Genetic Complementation of ATP Synthase Deficiency Due to Dysfunction of TMEM70 Assembly Factor in Rat

. 2022 Jan 26 ; 10 (2) : . [epub] 20220126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35203486

Grantová podpora
20-25768S Grantová Agentura České Republiky
NV19-07-00149 Agentura Pro Zdravotnický Výzkum České Republiky
GA UK 13821 / 2020 Grantová Agentura, Univerzita Karlova
AP1502 Akademie Věd České Republiky
RVO:67985823 Akademie Věd České Republiky

Odkazy

PubMed 35203486
PubMed Central PMC8869460
DOI 10.3390/biomedicines10020276
PII: biomedicines10020276
Knihovny.cz E-zdroje

Mutations of the TMEM70 gene disrupt the biogenesis of the ATP synthase and represent the most frequent cause of autosomal recessive encephalo-cardio-myopathy with neonatal onset. Patient tissues show isolated defects in the ATP synthase, leading to the impaired mitochondrial synthesis of ATP and insufficient energy provision. In the current study, we tested the efficiency of gene complementation by using a transgenic rescue approach in spontaneously hypertensive rats with the targeted Tmem70 gene (SHR-Tmem70ko/ko), which leads to embryonic lethality. We generated SHR-Tmem70ko/ko knockout rats expressing the Tmem70 wild-type transgene (SHR-Tmem70ko/ko,tg/tg) under the control of the EF-1α universal promoter. Transgenic rescue resulted in viable animals that showed the variable expression of the Tmem70 transgene across the range of tissues and only minor differences in terms of the growth parameters. The TMEM70 protein was restored to 16-49% of the controls in the liver and heart, which was sufficient for the full biochemical complementation of ATP synthase biogenesis as well as for mitochondrial energetic function in the liver. In the heart, we observed partial biochemical complementation, especially in SHR-Tmem70ko/ko,tg/0 hemizygotes. As a result, this led to a minor impairment in left ventricle function. Overall, the transgenic rescue of Tmem70 in SHR-Tmem70ko/ko knockout rats resulted in the efficient complementation of ATP synthase deficiency and thus in the successful genetic treatment of an otherwise fatal mitochondrial disorder.

Zobrazit více v PubMed

DiMauro S. A history of mitochondrial diseases. J. Inherit. Metab. Dis. 2011;34:261–276. doi: 10.1007/s10545-010-9082-x. PubMed DOI

Gorman G.S., Chinnery P.F., DiMauro S., Hirano M., Koga Y., McFarland R., Suomalainen A., Thorburn D.R., Zeviani M., Turnbull D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers. 2016;2:16080. doi: 10.1038/nrdp.2016.80. PubMed DOI

Tan J., Wagner M., Stenton S.L., Strom T.M., Wortmann S.B., Prokisch H., Meitinger T., Oexle K., Klopstock T. Lifetime risk of autosomal recessive mitochondrial disorders calculated from genetic databases. EBioMedicine. 2020;54:102730. doi: 10.1016/j.ebiom.2020.102730. PubMed DOI PMC

Walker J.E. The ATP synthase: The understood, the uncertain and the unknown. Biochem. Soc. Trans. 2013;41:1–16. doi: 10.1042/BST20110773. PubMed DOI

Ackerman S.H., Tzagoloff A. Function, Structure, and Biogenesis of Mitochondrial ATP Synthase. Prog. Nucleic Acid Res. Mol. Biol. 2005;80:95–133. doi: 10.1016/s0079-6603(05)80003-0. PubMed DOI

Rak M., Gokova S., Tzagoloff A. Modular assembly of yeast mitochondrial ATP synthase. EMBO J. 2011;30:920–930. doi: 10.1038/emboj.2010.364. PubMed DOI PMC

Rak M., Zeng X., Brière J.-J., Tzagoloff A. Assembly of F0 in Saccharomyces cerevisiae. Biochim. Biophys. Acta. 2009;1793:108–116. doi: 10.1016/j.bbamcr.2008.07.001. PubMed DOI PMC

