Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects

. 2016 Apr ; 1862 (4) : 705-715. [epub] 20160113

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26804654

Grantová podpora
MC_UP_1002/1 Medical Research Council - United Kingdom

Odkazy

PubMed 26804654
PubMed Central PMC4793088
DOI 10.1016/j.bbadis.2016.01.007
PII: S0925-4439(16)00008-9
Knihovny.cz E-zdroje

Mitochondrial protein SURF1 is a specific assembly factor of cytochrome c oxidase (COX), but its function is poorly understood. SURF1 gene mutations cause a severe COX deficiency manifesting as the Leigh syndrome in humans, whereas in mice SURF1(-/-) knockout leads only to a mild COX defect. We used SURF1(-/-) mouse model for detailed analysis of disturbed COX assembly and COX ability to incorporate into respiratory supercomplexes (SCs) in different tissues and fibroblasts. Furthermore, we compared fibroblasts from SURF1(-/-) mouse and SURF1 patients to reveal interspecies differences in kinetics of COX biogenesis using 2D electrophoresis, immunodetection, arrest of mitochondrial proteosynthesis and pulse-chase metabolic labeling. The crucial differences observed are an accumulation of abundant COX1 assembly intermediates, low content of COX monomer and preferential recruitment of COX into I-III2-IVn SCs in SURF1 patient fibroblasts, whereas SURF1(-/-) mouse fibroblasts were characterized by low content of COX1 assembly intermediates and milder decrease in COX monomer, which appeared more stable. This pattern was even less pronounced in SURF1(-/-) mouse liver and brain. Both the control and SURF1(-/-) mice revealed only negligible formation of the I-III2-IVn SCs and marked tissue differences in the contents of COX dimer and III2-IV SCs, also less noticeable in liver and brain than in heart and muscle. Our studies support the view that COX assembly is much more dependent on SURF1 in humans than in mice. We also demonstrate markedly lower ability of mouse COX to form I-III2-IVn supercomplexes, pointing to tissue-specific and species-specific differences in COX biogenesis.

Zobrazit více v PubMed

Acin-Perez R., Enriquez J.A. The function of the respiratory supercomplexes: the plasticity model. Biochim. Biophys. Acta. 2014;1837(4):444–450. PubMed

Acin-Perez R., Fernandez-Silva P., Peleato M.L., Perez-Martos A., Enriquez J.A. Respiratory active mitochondrial supercomplexes. Mol. Cell. 2008;32(4):529–539. PubMed

Antonicka H., Leary S.C., Guercin G.H., Agar J.N., Horvath R., Kennaway N.G., Harding C.O., Jaksch M., Shoubridge E.A. Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum. Mol. Genet. 2003;12(20):2693–2702. PubMed

Antonicka H., Mattman A., Carlson C.G., Glerum D.M., Hoffbuhr K.C., Leary S.C., Kennaway N.G., Shoubridge E.A. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am. J. Hum. Genet. 2003;72(1):101–114. PubMed PMC

Aulbert W., Weigt-Usinger K., Thiels C., Kohler C., Vorgerd M., Schreiner A., Hoffjan S., Rothoeft T., Wortmann S.B., Heyer C.M., Podskarbi T., Lucke T. Long survival in Leigh syndrome: new cases and review of literature. Neuropediatrics. 2014 PubMed

Balsa E., Marco R., Perales-Clemente E., Szklarczyk R., Calvo E., Landazuri M.O., Enriquez J.A. NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab. 2012;16(3):378–386. PubMed

Bareth B., Dennerlein S., Mick D.U., Nikolov M., Urlaub H., Rehling P. The heme a synthase Cox15 associates with cytochrome c oxidase assembly intermediates during Cox1 maturation. Mol. Cell. Biol. 2013;33(20):4128–4137. PubMed PMC

Barrientos A., Korr D., Tzagoloff A. Shy1p is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh's syndrome. EMBO J. 2002;21(1–2):43–52. PubMed PMC

