TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme

. 2019 Dec ; 33 (12) : 14103-14117. [epub] 20191025

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31652072

Biogenesis of F1Fo ATP synthase, the key enzyme of mitochondrial energy provision, depends on transmembrane protein 70 (TMEM70), localized in the inner mitochondrial membrane of higher eukaryotes. TMEM70 absence causes severe ATP-synthase deficiency and leads to a neonatal mitochondrial encephalocardiomyopathy in humans. However, the exact biochemical function of TMEM70 remains unknown. Using TMEM70 conditional knockout in mice, we show that absence of TMEM70 impairs the early stage of enzyme biogenesis by preventing incorporation of hydrophobic subunit c into rotor structure of the enzyme. This results in the formation of an incomplete, pathologic enzyme complex consisting of F1 domain and peripheral stalk but lacking Fo proton channel composed of subunits c and a. We demonstrated direct interaction between TMEM70 and subunit c and showed that overexpression of subunit c in TMEM70-/- cells partially rescued TMEM70 defect. Accordingly, TMEM70 knockdown prevented subunit c accumulation otherwise observed in F1-deficient cells. Altogether, we identified TMEM70 as specific ancillary factor for subunit c. The biologic role of TMEM70 is to increase the low efficacy of spontaneous assembly of subunit c oligomer, the key and rate-limiting step of ATP-synthase biogenesis, and thus to reach an adequately high physiologic level of ATP synthase in mammalian tissues.-Kovalčíková, J., Vrbacký, M., Pecina, P., Tauchmannová, K., Nůsková, H., Kaplanová, V., Brázdová, A., Alán, L., Eliáš, J., Čunátová, K., Kořínek, V., Sedlacek, R., Mráček, T., Houštěk, J. TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme.

Zobrazit více v PubMed

Walker, J. E. (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1-16

Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A R, Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457-465

He, J., Carroll, J., Ding, S., Fearnley, I. M., and Walker, J. E. (2017) Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. Proc. Natl. Acad. Sci. USA 114, 9086-9091

He, J., Ford, H. C., Carroll, J., Ding, S., Fearnley, I. M., and Walker, J. E. (2017) Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc. Natl. Acad. Sci. USA 114, 3409-3414

He, J., Ford, H. C., Carroll, J., Douglas, C., Gonzales, E., Ding, S., Fearnley, I. M., and Walker, J. E. (2018) Assembly of the membrane domain of ATP synthase in human mitochondria. Proc. Natl. Acad. Sci. USA 115, 2988-2993

Ackerman, S. H., and Tzagoloff, A. (2005) Function, structure, and biogenesis of mitochondrial ATP synthase. Prog. Nucleic Acid Res. Mol. Biol. 80, 95-133

Li, Y., Jourdain, A. A., Calvo, S. E., Liu, J. S., and Mootha, V. K. (2017) CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets. PLOS Comput. Biol. 13, e1005653

Angerer, H. (2015) Eukaryotic LYR proteins interact with mitochondrial protein complexes. Biology (Basel) 4, 133-150

Cízková, A., Stránecký, V., Mayr, J. A., Tesarová, M., Havlícková, V., Paul, J., Ivánek, R., Kuss, AW, Hansíková, H., Kaplanová, V., Vrbacký, M., Hartmannová, H., Nosková, L., Honzík, T., Drahota, Z., Magner, M., Hejzlarová, K., Sperl, W., Zeman, J., Houstek, J., and Kmoch, S. (2008) TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat. Genet. 40, 1288-1290

Houstek, J., Kmoch, S., and Zeman, J. (2009) TMEM70 protein - a novel ancillary factor of mammalian ATP synthase. Biochim. Biophys. Acta 1787, 529-532

Honzík, T., Tesarová, M., Mayr, J. A., Hansíková, H., Jesina, P., Bodamer, O., Koch, J., Magner, M., Freisinger, P., Huemer, M., Kostková, O., van Coster, R., Kmoch, S., Houstêk, J., Sperl, W., and Zeman, J. (2010) Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch. Dis. Child. 95, 296-301

Hejzlarová, K., Tesařová, M., Vrbacká-Čižková, A., Vrbacký, M., Hartmannová, H., Kaplanová, V., Nosková, L., Kratochvílová, H., Buzková, J., Havlíčková, V., Zeman, J., Kmoch, S., and Houštêk, J. (2011) Expression and processing of the TMEM70 protein. Biochim. Biophys. Acta 1807, 144-149

