• This record comes from PubMed

Investigation on Flexural Behavior of Geopolymer-Based Carbon Textile/Basalt Fiber Hybrid Composite

. 2021 Feb 28 ; 13 (5) : . [epub] 20210228

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

This paper presents an experimental research on the mechanical properties of the hybrid composite thin-plates of the short basalt fibers (CBFs)/carbon textile-reinforced geomortar. The effect of fiber contents and lengths of CBFs on the flexural behavior of carbon textile-reinforced geopolymer specimens (TRGs) was investigated by the four-point flexural strength and Charpy impact test. The experimental results of hybrid TRGs, on the one hand, were compared with reference TRGs, without CBF addition; on the other hand, they were compared with the results of our previous publication. According to the mixing manner applied, fresh geomortar indicated a marked reduction in workability, increasing the CBF loading. Furthermore, using CBFs with lengths of 12 mm and 24 mm makes it easy to form the fiber clusters in geomortar during mixing. According to all the CBF loadings used, it was found that TRGs showed a significant improvement in both static and dynamic flexural strength. However, the failure mode of these TRGs is similar to that of the reference TRGs, described by the process of fiber debonding or simultaneously fiber debonding and collapse. In comparison with our prior work results, neither the CBF dose levels nor the fiber lengths used in this work have yielded a positive effect on the failure manner of TRGs. According to the results of the Charpy impact test, this reveals that the anchoring capacity of textile layers in geomortar plays an important role in specimens' strength.

See more in PubMed

Cevallos O., Olivito R. Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites. Compos. Part B Eng. 2015;69:256–266. doi: 10.1016/j.compositesb.2014.10.004. DOI

D’Antino T., Papanicolaou C. Mechanical characterization of textile reinforced inorganic-matrix composites. Compos. Part B Eng. 2017;127:78–91. doi: 10.1016/j.compositesb.2017.02.034. DOI

Lignola G.P., Caggegi C., Ceroni F., de Santis S., Krajewski P., Lourenço P.B., Morganti M., Papanicolaou C., Pellegrino C., Prota A., et al. Performance assessment of basalt FRCM for retrofit applications on masonry. Compos. Part B. Eng. 2017;128:1–18. doi: 10.1016/j.compositesb.2017.05.003. DOI

Ferrara G., Coppola B., Di Maio L., Incarnato L., Martinelli E. Tensile strength of flax fabrics to be used as reinforcement in cement-based composites: Experimental tests under different environmental exposures. Compos. Part B Eng. 2019;168:511–523. doi: 10.1016/j.compositesb.2019.03.062. DOI

Colombo I.G., Colombo M., Di Prisco M. Bending behaviour of Textile Reinforced Concrete sandwich beams. Constr. Build. Mater. 2015;95:675–685. doi: 10.1016/j.conbuildmat.2015.07.169. DOI

Mechtcherine V. Novel cement-based composites for the strengthening and repair of concrete structures. Constr. Build. Mater. 2013;41:365–373. doi: 10.1016/j.conbuildmat.2012.11.117. DOI

Portal N.W., Flansbjer M., Zandi K., Wlasak L., Malaga K. Bending behaviour of novel Textile Reinforced Concrete-foamed concrete (TRC-FC) sandwich elements. Compos. Struct. 2017;177:104–118. doi: 10.1016/j.compstruct.2017.06.051. DOI

Dey V., Zani G., Colombo M., Di Prisco M., Mobasher B. Flexural impact response of textile-reinforced aerated concrete sandwich panels. Mater. Des. 2015;86:187–197. doi: 10.1016/j.matdes.2015.07.004. DOI

Yin S., Wang B., Wang F., Xu S. Bond investigation of hybrid textile with self-compacting fine-grain concrete. J. Ind. Text. 2017;46:1616–1632. doi: 10.1177/1528083716629137. DOI

Shiping Y.I.N., Shilang X.U., Hedong L.I. Improved Mechanical Properties of Textile Reinforced Concrete Thin Plate. J. Wuhan Univ. Technol. Mat. Sci. Edit. 2013;28:11–12.

