Translational regulation shapes the molecular landscape of complex disease phenotypes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26007203
PubMed Central
PMC4455061
DOI
10.1038/ncomms8200
PII: ncomms8200
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- hypertenze metabolismus MeSH
- játra metabolismus MeSH
- myokard metabolismus MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- proteom MeSH
- regulace genové exprese * MeSH
- ribozomy metabolismus MeSH
- sekvenční analýza RNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
The extent of translational control of gene expression in mammalian tissues remains largely unknown. Here we perform genome-wide RNA sequencing and ribosome profiling in heart and liver tissues to investigate strain-specific translational regulation in the spontaneously hypertensive rat (SHR/Ola). For the most part, transcriptional variation is equally apparent at the translational level and there is limited evidence of translational buffering. Remarkably, we observe hundreds of strain-specific differences in translation, almost doubling the number of differentially expressed genes. The integration of genetic, transcriptional and translational data sets reveals distinct signatures in 3'UTR variation, RNA-binding protein motifs and miRNA expression associated with translational regulation of gene expression. We show that a large number of genes associated with heart and liver traits in human genome-wide association studies are primarily translationally regulated. Capturing interindividual differences in the translated genome will lead to new insights into the genes and regulatory pathways underlying disease phenotypes.
Charité Universitätsmedizin 10117 Berlin Germany
Duke National University of Singapore Singapore 169857 Singapore
DZHK Partner Site 13347 Berlin Germany
National Heart and Lung Institute Imperial College London London SW3 6NP UK
Zobrazit více v PubMed
Brem R. B., Yvert G., Clinton R. & Kruglyak L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002). PubMed
Hubner N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 37, 243–253 (2005). PubMed
Scheper G., Knaap M. & Proud C. Translation matters: protein synthesis defects in inherited disease. Nat. Rev. Genet. 8, 711–723 (2007). PubMed
Schwanhäusser B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011). PubMed
Li J., Bickel P. & Biggin M. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ 2, (2014). PubMed PMC
Wu L. et al. Variation and genetic control of protein abundance in humans. Nature 499, 79–82 (2013). PubMed PMC
Albert F., Treusch S., Shockley A., Bloom J. & Kruglyak L. Genetics of single-cell protein abundance variation in large yeast populations. Nature 506, 494–497 (2014). PubMed PMC
Parts L. et al. Heritability and genetic basis of protein level variation in an outbred population. Genome Res. 24, 1363–1370 (2014). PubMed PMC
Hause R. J. et al. Identification and validation of genetic variants that influence transcription factor and cell signaling protein levels. Am. J. Hum. Genet. 95, 194–208 (2014). PubMed PMC
Battle A. et al. Genomic variation. Impact of regulatory variation from RNA to protein. Science 347, 664–667 (2015). PubMed PMC
Ingolia N., Ghaemmaghami S., Newman J. & Weissman J. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009). PubMed PMC
Li G.-W., Burkhardt D., Gross C. & Weissman J. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014). PubMed PMC
Okamoto K. & Aoki K. Development of a strain of spontaneously hypertensive rats. Japn. Circ. J. 27, 282–293 (1963). PubMed
Aitman T. J. et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat. Genet. 21, 76–83 (1999). PubMed
Pravenec M. et al. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat. Genet. 27, 156–158 (2001). PubMed
Pravenec M. et al. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat. Genet. 40, 952–954 (2008). PubMed
Petretto E. et al. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat. Genet. 40, 546–552 (2008). PubMed PMC
Gibbs R. A. et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004). PubMed
Atanur S. S. et al. The genome sequence of the spontaneously hypertensive rat: analysis and functional significance. Genome Res. 20, 791–803 (2010). PubMed PMC
Atanur S. et al. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 154, 691–703 (2013). PubMed PMC
Anders S. & Huber W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010). PubMed PMC
McManus C. J., May G. E., Spealman P. & Shteyman A. Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast. Genome Res. 24, 422–430 (2014). PubMed PMC
Artieri C. & Fraser H. Evolution at two levels of gene expression in yeast. Genome Res. 24, 411–421 (2014). PubMed PMC
Albert F. W., Muzzey D., Weissman J. S. & Kruglyak L. Genetic influences on translation in yeast. PLoS Genet. 10, e1004692 (2014). PubMed PMC
Warton D. I., Duursma R. A., Falster D. S. & Taskinen S. smatr 3 - an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).
Low T. et al. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Rep. 5, 1469–1478 (2013). PubMed
Edwards D. Introduction to Graphical Modelling Springer (2000).
Sandberg R., Neilson J., Sarma A., Sharp P. & Burge C. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008). PubMed PMC
Mayr C. & Bartel D. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009). PubMed PMC
Ghazalpour A. et al. Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet. 7, e1001393 (2011). PubMed PMC
Rintisch C. et al. Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res. 24, 942–953 (2014). PubMed PMC
Richter J. D. CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285 (2007). PubMed
Guo H., Ingolia N., Weissman J. & Bartel D. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010). PubMed PMC
Bazzini A., Lee M. & Giraldez A. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012). PubMed PMC
Welter D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014). PubMed PMC
Hoed M. den et al. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet. 45, 621–631 (2013). PubMed PMC
Illig T. et al. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 42, 137–141 (2010). PubMed PMC
Hong M.-G. G. et al. A genome-wide assessment of variability in human serum metabolism. Hum. Mutat. 34, 515–524 (2013). PubMed
Dixon A. L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007). PubMed
Langmead B. & Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). PubMed PMC
Flicek P. et al. Ensembl 2013. Nucleic Acids Res. 41, D48–D55 (2013). PubMed PMC
Lowe T. M. & Eddy S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997). PubMed PMC
Trapnell C., Pachter L. & Salzberg S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009). PubMed PMC
Kim D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013). PubMed PMC
Love M. I., Huber W. & Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC
Warton D. & Weber N. Common slope tests for bivariate errors-in-variables models. Biom. J. 44, 161–174 (2002).
Graybill F. A. Theory and Application of the Linear Model Duxbury (2000).
Kanehisa M. & Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000). PubMed PMC
Duncan D., Prodduturi N. & Zhang B. WebGestalt2: an updated and expanded version of the Web-based Gene Set Analysis Toolkit. BMC Bioinformatics 11, P10 (2010).
Langmead B., Trapnell C., Pop M. & Salzberg S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). PubMed PMC
Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 32, D109–D111 (2004). PubMed PMC
Griffiths-Jones S., Grocock R. J., Dongen S., van, Bateman A. & Enright A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006). PubMed PMC
Griffiths-Jones S., Saini H. K., van Dongen S. & Enright A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008). PubMed PMC
Schulte J. H. et al. Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res. 38, 5919–5928 (2010). PubMed PMC
Benjamini Y. & Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).
Lewis B. P., Burge C. B. & Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005). PubMed
Fisher R. A. Statistical Methods for Research Workers Oliver and Boyd (1925).
Venables W. N. & Ripley B. D. Modern Applied Statistics With S Springer (2002).
Ray D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013). PubMed PMC
Manke T., Heinig M. & Vingron M. Quantifying the effect of sequence variation on regulatory interactions. Hum. Mutat. 31, 477–483 (2010). PubMed
Kettunen J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012). PubMed PMC
Inouye M. et al. Novel Loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet. 8, e1002907 (2012). PubMed PMC
Suhre K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–60 (2011). PubMed PMC
Willer C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013). PubMed PMC
Teslovich T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010). PubMed PMC