Wittig I., Meyer B., Heide H., Steger M., Bleier L., Wumaier Z., Karas M., Schägger H. Assembly and oligomerization of human ATP synthase lacking mitochondrial subunits a and A6L. Biochim. Biophys. Acta. 2010;1797:1004–1011. doi: 10.1016/j.bbabio.2010.02.021. PubMed DOI

He J., Carroll J., Ding S., Fearnley I.M., Montgomery M.G., Walker J.E. Assembly of the peripheral stalk of ATP synthase in human mitochondria. Proc. Natl. Acad. Sci. USA. 2020;117:29602–29608. doi: 10.1073/pnas.2017987117. PubMed DOI PMC

He J., Ford H.C., Carroll J., Ding S., Fearnley I.M., Walker J.E. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc. Natl. Acad. Sci. USA. 2017;114:3409–3414. doi: 10.1073/pnas.1702357114. PubMed DOI PMC

He J., Ford H.C., Carroll J., Douglas C., Gonzales E., Ding S., Fearnley I.M., Walker J.E. Assembly of the membrane domain of ATP synthase in human mitochondria. Proc. Natl. Acad. Sci. USA. 2018;115:2988–2993. doi: 10.1073/pnas.1722086115. PubMed DOI PMC

Tzagoloff A., Barrientos A., Neupert W., Herrmann J.M. Atp10p Assists Assembly of Atp6p into the F0 Unit of the Yeast Mitochondrial ATPase. J. Biol. Chem. 2004;279:19775–19780. doi: 10.1074/jbc.M401506200. PubMed DOI

Zeng X., Barros M.H., Shulman T., Tzagoloff A. ATP25, a New Nuclear Gene ofSaccharomyces cerevisiaeRequired for Expression and Assembly of the Atp9p Subunit of Mitochondrial ATPase. Mol. Biol. Cell. 2008;19:1366–1377. doi: 10.1091/mbc.e07-08-0746. PubMed DOI PMC

Zeng X., Hourset A., Tzagoloff A. The Saccharomyces cerevisiae ATP22 Gene Codes for the Mitochondrial ATPase Subunit 6-Specific Translation Factor. Genetics. 2007;175:55–63. doi: 10.1534/genetics.106.065821. PubMed DOI PMC

Zeng X., Neupert W., Tzagoloff A. The Metalloprotease Encoded byATP23Has a Dual Function in Processing and Assembly of Subunit 6 of Mitochondrial ATPase. Mol. Biol. Cell. 2007;18:617–626. doi: 10.1091/mbc.e06-09-0801. PubMed DOI PMC

Lytovchenko O., Naumenko N., Oeljeklaus S., Schmidt B., Von Der Malsburg K., Deckers M., Warscheid B., Van Der Laan M., Rehling P. The INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1F0-ATP synthase. EMBO J. 2014;33:1624–1638. doi: 10.15252/embj.201488076. PubMed DOI PMC

Li Y., Jourdain A.A., Calvo S.E., Liu J.S., Mootha V.K. CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets. PLoS Comput. Biol. 2017;13:e1005653. doi: 10.1371/journal.pcbi.1005653. PubMed DOI PMC

Čížková A., Stranecky V., Mayr J.A., Tesarova M., Havlíčková V., Paul J., Ivánek R., Kuss A.W., Hansíková H., Kaplanová V., et al. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat. Genet. 2008;40:1288–1290. doi: 10.1038/ng.246. PubMed DOI

Hejzlarová K., Tesařová M., Vrbacká-Čížková A., Vrbacký M., Hartmannová H., Kaplanová V., Nosková L., Kratochvílová H., Buzková J., Havlíčková V., et al. Expression and processing of the TMEM70 protein. Biochim. Biophys. Acta. 2011;1807:144–149. doi: 10.1016/j.bbabio.2010.10.005. PubMed DOI

Kratochvílová H., Hejzlarová K., Vrbacky M., Mráček T., Karbanová V., Tesarova M., Gombitová A., Cmarko D., Wittig I., Zeman J., et al. Mitochondrial membrane assembly of TMEM70 protein. Mitochondrion. 2014;15:1–9. doi: 10.1016/j.mito.2014.02.010. PubMed DOI

