TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31652072
DOI
10.1096/fj.201900685rr
Knihovny.cz E-zdroje
- Klíčová slova
- ATP5G assembly, ancillary factor, mitochondria, mouse knockout,
- MeSH
- genotyp MeSH
- genový knockout metody MeSH
- HEK293 buňky MeSH
- kultivované buňky MeSH
- lidé MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondriální protonové ATPasy genetika metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- proteolipidy metabolismus MeSH
- regulace genové exprese MeSH
- tamoxifen farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- mitochondriální protonové ATPasy MeSH
- proteolipidy MeSH
- tamoxifen MeSH
Biogenesis of F1Fo ATP synthase, the key enzyme of mitochondrial energy provision, depends on transmembrane protein 70 (TMEM70), localized in the inner mitochondrial membrane of higher eukaryotes. TMEM70 absence causes severe ATP-synthase deficiency and leads to a neonatal mitochondrial encephalocardiomyopathy in humans. However, the exact biochemical function of TMEM70 remains unknown. Using TMEM70 conditional knockout in mice, we show that absence of TMEM70 impairs the early stage of enzyme biogenesis by preventing incorporation of hydrophobic subunit c into rotor structure of the enzyme. This results in the formation of an incomplete, pathologic enzyme complex consisting of F1 domain and peripheral stalk but lacking Fo proton channel composed of subunits c and a. We demonstrated direct interaction between TMEM70 and subunit c and showed that overexpression of subunit c in TMEM70-/- cells partially rescued TMEM70 defect. Accordingly, TMEM70 knockdown prevented subunit c accumulation otherwise observed in F1-deficient cells. Altogether, we identified TMEM70 as specific ancillary factor for subunit c. The biologic role of TMEM70 is to increase the low efficacy of spontaneous assembly of subunit c oligomer, the key and rate-limiting step of ATP-synthase biogenesis, and thus to reach an adequately high physiologic level of ATP synthase in mammalian tissues.-Kovalčíková, J., Vrbacký, M., Pecina, P., Tauchmannová, K., Nůsková, H., Kaplanová, V., Brázdová, A., Alán, L., Eliáš, J., Čunátová, K., Kořínek, V., Sedlacek, R., Mráček, T., Houštěk, J. TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme.
Department of Bioenergetics Institute of Physiology Prague Czech Republic
Institute of Molecular Genetics Prague Czech Republic
Laboratory of Cell and Developmental Biology Institute of Molecular Genetics Prague Czech Republic
Zobrazit více v PubMed
Walker, J. E. (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1-16
Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A R, Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457-465
He, J., Carroll, J., Ding, S., Fearnley, I. M., and Walker, J. E. (2017) Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. Proc. Natl. Acad. Sci. USA 114, 9086-9091
He, J., Ford, H. C., Carroll, J., Ding, S., Fearnley, I. M., and Walker, J. E. (2017) Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc. Natl. Acad. Sci. USA 114, 3409-3414
He, J., Ford, H. C., Carroll, J., Douglas, C., Gonzales, E., Ding, S., Fearnley, I. M., and Walker, J. E. (2018) Assembly of the membrane domain of ATP synthase in human mitochondria. Proc. Natl. Acad. Sci. USA 115, 2988-2993
Ackerman, S. H., and Tzagoloff, A. (2005) Function, structure, and biogenesis of mitochondrial ATP synthase. Prog. Nucleic Acid Res. Mol. Biol. 80, 95-133
Li, Y., Jourdain, A. A., Calvo, S. E., Liu, J. S., and Mootha, V. K. (2017) CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets. PLOS Comput. Biol. 13, e1005653
Angerer, H. (2015) Eukaryotic LYR proteins interact with mitochondrial protein complexes. Biology (Basel) 4, 133-150
Cízková, A., Stránecký, V., Mayr, J. A., Tesarová, M., Havlícková, V., Paul, J., Ivánek, R., Kuss, AW, Hansíková, H., Kaplanová, V., Vrbacký, M., Hartmannová, H., Nosková, L., Honzík, T., Drahota, Z., Magner, M., Hejzlarová, K., Sperl, W., Zeman, J., Houstek, J., and Kmoch, S. (2008) TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat. Genet. 40, 1288-1290
