Translational regulation shapes the molecular landscape of complex disease phenotypes

. 2015 May 26 ; 6 () : 7200. [epub] 20150526

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26007203

The extent of translational control of gene expression in mammalian tissues remains largely unknown. Here we perform genome-wide RNA sequencing and ribosome profiling in heart and liver tissues to investigate strain-specific translational regulation in the spontaneously hypertensive rat (SHR/Ola). For the most part, transcriptional variation is equally apparent at the translational level and there is limited evidence of translational buffering. Remarkably, we observe hundreds of strain-specific differences in translation, almost doubling the number of differentially expressed genes. The integration of genetic, transcriptional and translational data sets reveals distinct signatures in 3'UTR variation, RNA-binding protein motifs and miRNA expression associated with translational regulation of gene expression. We show that a large number of genes associated with heart and liver traits in human genome-wide association studies are primarily translationally regulated. Capturing interindividual differences in the translated genome will lead to new insights into the genes and regulatory pathways underlying disease phenotypes.

Zobrazit více v PubMed

Brem R. B., Yvert G., Clinton R. & Kruglyak L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002). PubMed

Hubner N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 37, 243–253 (2005). PubMed

Scheper G., Knaap M. & Proud C. Translation matters: protein synthesis defects in inherited disease. Nat. Rev. Genet. 8, 711–723 (2007). PubMed

Schwanhäusser B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011). PubMed

Li J., Bickel P. & Biggin M. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ 2, (2014). PubMed PMC

Wu L. et al. Variation and genetic control of protein abundance in humans. Nature 499, 79–82 (2013). PubMed PMC

Albert F., Treusch S., Shockley A., Bloom J. & Kruglyak L. Genetics of single-cell protein abundance variation in large yeast populations. Nature 506, 494–497 (2014). PubMed PMC

Parts L. et al. Heritability and genetic basis of protein level variation in an outbred population. Genome Res. 24, 1363–1370 (2014). PubMed PMC

Hause R. J. et al. Identification and validation of genetic variants that influence transcription factor and cell signaling protein levels. Am. J. Hum. Genet. 95, 194–208 (2014). PubMed PMC

Battle A. et al. Genomic variation. Impact of regulatory variation from RNA to protein. Science 347, 664–667 (2015). PubMed PMC

Ingolia N., Ghaemmaghami S., Newman J. & Weissman J. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009). PubMed PMC

Li G.-W., Burkhardt D., Gross C. & Weissman J. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014). PubMed PMC

Okamoto K. & Aoki K. Development of a strain of spontaneously hypertensive rats. Japn. Circ. J. 27, 282–293 (1963). PubMed

Aitman T. J. et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat. Genet. 21, 76–83 (1999). PubMed

Pravenec M. et al. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat. Genet. 27, 156–158 (2001). PubMed

Pravenec M. et al. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat. Genet. 40, 952–954 (2008). PubMed

Petretto E. et al. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat. Genet. 40, 546–552 (2008). PubMed PMC

Gibbs R. A. et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004). PubMed

Atanur S. S. et al. The genome sequence of the spontaneously hypertensive rat: analysis and functional significance. Genome Res. 20, 791–803 (2010). PubMed PMC

Atanur S. et al. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 154, 691–703 (2013). PubMed PMC

Anders S. & Huber W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010). PubMed PMC

McManus C. J., May G. E., Spealman P. & Shteyman A. Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast. Genome Res. 24, 422–430 (2014). PubMed PMC

Artieri C. & Fraser H. Evolution at two levels of gene expression in yeast. Genome Res. 24, 411–421 (2014). PubMed PMC

Albert F. W., Muzzey D., Weissman J. S. & Kruglyak L. Genetic influences on translation in yeast. PLoS Genet. 10, e1004692 (2014). PubMed PMC

Warton D. I., Duursma R. A., Falster D. S. & Taskinen S. smatr 3 - an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).

Low T. et al. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Rep. 5, 1469–1478 (2013). PubMed

Edwards D. Introduction to Graphical Modelling Springer (2000).

Sandberg R., Neilson J., Sarma A., Sharp P. & Burge C. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008). PubMed PMC

Mayr C. & Bartel D. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009). PubMed PMC

Ghazalpour A. et al. Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet. 7, e1001393 (2011). PubMed PMC

Rintisch C. et al. Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res. 24, 942–953 (2014). PubMed PMC

Richter J. D. CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285 (2007). PubMed

Guo H., Ingolia N., Weissman J. & Bartel D. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010). PubMed PMC

Bazzini A., Lee M. & Giraldez A. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012). PubMed PMC

Welter D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014). PubMed PMC

Hoed M. den et al. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet. 45, 621–631 (2013). PubMed PMC

Illig T. et al. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 42, 137–141 (2010). PubMed PMC

Hong M.-G. G. et al. A genome-wide assessment of variability in human serum metabolism. Hum. Mutat. 34, 515–524 (2013). PubMed

Dixon A. L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007). PubMed

Langmead B. & Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). PubMed PMC

Flicek P. et al. Ensembl 2013. Nucleic Acids Res. 41, D48–D55 (2013). PubMed PMC

Lowe T. M. & Eddy S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997). PubMed PMC

Trapnell C., Pachter L. & Salzberg S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009). PubMed PMC

Kim D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013). PubMed PMC

Love M. I., Huber W. & Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC

Warton D. & Weber N. Common slope tests for bivariate errors-in-variables models. Biom. J. 44, 161–174 (2002).

Graybill F. A. Theory and Application of the Linear Model Duxbury (2000).

Kanehisa M. & Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000). PubMed PMC

Duncan D., Prodduturi N. & Zhang B. WebGestalt2: an updated and expanded version of the Web-based Gene Set Analysis Toolkit. BMC Bioinformatics 11, P10 (2010).

Langmead B., Trapnell C., Pop M. & Salzberg S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). PubMed PMC

Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 32, D109–D111 (2004). PubMed PMC

Griffiths-Jones S., Grocock R. J., Dongen S., van, Bateman A. & Enright A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006). PubMed PMC

Griffiths-Jones S., Saini H. K., van Dongen S. & Enright A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008). PubMed PMC

Schulte J. H. et al. Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res. 38, 5919–5928 (2010). PubMed PMC

Benjamini Y. & Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).

Lewis B. P., Burge C. B. & Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005). PubMed

Fisher R. A. Statistical Methods for Research Workers Oliver and Boyd (1925).

Venables W. N. & Ripley B. D. Modern Applied Statistics With S Springer (2002).

Ray D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013). PubMed PMC

Manke T., Heinig M. & Vingron M. Quantifying the effect of sequence variation on regulatory interactions. Hum. Mutat. 31, 477–483 (2010). PubMed

Kettunen J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012). PubMed PMC

Inouye M. et al. Novel Loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet. 8, e1002907 (2012). PubMed PMC

Suhre K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–60 (2011). PubMed PMC

Willer C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013). PubMed PMC

Teslovich T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...