Vrbacky M., Kovalčíková J., Chawengsaksophak K., Beck I.M., Mráček T., Nůsková H., Sedmera D., Papoušek F., Kolar F., Sobol M., et al. Knockout of Tmem70 alters biogenesis of ATP synthase and leads to embryonal lethality in mice. Hum. Mol. Genet. 2016;25:4674–4685. doi: 10.1093/hmg/ddw295. PubMed DOI

Kovalčíková J., Vrbacký M., Pecina P., Tauchmannová K., Nůsková H., Kaplanová V., Brázdová A., Alán L., Eliáš J., Čunátová K., et al. TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme. FASEB J. 2019;33:14103–14117. doi: 10.1096/fj.201900685RR. PubMed DOI

Carroll J., He J., Ding S., Fearnley I.M., Walker J.E. TMEM70 and TMEM242 help to assemble the rotor ring of human ATP synthase and interact with assembly factors for complex I. Proc. Natl. Acad. Sci. USA. 2021;118:e2100558118. doi: 10.1073/pnas.2100558118. PubMed DOI PMC

Sánchez-Caballero L., Elurbe D.M., Baertling F., Guerrero-Castillo S., van den Brand M., van Strien J., van Dam T.J.P., Rodenburg R., Brandt U., Huynen M.A., et al. TMEM70 functions in the assembly of complexes I and V. Biochim. Biophys. Acta Bioenerg. 2020;1861:148202. doi: 10.1016/j.bbabio.2020.148202. PubMed DOI

Dautant A., Meier T., Hahn A., Tribouillard-Tanvier D., Di Rago J.-P., Kucharczyk R. ATP Synthase Diseases of Mitochondrial Genetic Origin. Front. Physiol. 2018;9:329. doi: 10.3389/fphys.2018.00329. PubMed DOI PMC

Hejzlarová K., Mráček T., Vrbacký M., Kaplanová V., Karbanová V., Nůsková H., Pecina P., Houštěk J. Nuclear Genetic Defects of Mitochondrial ATP Synthase. Physiol. Res. 2014;63:S57–S71. doi: 10.33549/physiolres.932643. PubMed DOI

Jonckheere A.I., Renkema G.H., Bras M., van den Heuvel L.P., Hoischen A., Gilissen C., Nabuurs S.B., Huynen M.A., De Vries M.C., Smeitink J.A., et al. A complex V ATP5A1 defect causes fatal neonatal mitochondrial encephalopathy. Brain. 2013;136:1544–1554. doi: 10.1093/brain/awt086. PubMed DOI

Oláhová M., Yoon W.H., Thompson K., Jangam S., Fernandez L., Davidson J.M., Kyle J.E., Grove M.E., Fisk D.G., Kohler J.N., et al. Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder. Am. J. Hum. Genet. 2018;102:494–504. doi: 10.1016/j.ajhg.2018.01.020. PubMed DOI PMC

Mayr J.A., Havlíčková V., Zimmermann F., Magler I., Kaplanová V., Ješina P., Pecinová A., Nůsková H., Koch J., Sperl W., et al. Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Hum. Mol. Genet. 2010;19:3430–3439. doi: 10.1093/hmg/ddq254. PubMed DOI

De Meirleir L., Seneca S., Lissens W., De Clercq I., Eyskens F., Gerlo E., Smet J., Van Coster R. Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. J. Med. Genet. 2004;41:120–124. doi: 10.1136/jmg.2003.012047. PubMed DOI PMC

Diodato D., Invernizzi F., Lamantea E., Fagiolari G., Parini R., Menni F., Parenti G., Bollani L., Pasquini E., Donati M.A., et al. Common and Novel TMEM70 Mutations in a Cohort of Italian Patients with Mitochondrial Encephalocardiomyopathy. JIMD Rep. 2015;15:1–8. doi: 10.1007/8904_2014_300. PubMed DOI PMC