Kratochvílová, H., Hejzlarová, K., Vrbacký, M., Mráček, T., Karbanová, V., Tesařová, M., Gombitová, A., Cmarko, D., Wittig, I., Zeman, J., and Houštêk, J. (2014) Mitochondrial membrane assembly of TMEM70 protein. Mitochondrion 15, 1-9

Torraco, A., Verrigni, D., Rizza, T., Meschini, M. C., Vázquez-Memije, M. E., Martinelli, D., Bianchi, M., Piemonte, F., Dionisi-Vici, C., Santorelli, F. M., Bertini, E., and Carrozzo, R. (2012) TMEM70: a mutational hot spot in nuclear ATP synthase deficiency with a pivotal role in complex V biogenesis. Neurogenetics 13, 375-386

Vrbacký, M., Kovalčiková, J., Chawengsaksophak, K., Beck, I. M., Mráček, T., Nůsková, H., Sedmera, D., Papoušek, F., Kolář, F., Sobol, M., Hozák, P., Sedlacek, R., and Houštêk, J. (2016) Knockout of Tmem70 alters biogenesis of ATP synthase and leads to embryonal lethality in mice. Hum. Mol. Genet. 25, 4674-4685

Mayr, J. A., Havlícková, V., Zimmermann, F., Magler, I., Kaplanová, V., Jesina, P., Pecinová, A., Nusková, H., Koch, J., Sperl, W., and Houstek, J. (2010) Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Hum. Mol. Genet. 19, 3430-3439

Havlícková, V., Kaplanová, V., Nůsková, H., Drahota, Z., and Houstek, J. (2010) Knockdown of F1 epsilon subunit decreases mitochondrial content of ATP synthase and leads to accumulation of subunit c. Biochim. Biophys. Acta 1797, 1124-1129

Pecina, P., Nůsková, H., Havličková, V., and Houštêk, J. (2012) Role of the mitochondrial ATP synthase central stalk subunits γ and δ in the activity and assembly of the mammalian enzyme. Biochim. Biophys. Acta 1817, S20-S21

Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254

Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308

Schägger, H. (2006) Tricine-SDS-PAGE. Nat. Protoc. 1, 16-22

Wittig, I., Carrozzo, R., Santorelli, F. M., and Schägger, H. (2007) Functional assays in high-resolution clear native gels to quantify mitochondrial complexes in human biopsies and cell lines. Electrophoresis 28, 3811-3820

Wittig, I., Braun, H. P., and Schägger, H. (2006) Blue native PAGE. Nat. Protoc. 1, 418-428

Wittig, I., and Schägger, H. (2009) Native electrophoretic techniques to identify protein-protein interactions. Proteomics 9, 5214-5223

Moradi-Ameli, M., and Godinot, C. (1983) Characterization of monoclonal antibodies against mitochondrial F1-ATPase. Proc. Natl. Acad. Sci. USA 80, 6167-6171

Dubot, A., Godinot, C., Dumur, V., Sablonnière, B., Stojkovic, T., Cuisset, J. M., Vojtiskova, A., Pecina, P. Jesina, P., and Houstek, J. (2004) GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene. Biochem. Biophys. Res. Commun. 313, 687-693

Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., and Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856-2860

Jágr, M., Eckhardt, A., Pataridis, S., and Mikšík, I. (2012) Comprehensive proteomic analysis of human dentin. Eur. J. Oral Sci. 120, 259-268

Hartmannová, H., Piherová, L., Tauchmannová, K., Kidd, K., Acott, P. D., Crocker, J. F., Oussedik, Y., Mallet, M., Hodaňová, K., Stránecký, V., Přistoupilová, A., Barešová, V., Jedličková, I., živná, M., Sovová, J., Hůlková, H., Robins, V., Vrbacký, M., Pecina, P., Kaplanová, V., Houštêk, J., Mráček, T., Thibeault, Y., Bleyer, A. J., and Kmoch, S. (2016) Acadian variant of Fanconi syndrome is caused by mitochondrial respiratory chain complex I deficiency due to a non-coding mutation in complex I assembly factor NDUFAF6. Hum. Mol. Genet. 25, 4062-4079

Baracca, A., Amler, E., Solaini, G., Parenti Castelli, G., Lenaz, G., and Houstek, J. (1989) Temperature-induced states of isolated F1-ATPase affect catalysis, enzyme conformation and high-affinity nucleotide binding sites. Biochim. Biophys. Acta 976, 77-84