Bentlage H.A., Wendel U., Schagger H., ter Laak H.J., Janssen A.J., Trijbels J.M. Lethal infantile mitochondrial disease with isolated complex I deficiency in fibroblasts but with combined complex I and IV deficiencies in muscle. Neurology. 1996;47(1):243–248. PubMed

Bourens M., Boulet A., Leary S.C., Barrientos A. Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase. Hum. Mol. Genet. 2014;23(11):2901–2913. PubMed PMC

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 1976;72:248–254. PubMed

Bruno C., Biancheri R., Garavaglia B., Biedi C., Rossi A., Lamba L.D., Bado M., Greco M., Zeviani M., Minetti C. A novel mutation in the SURF1 gene in a child with Leigh disease, peripheral neuropathy, and cytochrome-c oxidase deficiency. J. Child Neurol. 2002;17(3):233–236. PubMed

Bundschuh F.A., Hannappel A., Anderka O., Ludwig B. Surf1, associated with Leigh syndrome in humans, is a heme-binding protein in bacterial oxidase biogenesis. J. Biolumin. Chemilumin. 2009;284(38):25735–25741. PubMed PMC

Caporali L., Ghelli A.M., Iommarini L., Maresca A., Valentino M.L., La Morgia C., Liguori R., Zanna C., Barboni P., De Nardo V., Martinuzzi A., Rizzo G., Tonon C., Lodi R., Calvaruso M.A., Cappelletti M., Porcelli A.M., Achilli A., Pala M., Torroni A., Carelli V. Cybrid studies establish the causal link between the mtDNA m.3890G > A/MT-ND1 mutation and optic atrophy with bilateral brainstem lesions. Biochim. Biophys. Acta. 2013;1832(3):445–452. PubMed PMC

Clemente P., Peralta S., Cruz-Bermudez A., Echevarria L., Fontanesi F., Barrientos A., Fernandez-Moreno M.A., Garesse R. hCOA3 stabilizes cytochrome c oxidase 1 (COX1) and promotes cytochrome c oxidase assembly in human mitochondria. J. Biolumin. Chemilumin. 2013;288(12):8321–8331. PubMed PMC

Davoudi M., Kotarsky H., Hansson E., Fellman V. Complex I function and supercomplex formation are preserved in liver mitochondria despite progressive complex III deficiency. PLoS One. 2014;9(1) PubMed PMC

Deepa S.S., Pulliam D., Hill S., Shi Y., Walsh M.E., Salmon A., Sloane L., Zhang N., Zeviani M., Viscomi C., Musi N., Van Remmen H. Improved insulin sensitivity associated with reduced mitochondrial complex IV assembly and activity. FASEB J. 2013;27(4):1371–1380. PubMed

Dell'Agnello C., Leo S., Agostino A., Szabadkai G., Tiveron C., Zulian A., Prelle A., Roubertoux P., Rizzuto R., Zeviani M. Increased longevity and refractoriness to Ca(2 +)-dependent neurodegeneration in Surf1 knockout mice. Hum. Mol. Genet. 2007;16(4):431–444. PubMed

Duhig T., Ruhrberg C., Mor O., Fried M. The human Surfeit locus. Genomics. 1998;52(1):72–78. PubMed

Fornuskova D., Stiburek L., Wenchich L., Vinsova K., Hansikova H., Zeman J. Novel insights into the assembly and function of human nuclear-encoded cytochrome c oxidase subunits 4, 5a, 6a, 7a and 7b. Biochem. J. 2010;428(3):363–374. PubMed

Genova M.L., Lenaz G. Functional role of mitochondrial respiratory supercomplexes. Biochim. Biophys. Acta. 2014;1837(4):427–443. PubMed

Ghosh A., Trivedi P.P., Timbalia S.A., Griffin A.T., Rahn J.J., Chan S.S., Gohil V.M. Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency. Hum. Mol. Genet. 2014;23(13):3596–3606. PubMed PMC