Hirono K., Ichida F., Nishio N., Ogawa-Tominaga M., Fushimi T., Feichtinger R.G., Mayr J.A., Kohda M., Kishita Y., Okazaki Y., et al. Mitochondrial complex deficiency by novel compound heterozygous TMEM70 variants and correlation with developmental delay, undescended testicle, and left ventricular noncompaction in a Japanese patient: A case report. Clin. Case Rep. 2019;7:553–557. doi: 10.1002/ccr3.2050. PubMed DOI PMC

Honzik T., Tesarova M., Mayr J.A., Hansíková H., Jesina P., Bodamer O., Koch J., Magner M., Freisinger P., Huemer M., et al. Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch. Dis. Child. 2010;95:296–301. doi: 10.1136/adc.2009.168096. PubMed DOI

Magner M., Dvorakova V., Tesarova M., Mazurova S., Hansikova H., Zahorec M., Brennerova K., Bzduch V., Spiegel R., Horovitz Y., et al. TMEM70 deficiency: Long-term outcome of 48 patients. J. Inherit. Metab. Dis. 2015;38:417–426. doi: 10.1007/s10545-014-9774-8. PubMed DOI

Staretz-Chacham O., Wormser O., Manor E., Birk O.S., Ferreira C.R. TMEM70 deficiency: Novel mutation and hypercitrullinemia during metabolic decompensation. Am. J. Med. Genet. A. 2019;179:1293–1298. doi: 10.1002/ajmg.a.61138. PubMed DOI PMC

Koňaříková E., Marković A., Korandová Z., Houštěk J., Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol. Res. 2020;69:967–994. doi: 10.33549/physiolres.934529. PubMed DOI PMC

Russell O.M., Gorman G.S., Lightowlers R.N., Turnbull D.M. Mitochondrial Diseases: Hope for the Future. Cell. 2020;181:168–188. doi: 10.1016/j.cell.2020.02.051. PubMed DOI

Viscomi C., Zeviani M. Strategies for fighting mitochondrial diseases. J. Intern. Med. 2020;287:665–684. doi: 10.1111/joim.13046. PubMed DOI

Di Meo I., Auricchio A., Lamperti C., Burlina A., Viscomi C., Zeviani M. Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Mol. Med. 2012;4:1008–1014. doi: 10.1002/emmm.201201433. PubMed DOI PMC

Torres-Torronteras J., Viscomi C., Cabrera-Pérez R., Cámara Y., Di Meo I., Barquinero J., Auricchio A., Pizzorno G., Hirano M., Zeviani M., et al. Gene Therapy Using a Liver-targeted AAV Vector Restores Nucleoside and Nucleotide Homeostasis in a Murine Model of MNGIE. Mol. Ther. 2014;22:901–907. doi: 10.1038/mt.2014.6. PubMed DOI PMC

Yadak R., Cabrera-Pérez R., Torres-Torronteras J., Bugiani M., Haeck J.C., Huston M.W., Bogaerts E., Goffart S., Jacobs E.H., Stok M., et al. Preclinical Efficacy and Safety Evaluation of Hematopoietic Stem Cell Gene Therapy in a Mouse Model of MNGIE. Mol. Ther. Methods Clin. Dev. 2018;8:152–165. doi: 10.1016/j.omtm.2018.01.001. PubMed DOI PMC

Bertacchi M., Gruart A., Kaimakis P., Allet C., Serra L., Giacobini P., Delgado-García J.M., Bovolenta P., Studer M. Mouse Nr2f1 haploinsufficiency unveils new pathological mechanisms of a human optic atrophy syndrome. EMBO Mol. Med. 2019;11:e10291. doi: 10.15252/emmm.201910291. PubMed DOI PMC

Sarzi E., Seveno M., Piro-Mégy C., Elzière L., Quilès M., Péquignot M., Müller A., Hamel C.P., Lenaers G., Delettre C. OPA1 gene therapy prevents retinal ganglion cell loss in a Dominant Optic Atrophy mouse model. Sci. Rep. 2018;8:1–6. doi: 10.1038/s41598-018-20838-8. PubMed DOI PMC

Reynaud-Dulaurier R., Benegiamo G., Marrocco E., Al-Tannir R., Surace E.M., Auwerx J., Decressac M. Gene replacement therapy provides benefit in an adult mouse model of Leigh syndrome. Brain. 2020;143:2468. doi: 10.1093/brain/awaa105. PubMed DOI

