Translational regulation shapes the molecular landscape of complex disease phenotypes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26007203
PubMed Central
PMC4455061
DOI
10.1038/ncomms8200
PII: ncomms8200
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- hypertenze metabolismus MeSH
- játra metabolismus MeSH
- myokard metabolismus MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- proteom MeSH
- regulace genové exprese * MeSH
- ribozomy metabolismus MeSH
- sekvenční analýza RNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
The extent of translational control of gene expression in mammalian tissues remains largely unknown. Here we perform genome-wide RNA sequencing and ribosome profiling in heart and liver tissues to investigate strain-specific translational regulation in the spontaneously hypertensive rat (SHR/Ola). For the most part, transcriptional variation is equally apparent at the translational level and there is limited evidence of translational buffering. Remarkably, we observe hundreds of strain-specific differences in translation, almost doubling the number of differentially expressed genes. The integration of genetic, transcriptional and translational data sets reveals distinct signatures in 3'UTR variation, RNA-binding protein motifs and miRNA expression associated with translational regulation of gene expression. We show that a large number of genes associated with heart and liver traits in human genome-wide association studies are primarily translationally regulated. Capturing interindividual differences in the translated genome will lead to new insights into the genes and regulatory pathways underlying disease phenotypes.
Charité Universitätsmedizin 10117 Berlin Germany
Duke National University of Singapore Singapore 169857 Singapore
DZHK Partner Site 13347 Berlin Germany
National Heart and Lung Institute Imperial College London London SW3 6NP UK
Zobrazit více v PubMed
Brem R. B., Yvert G., Clinton R. & Kruglyak L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002). PubMed
Hubner N. PubMed
Scheper G., Knaap M. & Proud C. Translation matters: protein synthesis defects in inherited disease. Nat. Rev. Genet. 8, 711–723 (2007). PubMed
Schwanhäusser B. PubMed
Li J., Bickel P. & Biggin M. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ 2, (2014). PubMed PMC
Albert F., Treusch S., Shockley A., Bloom J. & Kruglyak L. Genetics of single-cell protein abundance variation in large yeast populations. Nature 506, 494–497 (2014). PubMed PMC
Ingolia N., Ghaemmaghami S., Newman J. & Weissman J. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009). PubMed PMC
Li G.-W., Burkhardt D., Gross C. & Weissman J. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014). PubMed PMC
Okamoto K. & Aoki K. Development of a strain of spontaneously hypertensive rats. Japn. Circ. J. 27, 282–293 (1963). PubMed
Aitman T. J. PubMed
Pravenec M. PubMed
Pravenec M. PubMed
Gibbs R. A. PubMed
Anders S. & Huber W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010). PubMed PMC
McManus C. J., May G. E., Spealman P. & Shteyman A. Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast. Genome Res. 24, 422–430 (2014). PubMed PMC
Artieri C. & Fraser H. Evolution at two levels of gene expression in yeast. Genome Res. 24, 411–421 (2014). PubMed PMC
Albert F. W., Muzzey D., Weissman J. S. & Kruglyak L. Genetic influences on translation in yeast. PLoS Genet. 10, e1004692 (2014). PubMed PMC
Warton D. I., Duursma R. A., Falster D. S. & Taskinen S. smatr 3 - an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).
Low T. PubMed
Edwards D. Introduction to Graphical Modelling Springer (2000).
Sandberg R., Neilson J., Sarma A., Sharp P. & Burge C. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008). PubMed PMC
Mayr C. & Bartel D. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009). PubMed PMC
Richter J. D. CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285 (2007). PubMed
Guo H., Ingolia N., Weissman J. & Bartel D. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010). PubMed PMC
Bazzini A., Lee M. & Giraldez A. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012). PubMed PMC
Hong M.-G. G. PubMed
Dixon A. L. PubMed
Langmead B. & Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). PubMed PMC
Lowe T. M. & Eddy S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997). PubMed PMC
Trapnell C., Pachter L. & Salzberg S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009). PubMed PMC
Love M. I., Huber W. & Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC
Warton D. & Weber N. Common slope tests for bivariate errors-in-variables models. Biom. J. 44, 161–174 (2002).
Graybill F. A. Theory and Application of the Linear Model Duxbury (2000).
Kanehisa M. & Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000). PubMed PMC
Duncan D., Prodduturi N. & Zhang B. WebGestalt2: an updated and expanded version of the Web-based Gene Set Analysis Toolkit. BMC Bioinformatics 11, P10 (2010).
Langmead B., Trapnell C., Pop M. & Salzberg S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). PubMed PMC
Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 32, D109–D111 (2004). PubMed PMC
Griffiths-Jones S., Grocock R. J., Dongen S., van, Bateman A. & Enright A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006). PubMed PMC
Griffiths-Jones S., Saini H. K., van Dongen S. & Enright A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008). PubMed PMC
Benjamini Y. & Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).
Lewis B. P., Burge C. B. & Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005). PubMed
Fisher R. A. Statistical Methods for Research Workers Oliver and Boyd (1925).
Venables W. N. & Ripley B. D. Modern Applied Statistics With S Springer (2002).
Manke T., Heinig M. & Vingron M. Quantifying the effect of sequence variation on regulatory interactions. Hum. Mutat. 31, 477–483 (2010). PubMed