Houstek, J., Kmoch, S., and Zeman, J. (2009) TMEM70 protein - a novel ancillary factor of mammalian ATP synthase. Biochim. Biophys. Acta 1787, 529-532
Honzík, T., Tesarová, M., Mayr, J. A., Hansíková, H., Jesina, P., Bodamer, O., Koch, J., Magner, M., Freisinger, P., Huemer, M., Kostková, O., van Coster, R., Kmoch, S., Houstêk, J., Sperl, W., and Zeman, J. (2010) Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch. Dis. Child. 95, 296-301
Hejzlarová, K., Tesařová, M., Vrbacká-Čižková, A., Vrbacký, M., Hartmannová, H., Kaplanová, V., Nosková, L., Kratochvílová, H., Buzková, J., Havlíčková, V., Zeman, J., Kmoch, S., and Houštêk, J. (2011) Expression and processing of the TMEM70 protein. Biochim. Biophys. Acta 1807, 144-149
Kratochvílová, H., Hejzlarová, K., Vrbacký, M., Mráček, T., Karbanová, V., Tesařová, M., Gombitová, A., Cmarko, D., Wittig, I., Zeman, J., and Houštêk, J. (2014) Mitochondrial membrane assembly of TMEM70 protein. Mitochondrion 15, 1-9
Torraco, A., Verrigni, D., Rizza, T., Meschini, M. C., Vázquez-Memije, M. E., Martinelli, D., Bianchi, M., Piemonte, F., Dionisi-Vici, C., Santorelli, F. M., Bertini, E., and Carrozzo, R. (2012) TMEM70: a mutational hot spot in nuclear ATP synthase deficiency with a pivotal role in complex V biogenesis. Neurogenetics 13, 375-386
Vrbacký, M., Kovalčiková, J., Chawengsaksophak, K., Beck, I. M., Mráček, T., Nůsková, H., Sedmera, D., Papoušek, F., Kolář, F., Sobol, M., Hozák, P., Sedlacek, R., and Houštêk, J. (2016) Knockout of Tmem70 alters biogenesis of ATP synthase and leads to embryonal lethality in mice. Hum. Mol. Genet. 25, 4674-4685
Mayr, J. A., Havlícková, V., Zimmermann, F., Magler, I., Kaplanová, V., Jesina, P., Pecinová, A., Nusková, H., Koch, J., Sperl, W., and Houstek, J. (2010) Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Hum. Mol. Genet. 19, 3430-3439
Havlícková, V., Kaplanová, V., Nůsková, H., Drahota, Z., and Houstek, J. (2010) Knockdown of F1 epsilon subunit decreases mitochondrial content of ATP synthase and leads to accumulation of subunit c. Biochim. Biophys. Acta 1797, 1124-1129
Pecina, P., Nůsková, H., Havličková, V., and Houštêk, J. (2012) Role of the mitochondrial ATP synthase central stalk subunits γ and δ in the activity and assembly of the mammalian enzyme. Biochim. Biophys. Acta 1817, S20-S21
Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254
Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308
Schägger, H. (2006) Tricine-SDS-PAGE. Nat. Protoc. 1, 16-22
Wittig, I., Carrozzo, R., Santorelli, F. M., and Schägger, H. (2007) Functional assays in high-resolution clear native gels to quantify mitochondrial complexes in human biopsies and cell lines. Electrophoresis 28, 3811-3820
Wittig, I., Braun, H. P., and Schägger, H. (2006) Blue native PAGE. Nat. Protoc. 1, 418-428
Wittig, I., and Schägger, H. (2009) Native electrophoretic techniques to identify protein-protein interactions. Proteomics 9, 5214-5223
Moradi-Ameli, M., and Godinot, C. (1983) Characterization of monoclonal antibodies against mitochondrial F1-ATPase. Proc. Natl. Acad. Sci. USA 80, 6167-6171
Dubot, A., Godinot, C., Dumur, V., Sablonnière, B., Stojkovic, T., Cuisset, J. M., Vojtiskova, A., Pecina, P. Jesina, P., and Houstek, J. (2004) GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene. Biochem. Biophys. Res. Commun. 313, 687-693
Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., and Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856-2860
Jágr, M., Eckhardt, A., Pataridis, S., and Mikšík, I. (2012) Comprehensive proteomic analysis of human dentin. Eur. J. Oral Sci. 120, 259-268