Silva-Pinheiro P., Cerutti R., Luna-Sanchez M., Zeviani M., Viscomi C. A Single Intravenous Injection of AAV-PHP.B- hNDUFS4 Ameliorates the Phenotype of Ndufs4−/− Mice. Mol. Ther. Methods Clin. Dev. 2020;17:1071–1078. doi: 10.1016/j.omtm.2020.04.026. PubMed DOI PMC

Houštek J., Klement P., Floryk D., Antonicka H., Hermanská J., Kalous M., Hansíková H., Houšťková H., Chowdhury S.K.R., Rosipal T., et al. A novel deficiency of mitochondrial ATPase of nuclear origin. Hum. Mol. Genet. 1999;8:1967–1974. doi: 10.1093/hmg/8.11.1967. PubMed DOI

Nůsková H., Mikesova J., Efimova I., Pecinova A., Pecina P., Drahota Z., Houstek J., Mracek T. Biochemical thresholds for pathological presentation of ATP synthase deficiencies. Biochem. Biophys. Res. Commun. 2020;521:1036–1041. doi: 10.1016/j.bbrc.2019.11.033. PubMed DOI

Rossignol R., Letellier T., Malgat M., Rocher C., Mazat J.P. Tissue variation in the control of oxidative phosphorylation: Implication for mitochondrial diseases. Biochem. J. 2000;347 Pt 1:45–53. doi: 10.1042/bj3470045. PubMed DOI PMC

Rossignol R., Malgat M., Mazat J.-P., Letellier T. Threshold effect and tissue specificity. Implication for mitochondrial cytopathies. J. Biol. Chem. 1999;274:33426–33432. doi: 10.1074/jbc.274.47.33426. PubMed DOI

Jonckheere A.I., Huigsloot M., Lammens M., Jansen J., van den Heuvel L.P., Spiekerkoetter U., von Kleist-Retzow J.-C., Forkink M., Koopman W.J., Szklarczyk R., et al. Restoration of complex V deficiency caused by a novel deletion in the human TMEM70 gene normalizes mitochondrial morphology. Mitochondrion. 2011;11:954–963. doi: 10.1016/j.mito.2011.08.012. PubMed DOI

Bader M. Rat Models of Cardiovascular Diseases. Methods Mol. Biol. 2009;597:403–414. doi: 10.1007/978-1-60327-389-3_27. PubMed DOI

Dillmann W.H. The rat as a model for cardiovascular disease. Drug Discov. Today Dis. Model. 2008;5:173–178. doi: 10.1016/j.ddmod.2009.03.006. PubMed DOI PMC

Liška F., Landa V., Zídek V., Mlejnek P., Šilhavý J., Šimáková M., Strnad H., Trnovská J., Škop V., Kazdová L., et al. Downregulation of Plzf Gene Ameliorates Metabolic and Cardiac Traits in the Spontaneously Hypertensive Rat. Hypertension. 2017;69:1084–1091. doi: 10.1161/HYPERTENSIONAHA.116.08798. PubMed DOI

Olson E., Pravenec M., Landa V., Koh-Tan H.H.C., Dominiczak A.F., McBride M.W., Graham D. Transgenic overexpression of glutathione S-transferase μ-type 1 reduces hypertension and oxidative stress in the stroke-prone spontaneously hypertensive rat. J. Hypertens. 2019;37:985–996. doi: 10.1097/HJH.0000000000001960. PubMed DOI

Pravenec M., Kajiya T., Zídek V., Landa V., Mlejnek P., Simakova M., Šilhavý J., Malínská H., Oliyarnyk O., Kazdová L., et al. Effects of Human C-Reactive Protein on Pathogenesis of Features of the Metabolic Syndrome. Hypertension. 2011;57:731–737. doi: 10.1161/HYPERTENSIONAHA.110.164350. PubMed DOI PMC