Hannappel A., Bundschuh F.A., Ludwig B. Role of Surf1 in heme recruitment for bacterial COX biogenesis. Biochim. Biophys. Acta. 2012;1817(6):928–937. PubMed

Huigsloot M., Nijtmans L.G., Szklarczyk R., Baars M.J., van den Brand M.A., Hendriksfranssen M.G., van den Heuvel L.P., Smeitink J.A., Huynen M.A., Rodenburg R.J. A mutation in C2orf64 causes impaired cytochrome c oxidase assembly and mitochondrial cardiomyopathy. Am. J. Hum. Genet. 2011;88(4):488–493. PubMed PMC

Chaban Y., Boekema E.J., Dudkina N.V. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim. Biophys. Acta. 2014;1837(4):418–426. PubMed

Kadenbach B., Huttemann M., Arnold S., Lee I., Bender E. Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Free Radic. Biol. Med. 2000;29(3–4):211–221. PubMed

Khalimonchuk O., Bestwick M., Meunier B., Watts T.C., Winge D.R. Formation of the redox cofactor centers during Cox1 maturation in yeast cytochrome oxidase. Mol. Cell. Biol. 2010;30(4):1004–1017. PubMed PMC

Kovarova N., Cizkova Vrbacka A., Pecina P., Stranecky V., Pronicka E., Kmoch S., Houstek J. Adaptation of respiratory chain biogenesis to cytochrome c oxidase deficiency caused by SURF1 gene mutations. Biochim. Biophys. Acta. 2012;1822(7):1114–1124. PubMed

Lapuente-Brun E., Moreno-Loshuertos R., Acin-Perez R., Latorre-Pellicer A., Colas C., Balsa E., Perales-Clemente E., Quiros P.M., Calvo E., Rodriguez-Hernandez M.A., Navas P., Cruz R., Carracedo A., Lopez-Otin C., Perez-Martos A., Fernandez-Silva P., Fernandez-Vizarra E., Enriquez J.A. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340(6140):1567–1570. PubMed

Lazarou M., Smith S.M., Thorburn D.R., Ryan M.T., McKenzie M. Assembly of nuclear DNA-encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria. FEBS J. 2009;276(22):6701–6713. PubMed

Leary S.C. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid. Redox Signal. 2010;13(9):1403–1416. PubMed

Leary S.C., Cobine P.A., Nishimura T., Verdijk R.M., de Krijger R., de Coo R., Tarnopolsky M.A., Winge D.R., Shoubridge E.A. COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux. Mol. Biol. Cell. 2013;24(6):683–691. PubMed PMC

Leary S.C., Kaufman B.A., Pellecchia G., Guercin G.H., Mattman A., Jaksch M., Shoubridge E.A. Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum. Mol. Genet. 2004;13(17):1839–1848. PubMed

Leary S.C., Sasarman F., Nishimura T., Shoubridge E.A. Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1. Hum. Mol. Genet. 2009;18(12):2230–2240. PubMed

Lee I.C., El-Hattab A.W., Wang J., Li F.Y., Weng S.W., Craigen W.J., Wong L.J. SURF1-associated Leigh syndrome: a case series and novel mutations. Hum. Mutat. 2012;33(8):1192–1200. PubMed

Lim S.C., Smith K.R., Stroud D.A., Compton A.G., Tucker E.J., Dasvarma A., Gandolfo L.C., Marum J.E., McKenzie M., Peters H.L., Mowat D., Procopis P.G., Wilcken B., Christodoulou J., Brown G.K., Ryan M.T., Bahlo M., Thorburn D.R. A founder mutation in PET100 causes isolated complex IV deficiency in Lebanese individuals with Leigh syndrome. Am. J. Hum. Genet. 2014;94(2):209–222. PubMed PMC

McKenzie M., Lazarou M., Ryan M.T. Chapter 18 analysis of respiratory chain complex assembly with radiolabeled nuclear- and mitochondrial-encoded subunits. Methods Enzymol. 2009;456:321–339. PubMed