Williams, E. G., Wu, Y., Wolski, W., Kim, J. Y., Lan, J., Hasan, M., Halter, C., Jha, P., Ryu, D., Auwerx, J., and Aebersold, R. (2018) Quantifying and localizing the mitochondrial proteome across five tissues in a mouse population. Mol. Cell. Proteomics 17, 1766-1777

Houstek, J., Klement, P., Floryk, D., Antonická, H., Hermanská, J., Kalous, M., Hansíková, H., Hout'ková, H., Chowdhury, S. K., Rosipal, T., Kmoch, S., Stratilová, L., and Zeman, J. (1999) A novel deficiency of mitochondrial ATPase of nuclear origin. Hum. Mol. Genet. 8, 1967-1974

Sperl, W., Jesina, P., Zeman, J., Mayr, J. A., Demeirleir, L., VanCoster, R., Pícková, A., Hansíková, H., Houst'ková, H., Krejcík, Z., Koch, J., Smet, J., Muss, W., Holme, E., and Houstek, J. (2006) Deficiency of mitochondrial ATP synthase of nuclear genetic origin. Neuromuscul. Disord. 16, 821-829

Pecina, P., Nůsková, H., Karbanová, V., Kaplanová, V., Mráček, T., and Houcštêck, J. (2018) Role of the mitochondrial ATP synthase central stalk subunits γ and δ in the activity and assembly of the mammalian enzyme. Biochim Biophys Acta Bioenerg 1859, 374-381

Havlíčková Karbanová, V., Cížková Vrbacká, A., Hejzlarová, K., Nůsková, H., Stránecký, V., Potocká, A., Kmoch, S., and Houštêk, J. (2012) Compensatory upregulation of respiratory chain complexes III and IV in isolated deficiency of ATP synthase due to TMEM70 mutation. Biochim. Biophys. Acta 1817, 1037-1043

Cameron, J. M., Levandovskiy, V., Mackay, N., Ackerley, C., Chitayat, D., Raiman, J., Halliday, W. H., Schulze, A., and Robinson, B. H. (2011) Complex V TMEM70 deficiency results in mitochondrial nucleoid disorganization. Mitochondrion 11, 191-199

Guerrero-Castillo, S., Baertling, F., Kownatzki, D., Wessels, H. J., Arnold, S., Brandt, U., and Nijtmans, L. (2017) The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab. 25, 128-139

Hejzlarová, K., Kaplanová, V., Nůsková, H., Kovářová, N., Ješina, P., Drahota, Z., Mráček, T., Seneca, S., and Houštêk, J. (2015) Alteration of structure and function of ATP synthase and cytochrome c oxidase by lack of Fo-a and Cox3 subunits caused by mitochondrial DNA 9205delTA mutation. Biochem. J. 466, 601-611

Wittig, I., Meyer, B., Heide, H., Steger, M., Bleier, L., Wumaier, Z., Karas, M., and Schägger, H. (2010) Assembly and oligomerization of human ATP synthase lacking mitochondrial subunits a and A6L. Biochim. Biophys. Acta 1797, 1004-1011

Carrozzo, R., Wittig, I., Santorelli, F. M., Bertini, E., Hoffmann, S., Brandt, U., and Schägger, H. (2006) Subcomplexes of human ATP synthase mark mitochondrial biosynthesis disorders. Ann. Neurol. 59, 265-275

Houstêk, J., Klement, P., Hermanská, J., Houstková, H., Hansíková, H., Van den Bogert, C., and Zeman, J. (1995) Altered properties of mitochondrial ATP-synthase in patients with a T-<Gmutation in the ATPase 6 (subunit a) gene at position 8993 of mtDNA. Biochim. Biophys. Acta 1271, 349-357

Rak, M., Zeng, X., Brière, J. J., and Tzagoloff, A. (2009) Assembly of F0 in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1793, 108-116

Zeng, X., Barros, M. H., Shulman, T., and Tzagoloff, A. (2008) ATP25, a new nuclear gene of Saccharomyces cerevisiae required for expression and assembly of the Atp9p subunit of mitochondrial ATPase. Mol. Biol. Cell 19, 1366-1377

Dyer, M. R., and Walker, J. E. (1993) Sequences of members of the human gene family for the c subunit of mitochondrial ATP synthase. Biochem. J. 293, 51-64