Pravenec M., Kazdová L., Landa V., Zídek V., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W. Transgenic and Recombinant Resistin Impair Skeletal Muscle Glucose Metabolism in the Spontaneously Hypertensive Rat. J. Biol. Chem. 2003;278:45209–45215. doi: 10.1074/jbc.M304869200. PubMed DOI

Pravenec M., Křen V., Landa V., Mlejnek P., Musilová A., Šilhavý J., Šimáková M., Zídek V. Recent Progress in the Genetics of Spontaneously Hypertensive Rats. Physiol. Res. 2014;63:S1–S8. doi: 10.33549/physiolres.932622. PubMed DOI

Mráček T., Mikešová J., Kaplanová V., Pecina P., Šilhavý J., Mlejnek P., Šimáková M., Liška F., Marková I., Malínská H., et al. Downregulation of Tmem70 gene induces cardiac oxidative stress, change in fuel utilization and systolic left ventricle dysfunction in spontaneously hypertensive rats. Physiol Genom. 2021 Submitted.

Ivics Z., Mátés L., Yau T.Y., Landa V., Zidek V., Bashir S., Hoffmann O.I., Hiripi L., Garrels W., Kues W.A., et al. Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nat. Protoc. 2014;9:773–793. doi: 10.1038/nprot.2014.008. PubMed DOI

Pecinová A., Drahota Z., Nůsková H., Pecina P., Houštěk J. Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion. 2011;11:722–728. doi: 10.1016/j.mito.2011.05.006. PubMed DOI

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Schägger H. Tricine–SDS-PAGE. Nat. Protoc. 2006;1:16–22. doi: 10.1038/nprot.2006.4. PubMed DOI

Wittig I., Braun H.-P., Schägger H. Blue native PAGE. Nat. Protoc. 2006;1:418–428. doi: 10.1038/nprot.2006.62. PubMed DOI

Wittig I., Carrozzo R., Santorelli F.M., Schägger H. Functional assays in high-resolution clear native gels to quantify mitochondrial complexes in human biopsies and cell lines. Electrophoresis. 2007;28:3811–3820. doi: 10.1002/elps.200700367. PubMed DOI

Pecinová A., Alán L., Brázdová A., Vrbacký M., Pecina P., Drahota Z., Houštěk J., Mráček T. Role of Mitochondrial Glycerol-3-Phosphate Dehydrogenase in Metabolic Adaptations of Prostate Cancer. Cells. 2020;9:1764. doi: 10.3390/cells9081764. PubMed DOI PMC

Moradi-Ameli M., Godinot C. Characterization of monoclonal antibodies against mitochondrial F1-ATPase. Proc. Natl. Acad. Sci. USA. 1983;80:6167–6171. doi: 10.1073/pnas.80.20.6167. PubMed DOI PMC

Pecina P., Čapková M., Chowdhury S.K., Drahota Z., Dubot A., Vojtíšková A., Hansíková H., Houšťková H., Zeman J., Godinot C., et al. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim. Biophys. Acta. 2003;1639:53–63. doi: 10.1016/S0925-4439(03)00127-3. PubMed DOI

Neckar J., Šilhavý J., Zídek V., Landa V., Mlejnek P., Simakova M., Seidman J.G., Seidman C., Kazdová L., Klevstig M., et al. CD36 overexpression predisposes to arrhythmias but reduces infarct size in spontaneously hypertensive rats: Gene expression profile analysis. Physiol. Genom. 2012;44:173–182. doi: 10.1152/physiolgenomics.00083.2011. PubMed DOI PMC

Coan P.M., Hummel O., Diaz A.G., Barrier M., Alfazema N., Norsworthy P.J., Pravenec M., Petretto E., Hubner N., Aitman T.J. Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat. Dis. Model. Mech. 2017;10:297–306. doi: 10.1242/dmm.026716. PubMed DOI PMC

Johnson M.D., Mueller M., Adamowicz-Brice M., Collins M.J., Gellert P., Maratou K., Srivastava P.K., Rotival M., Butt S., Game L., et al. Genetic Analysis of the Cardiac Methylome at Single Nucleotide Resolution in a Model of Human Cardiovascular Disease. PLoS Genet. 2014;10:e1004813. doi: 10.1371/journal.pgen.1004813. PubMed DOI PMC