Mick D.U., Dennerlein S., Wiese H., Reinhold R., Pacheu-Grau D., Lorenzi I., Sasarman F., Weraarpachai W., Shoubridge E.A., Warscheid B., Rehling P. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell. 2012;151(7):1528–1541. PubMed

Mick D.U., Wagner K., van der Laan M., Frazier A.E., Perschil I., Pawlas M., Meyer H.E., Warscheid B., Rehling P. Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly. EMBO J. 2007;26(20):4347–4358. PubMed PMC

Montoya J., Ojala D., Attardi G. Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature. 1981;290(5806):465–470. PubMed

Moreno-Lastres D., Fontanesi F., Garcia-Consuegra I., Martin M.A., Arenas J., Barrientos A., Ugalde C. Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab. 2012;15(3):324–335. PubMed PMC

Nijtmans L.G., Taanman J.W., Muijsers A.O., Speijer D., Van den Bogert C. Assembly of cytochrome-c oxidase in cultured human cells. Eur. J. Biochem. 1998;254(2):389–394. PubMed

Oswald C., Krause-Buchholz U., Rodel G. Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase. J. Mol. Biol. 2009;389(3):470–479. PubMed

Pecina P., Capkova M., Chowdhury S.K., Drahota Z., Dubot A., Vojtiskova A., Hansikova H., Houst'kova H., Zeman J., Godinot C., Houstek J. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim. Biophys. Acta. 2003;1639(1):53–63. PubMed

Pello R., Martin M.A., Carelli V., Nijtmans L.G., Achilli A., Pala M., Torroni A., Gomez-Duran A., Ruiz-Pesini E., Martinuzzi A., Smeitink J.A., Arenas J., Ugalde C. Mitochondrial DNA background modulates the assembly kinetics of OXPHOS complexes in a cellular model of mitochondrial disease. Hum. Mol. Genet. 2008;17(24):4001–4011. PubMed

Piekutowska-Abramczuk D., Magner M., Popowska E., Pronicki M., Karczmarewicz E., Sykut-Cegielska J., Kmiec T., Jurkiewicz E., Szymanska-Debinska T., Bielecka L., Krajewska-Walasek M., Vesela K., Zeman J., Pronicka E. SURF1 missense mutations promote a mild Leigh phenotype. Clin. Genet. 2009;76(2):195–204. PubMed

Piekutowska-Abramczuk D., Popowska E., Pronicki M., Karczmarewicz E., Tylek-Lemanska D., Sykut-Cegielska J., Szymanska-Dembinska T., Bielecka L., Krajewska-Walasek M., Pronicka E. High prevalence of SURF1 c.845_846delCT mutation in Polish Leigh patients. Eur. J. Paediatr. Neurol. 2009;13(2):146–153. PubMed

Pitceathly, R. D., S. Rahman, Y. Wedatilake, J. M. Polke, S. Cirak, A. R. Foley, A. Sailer, M. E. Hurles, J. Stalker, I. Hargreaves, C. E. Woodward, M. G. Sweeney, F. Muntoni, H. Houlden, J. W. Taanman, M. G. Hanna and U. K. Consortium NDUFA4 mutations underlie dysfunction of a cytochrome c oxidase subunit linked to human neurological disease. Cell Rep. 2013;3(6):1795–1805. PubMed PMC

Pulliam D.A., Deepa S.S., Liu Y., Hill S., Lin A.L., Bhattacharya A., Shi Y., Sloane L., Viscomi C., Zeviani M., Van Remmen H. Complex IV-deficient Surf1(−/−) mice initiate mitochondrial stress responses. Biochem. J. 2014;462(2):359–371. PubMed PMC

Rustin P., Chretien D., Bourgeron T., Gerard B., Rotig A., Saudubray J.M., Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta. 1994;228(1):35–51. PubMed

Sheftel A.D., Stehling O., Pierik A.J., Elsasser H.P., Muhlenhoff U., Webert H., Hobler A., Hannemann F., Bernhardt R., Lill R. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 2010;107(26):11775–11780. PubMed PMC