Hartmannová, H., Piherová, L., Tauchmannová, K., Kidd, K., Acott, P. D., Crocker, J. F., Oussedik, Y., Mallet, M., Hodaňová, K., Stránecký, V., Přistoupilová, A., Barešová, V., Jedličková, I., živná, M., Sovová, J., Hůlková, H., Robins, V., Vrbacký, M., Pecina, P., Kaplanová, V., Houštêk, J., Mráček, T., Thibeault, Y., Bleyer, A. J., and Kmoch, S. (2016) Acadian variant of Fanconi syndrome is caused by mitochondrial respiratory chain complex I deficiency due to a non-coding mutation in complex I assembly factor NDUFAF6. Hum. Mol. Genet. 25, 4062-4079
Baracca, A., Amler, E., Solaini, G., Parenti Castelli, G., Lenaz, G., and Houstek, J. (1989) Temperature-induced states of isolated F1-ATPase affect catalysis, enzyme conformation and high-affinity nucleotide binding sites. Biochim. Biophys. Acta 976, 77-84
Williams, E. G., Wu, Y., Wolski, W., Kim, J. Y., Lan, J., Hasan, M., Halter, C., Jha, P., Ryu, D., Auwerx, J., and Aebersold, R. (2018) Quantifying and localizing the mitochondrial proteome across five tissues in a mouse population. Mol. Cell. Proteomics 17, 1766-1777
Houstek, J., Klement, P., Floryk, D., Antonická, H., Hermanská, J., Kalous, M., Hansíková, H., Hout'ková, H., Chowdhury, S. K., Rosipal, T., Kmoch, S., Stratilová, L., and Zeman, J. (1999) A novel deficiency of mitochondrial ATPase of nuclear origin. Hum. Mol. Genet. 8, 1967-1974
Sperl, W., Jesina, P., Zeman, J., Mayr, J. A., Demeirleir, L., VanCoster, R., Pícková, A., Hansíková, H., Houst'ková, H., Krejcík, Z., Koch, J., Smet, J., Muss, W., Holme, E., and Houstek, J. (2006) Deficiency of mitochondrial ATP synthase of nuclear genetic origin. Neuromuscul. Disord. 16, 821-829
Pecina, P., Nůsková, H., Karbanová, V., Kaplanová, V., Mráček, T., and Houcštêck, J. (2018) Role of the mitochondrial ATP synthase central stalk subunits γ and δ in the activity and assembly of the mammalian enzyme. Biochim Biophys Acta Bioenerg 1859, 374-381
Havlíčková Karbanová, V., Cížková Vrbacká, A., Hejzlarová, K., Nůsková, H., Stránecký, V., Potocká, A., Kmoch, S., and Houštêk, J. (2012) Compensatory upregulation of respiratory chain complexes III and IV in isolated deficiency of ATP synthase due to TMEM70 mutation. Biochim. Biophys. Acta 1817, 1037-1043
Cameron, J. M., Levandovskiy, V., Mackay, N., Ackerley, C., Chitayat, D., Raiman, J., Halliday, W. H., Schulze, A., and Robinson, B. H. (2011) Complex V TMEM70 deficiency results in mitochondrial nucleoid disorganization. Mitochondrion 11, 191-199
Guerrero-Castillo, S., Baertling, F., Kownatzki, D., Wessels, H. J., Arnold, S., Brandt, U., and Nijtmans, L. (2017) The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab. 25, 128-139
Hejzlarová, K., Kaplanová, V., Nůsková, H., Kovářová, N., Ješina, P., Drahota, Z., Mráček, T., Seneca, S., and Houštêk, J. (2015) Alteration of structure and function of ATP synthase and cytochrome c oxidase by lack of Fo-a and Cox3 subunits caused by mitochondrial DNA 9205delTA mutation. Biochem. J. 466, 601-611
Wittig, I., Meyer, B., Heide, H., Steger, M., Bleier, L., Wumaier, Z., Karas, M., and Schägger, H. (2010) Assembly and oligomerization of human ATP synthase lacking mitochondrial subunits a and A6L. Biochim. Biophys. Acta 1797, 1004-1011
Carrozzo, R., Wittig, I., Santorelli, F. M., Bertini, E., Hoffmann, S., Brandt, U., and Schägger, H. (2006) Subcomplexes of human ATP synthase mark mitochondrial biosynthesis disorders. Ann. Neurol. 59, 265-275
Houstêk, J., Klement, P., Hermanská, J., Houstková, H., Hansíková, H., Van den Bogert, C., and Zeman, J. (1995) Altered properties of mitochondrial ATP-synthase in patients with a T-<Gmutation in the ATPase 6 (subunit a) gene at position 8993 of mtDNA. Biochim. Biophys. Acta 1271, 349-357
Rak, M., Zeng, X., Brière, J. J., and Tzagoloff, A. (2009) Assembly of F0 in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1793, 108-116
Zeng, X., Barros, M. H., Shulman, T., and Tzagoloff, A. (2008) ATP25, a new nuclear gene of Saccharomyces cerevisiae required for expression and assembly of the Atp9p subunit of mitochondrial ATPase. Mol. Biol. Cell 19, 1366-1377