Pravenec M., Kožich V., Krijt J., Sokolová J., Zídek V., Landa V., Simakova M., Mlejnek P., Šilhavý J., Oliyarnyk O., et al. Folate Deficiency Is Associated with Oxidative Stress, Increased Blood Pressure, and Insulin Resistance in Spontaneously Hypertensive Rats. Am. J. Hypertens. 2013;26:135–140. doi: 10.1093/ajh/hps015. PubMed DOI PMC

Pravenec M., Zidek V., Simakova M., Kren V., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., et al. Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J. Clin. Investig. 1999;103:1651–1657. doi: 10.1172/JCI6691. PubMed DOI PMC

Schäfer S., Adami E., Heinig M., Rodrigues K.E.C., Kreuchwig F., Silhavy J., van Heesch S., Simaite D., Rajewsky N., Cuppen E., et al. Translational regulation shapes the molecular landscape of complex disease phenotypes. Nat. Commun. 2015;6:7200. doi: 10.1038/ncomms8200. PubMed DOI PMC

Pravenec M., Zídek V., Landa V., Mlejnek P., Šilhavý J., Simakova M., Trnovská J., Skop V., Markova I., Malínská H., et al. Mutant Wars2 Gene in Spontaneously Hypertensive Rats Impairs Brown Adipose Tissue Function and Predisposes to Visceral Obesity. Physiol. Res. 2017;66:917–924. doi: 10.33549/physiolres.933811. PubMed DOI

Katter K., Geurts A.M., Hoffmann O., Mátés L., Landa V., Hiripi L., Moreno C., Lazar J., Bashir S., Zidek V., et al. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. FASEB J. 2013;27:930–941. doi: 10.1096/fj.12-205526. PubMed DOI PMC

Ali Hosseini Rad S.M., Poudel A., Tan G.M.Y., McLellan A.D. Promoter choice: Who should drive the CAR in T cells? PLoS ONE. 2020;15:e0232915. doi: 10.1371/journal.pone.0232915. PubMed DOI PMC

Pravenec M., Landa V., Zidek V., Musilova A., Kren V., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., et al. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat. Genet. 2001;27:156–158. doi: 10.1038/84777. PubMed DOI

Slone J., Huang T. The special considerations of gene therapy for mitochondrial diseases. NPJ Genom. Med. 2020;5:1–7. doi: 10.1038/s41525-020-0116-5. PubMed DOI PMC

Pereira C.V., Peralta S., Arguello T., Bacman S.R., Diaz F., Moraes C.T. Myopathy reversion in mice after restauration of mitochondrial complex I. EMBO Mol. Med. 2020;12:e10674. doi: 10.15252/emmm.201910674. PubMed DOI PMC

Zhang Y., Tian Z., Yuan J., Liu C., Liu H.L., Ma S.Q., Li B. The Progress of Gene Therapy for Leber’s Optic Hereditary Neuropathy. Curr. Gene Ther. 2017;17:320–326. doi: 10.2174/1566523218666171129204926. PubMed DOI PMC

Ghezzi D., Zeviani M. Human diseases associated with defects in assembly of OXPHOS complexes. Essays Biochem. 2018;62:271–286. doi: 10.1042/ebc20170099. PubMed DOI PMC

Guerrero-Castillo S., Baertling F., Kownatzki D., Wessels H.J., Arnold S., Brandt U., Nijtmans L. The Assembly Pathway of Mitochondrial Respiratory Chain Complex I. Cell Metab. 2017;25:128–139. doi: 10.1016/j.cmet.2016.09.002. PubMed DOI

Karbanová V.H., Vrbacká A., Hejzlarová K., Nůsková H., Stránecký V., Potocká A., Kmoch S., Houštěk J. Compensatory upregulation of respiratory chain complexes III and IV in isolated deficiency of ATP synthase due to TMEM70 mutation. Biochim. Biophys. Acta. 2012;1817:1037–1043. doi: 10.1016/j.bbabio.2012.03.004. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome

. 2024 Sep 11 ; 7 (1) : 1116. [epub] 20240911

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...