Shoubridge E.A. Cytochrome c oxidase deficiency. Am. J. Med. Genet. 2001;106(1):46–52. PubMed

Schagger H. Respiratory chain supercomplexes of mitochondria and bacteria. Biochim. Biophys. Acta. 2002;1555(1–3):154–159. PubMed

Schagger H., Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000;19(8):1777–1783. PubMed PMC

Schagger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987;166(2):368–379. PubMed

Schagger H., von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 1991;199(2):223–231. PubMed

Smith D., Gray J., Mitchell L., Antholine W.E., Hosler J.P. Assembly of cytochrome-c oxidase in the absence of assembly protein Surf1p leads to loss of the active site heme. J. Biolumin. Chemilumin. 2005;280(18):17652–17656. PubMed

Stiburek L., Hansikova H., Tesarova M., Cerna L., Zeman J. Biogenesis of eukaryotic cytochrome c oxidase. Physiol. Res. 2006;55(Suppl. 2):S27–S41. PubMed

Stiburek L., Vesela K., Hansikova H., Pecina P., Tesarova M., Cerna L., Houstek J., Zeman J. Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Biochem. J. 2005;392(Pt 3):625–632. PubMed PMC

Stiburek L., Zeman J. Assembly factors and ATP-dependent proteases in cytochrome c oxidase biogenesis. Biochim. Biophys. Acta. 2010;1797(6–7):1149–1158. PubMed

Tanigawa J., Kaneko K., Honda M., Harashima H., Murayama K., Wada T., Takano K., Iai M., Yamashita S., Shimbo H., Aida N., Ohtake A., Osaka H. Two Japanese patients with Leigh syndrome caused by novel SURF1 mutations. Brain Dev. 2012;34(10):861–865. PubMed

Tiranti V., Galimberti C., Nijtmans L., Bovolenta S., Perini M.P., Zeviani M. Characterization of SURF-1 expression and Surf-1p function in normal and disease conditions. Hum. Mol. Genet. 1999;8(13):2533–2540. PubMed

van Riesen A.K., Antonicka H., Ohlenbusch A., Shoubridge E.A., Wilichowski E.K. Maternal segmental disomy in Leigh syndrome with cytochrome c oxidase deficiency caused by homozygous SURF1 mutation. Neuropediatrics. 2006;37(2):88–94. PubMed

Weraarpachai W., Antonicka H., Sasarman F., Seeger J., Schrank B., Kolesar J.E., Lochmuller H., Chevrette M., Kaufman B.A., Horvath R., Shoubridge E.A. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat. Genet. 2009;41(7):833–837. PubMed

Weraarpachai W., Sasarman F., Nishimura T., Antonicka H., Aure K., Rotig A., Lombes A., Shoubridge E.A. Mutations in C12orf62, a factor that couples COX I synthesis with cytochrome c oxidase assembly, cause fatal neonatal lactic acidosis. Am. J. Hum. Genet. 2012;90(1):142–151. PubMed PMC

Williams S.L., Valnot I., Rustin P., Taanman J.W. Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1. J. Biolumin. Chemilumin. 2004;279(9):7462–7469. PubMed

Wittig I., Braun H.P., Schagger H. Blue native PAGE. Nat. Protoc. 2006;1(1):418–428. PubMed

Xu F., Addis J.B., Cameron J.M., Robinson B.H. LRPPRC mutation suppresses cytochrome oxidase activity by altering mitochondrial RNA transcript stability in a mouse model. Biochem. J. 2012;441(1):275–283. PubMed

Yao J., Shoubridge E.A. Expression and functional analysis of SURF1 in Leigh syndrome patients with cytochrome c oxidase deficiency. Hum. Mol. Genet. 1999;8(13):2541–2549. PubMed

Zhu Z., Yao J., Johns T., Fu K., De Bie I., Macmillan C., Cuthbert A.P., Newbold R.F., Wang J., Chevrette M., Brown G.K., Brown R.M., Shoubridge E.A. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat. Genet. 1998;20(4):337–343. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace