2002;364:369–376. doi: 10.1042/BJ20011438. PubMed DOI PMC
Chaudhry A., Shi R., Luciani D.S. A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 2020;318 doi: 10.1152/ajpendo.00457.2019. E87–e101. PubMed DOI PMC