Dyer, M. R., and Walker, J. E. (1993) Sequences of members of the human gene family for the c subunit of mitochondrial ATP synthase. Biochem. J. 293, 51-64
Yan, W. L., Lerner, T. J., Haines, J. L., and Gusella, J. F. (1994) Sequence analysis and mapping of a novel human mitochondrial ATP synthase subunit 9 cDNA (ATP5G3). Genomics 24, 375-377
Rojo, E. E., Stuart, R. A., and Neupert, W. (1995) Conservative sorting of F0-ATPase subunit 9: export from matrix requires delta pH across inner membrane and matrix ATP. EMBO J. 14, 3445-3451
Kolli, R., Soll, J., and Carrie, C. (2018) Plant mitochondrial inner membrane protein insertion. Int. J. Mol. Sci. 19, E641
Arechaga, I., Butler, P. J., and Walker, J. E. (2002) Self-assembly of ATP synthase subunit c rings. FEBS Lett. 515, 189-193
Yumen, I., Iwasaki, I., Suzuki, T., Todokoro, Y., Tanaka, K., Okada, O., Fujiwara, T., Yoshida, M., and Akutsu, H. (2012) Purification, characterization and reconstitution into membranes of the oligomeric c-subunit ring of thermophilic F(o)F(1)-ATP synthase expressed in Escherichia coli. Protein Expr. Purif. 82, 396-401
Van der Laan, M., Bechtluft, P., Kol, S., Nouwen, N., and Driessen, A. J. (2004) F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J. Cell Biol. 165, 213-222
Suzuki, T., Ozaki, Y., Sone, N., Feniouk, B. A., and Yoshida, M. (2007) The product of uncI gene in F1Fo-ATP synthase operon plays a chaperone-like role to assist c-ring assembly. Proc. Natl. Acad. Sci. USA 104, 20776-20781
Ozaki, Y., Suzuki, T., Kuruma, Y., Ueda, T., and Yoshida, M. (2008) UncI protein can mediate ring-assembly of c-subunits of FoF1-ATP synthase in vitro. Biochem. Biophys. Res. Commun. 367, 663-666
Bonnefoy, N., Chalvet, F., Hamel, P., Slonimski, P. P., and Dujardin, G. (1994) OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J. Mol. Biol. 239, 201-212
Altamura, N., Capitanio, N., Bonnefoy, N., Papa, S., and Dujardin, G. (1996) The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase. FEBS Lett. 382, 111-115
He, S., and Fox, T. D. (1997) Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. Mol. Biol. Cell 8, 1449-1460
Jia, L., Dienhart, M., Schramp, M., McCauley, M., Hell, K., and Stuart, R. A. (2003) Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J. 22, 6438-6447
Jia, L., Dienhart, M. K., and Stuart, R. A. (2007) Oxa1 directly interacts with Atp9 and mediates its assembly into the mitochondrial F1Fo-ATP synthase complex. Mol. Biol. Cell 18, 1897-1908
Su, C. H., McStay, G. P., and Tzagoloff, A. (2014) Assembly of the rotor component of yeast mitochondrial ATP synthase is enhanced when Atp9p is supplied by Atp9p-Cox6p complexes. J. Biol. Chem. 289, 31605-31616
Woellhaf, M. W., Sommer, F., Schroda, M., and Herrmann, J. M. (2016) Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein. Mol. Biol. Cell 27, 3031-3039
Stiburek, L., Fornuskova, D., Wenchich, L., Pejznochova, M., Hansikova, H., and Zeman, J. (2007) Knockdown of human Oxa1l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase. J. Mol. Biol. 374, 506-516
Thompson, K., Mai, N., Oláhová, M., Scialó, F., Formosa, L. E., Stroud, D. A., Garrett, M., Lax, N. Z., Robertson, F. M., Jou, C., Nascimento, A., Ortez, C., Jimenez-Mallebrera, C., Hardy, S. A., He, L., Brown, G. K., Marttinen, P., McFarland, R., Sanz, A., Battersby, B. J., Bonnen, P. E., Ryan, M. T., Chrzanowska-Lightowlers, Z. M., Lightowlers, R. N., and Taylor, R. W. (2018) OXA1L mutations cause mitochondrial encephalopathy and a combined oxidative phosphorylation defect. EMBO Mol. Med. 10, e9060
Bonnefoy, N., Fiumera, H. L., Dujardin, G., and Fox, T. D. (2009) Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes. Biochim. Biophys. Acta 1793, 60-70
Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase
Czech Footprints in the Bioenergetics Research
Evolution and diversification of the nuclear envelope