Yan, W. L., Lerner, T. J., Haines, J. L., and Gusella, J. F. (1994) Sequence analysis and mapping of a novel human mitochondrial ATP synthase subunit 9 cDNA (ATP5G3). Genomics 24, 375-377

Rojo, E. E., Stuart, R. A., and Neupert, W. (1995) Conservative sorting of F0-ATPase subunit 9: export from matrix requires delta pH across inner membrane and matrix ATP. EMBO J. 14, 3445-3451

Kolli, R., Soll, J., and Carrie, C. (2018) Plant mitochondrial inner membrane protein insertion. Int. J. Mol. Sci. 19, E641

Arechaga, I., Butler, P. J., and Walker, J. E. (2002) Self-assembly of ATP synthase subunit c rings. FEBS Lett. 515, 189-193

Yumen, I., Iwasaki, I., Suzuki, T., Todokoro, Y., Tanaka, K., Okada, O., Fujiwara, T., Yoshida, M., and Akutsu, H. (2012) Purification, characterization and reconstitution into membranes of the oligomeric c-subunit ring of thermophilic F(o)F(1)-ATP synthase expressed in Escherichia coli. Protein Expr. Purif. 82, 396-401

Van der Laan, M., Bechtluft, P., Kol, S., Nouwen, N., and Driessen, A. J. (2004) F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J. Cell Biol. 165, 213-222

Suzuki, T., Ozaki, Y., Sone, N., Feniouk, B. A., and Yoshida, M. (2007) The product of uncI gene in F1Fo-ATP synthase operon plays a chaperone-like role to assist c-ring assembly. Proc. Natl. Acad. Sci. USA 104, 20776-20781

Ozaki, Y., Suzuki, T., Kuruma, Y., Ueda, T., and Yoshida, M. (2008) UncI protein can mediate ring-assembly of c-subunits of FoF1-ATP synthase in vitro. Biochem. Biophys. Res. Commun. 367, 663-666

Bonnefoy, N., Chalvet, F., Hamel, P., Slonimski, P. P., and Dujardin, G. (1994) OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J. Mol. Biol. 239, 201-212

Altamura, N., Capitanio, N., Bonnefoy, N., Papa, S., and Dujardin, G. (1996) The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase. FEBS Lett. 382, 111-115

He, S., and Fox, T. D. (1997) Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. Mol. Biol. Cell 8, 1449-1460

Jia, L., Dienhart, M., Schramp, M., McCauley, M., Hell, K., and Stuart, R. A. (2003) Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J. 22, 6438-6447

Jia, L., Dienhart, M. K., and Stuart, R. A. (2007) Oxa1 directly interacts with Atp9 and mediates its assembly into the mitochondrial F1Fo-ATP synthase complex. Mol. Biol. Cell 18, 1897-1908

Su, C. H., McStay, G. P., and Tzagoloff, A. (2014) Assembly of the rotor component of yeast mitochondrial ATP synthase is enhanced when Atp9p is supplied by Atp9p-Cox6p complexes. J. Biol. Chem. 289, 31605-31616

Woellhaf, M. W., Sommer, F., Schroda, M., and Herrmann, J. M. (2016) Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein. Mol. Biol. Cell 27, 3031-3039

Stiburek, L., Fornuskova, D., Wenchich, L., Pejznochova, M., Hansikova, H., and Zeman, J. (2007) Knockdown of human Oxa1l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase. J. Mol. Biol. 374, 506-516

Thompson, K., Mai, N., Oláhová, M., Scialó, F., Formosa, L. E., Stroud, D. A., Garrett, M., Lax, N. Z., Robertson, F. M., Jou, C., Nascimento, A., Ortez, C., Jimenez-Mallebrera, C., Hardy, S. A., He, L., Brown, G. K., Marttinen, P., McFarland, R., Sanz, A., Battersby, B. J., Bonnen, P. E., Ryan, M. T., Chrzanowska-Lightowlers, Z. M., Lightowlers, R. N., and Taylor, R. W. (2018) OXA1L mutations cause mitochondrial encephalopathy and a combined oxidative phosphorylation defect. EMBO Mol. Med. 10, e9060

Bonnefoy, N., Fiumera, H. L., Dujardin, G., and Fox, T. D. (2009) Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes. Biochim. Biophys. Acta 1793, 60-70

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...