Li Q., Xu S. Experimental Research on Mechanical Performance of Hybrid Fiber Reinforced Cementitious Composites with Polyvinyl Alcohol Short Fiber and Carbon Textile. J. Compos. Mater. 2010;45:5–28. doi: 10.1177/0021998310371529. DOI

Dvorkin D., Peled A. Cement and concrete research effect of reinforcement with carbon fabrics impregnated with nanoparticles on the tensile behavior of cement-based composites. Cem. Concr. Res. 2016;85:28–38. doi: 10.1016/j.cemconres.2016.03.008. DOI

Du Y., Zhang X., Zhou F., Zhu D., Zhang M., Pan W. Flexural behavior of basalt textile-reinforced concrete. Constr. Build. Mater. 2018;183:7–21. doi: 10.1016/j.conbuildmat.2018.06.165. DOI

Ding Y., Wang Q., Pacheco-Torgal F., Zhang Y. Hybrid effect of basalt fiber textile and macro polypropylene fiber on flexural load-bearing capacity and toughness of two-way concrete slabs. Constr. Build. Mater. 2020;261:119881. doi: 10.1016/j.conbuildmat.2020.119881. DOI

Zhu D., Liu S., Yao Y., Li G., Du Y., Shi C. Effects of short fiber and pre-tension on the tensile behavior of basalt textile reinforced concrete. Cem. Concr. Compos. 2019;96:33–45. doi: 10.1016/j.cemconcomp.2018.11.015. DOI

Liu S., Zhu D., Li G., Yao Y., Ou Y., Shi C., Du Y. Flexural response of basalt textile reinforced concrete with pre-tension and short fibers under low-velocity impact loads. Constr. Build. Mater. 2018;169:859–876. doi: 10.1016/j.conbuildmat.2018.02.168. DOI

Du Y., Zhang M., Zhou F., Zhu D. Experimental study on basalt textile reinforced concrete under uniaxial tensile loading. Constr. Build. Mater. 2017;138:88–100. doi: 10.1016/j.conbuildmat.2017.01.083. DOI

Barhum R., Mechtcherine V. Influence of short dispersed and short integral glass fibres on the mechanical behaviour of textile-reinforced concrete. Mater. Struct. 2013;46:557–572. doi: 10.1617/s11527-012-9913-3. DOI

Du Y., Zhang X., Liu L., Zhou F., Zhu D., Pan W. Flexural Behaviour of Carbon Textile-Reinforced Concrete with Prestress and Steel Fibres. Polymers. 2018;10:98. doi: 10.3390/polym10010098. PubMed DOI PMC

Pakravan H.R., Jamshidi M., Rezaei H. Effect of textile surface treatment on the flexural properties of cementitious composites. J. Ind. Text. 2016;46:116–129. doi: 10.1177/1528083715576320. DOI

Peled A., Zaguri E., Marom G. Bonding characteristics of multifilament polymer yarns and cement matrices. Compos. Part A. 2008;39:930–939. doi: 10.1016/j.compositesa.2008.03.012. DOI

Davidovits J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989;35:429–441. doi: 10.1007/BF01904446. DOI

Duxson P., Mallicoat S., Lukey G., Kriven W., van Deventer J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007;292:8–20. doi: 10.1016/j.colsurfa.2006.05.044. DOI

Da Silva Rocha T., Dias D.P., França F.C.C., de Salles Guerra R.R., da Costa de Oliveira Marques L.R. Metakaolin-based geopolymer mortars with different alkaline activators. Constr. Build. Mater. 2018;178:453–461. doi: 10.1016/j.conbuildmat.2018.05.172. DOI

Yu X., Chen L., Komarneni S., Hui C. Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 2016;125:253–267.

Abdalqader A.F., Jin F., Al-Tabbaa A. Development of greener alkali-activated cement: Utilisation of sodium carbonate for activating slag and fly ash mixtures. J. Clean. Prod. 2016;113:66–75. doi: 10.1016/j.jclepro.2015.12.010. DOI

Tennakoon C., Shayan A., Sanjayan J.G., Xu A. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests. Mater. Des. 2017;116:287–299. doi: 10.1016/j.matdes.2016.12.030. DOI

Singh B., Rahman M., Paswan R., Bhattacharyya S. Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Constr. Build. Mater. 2016;118:171–179. doi: 10.1016/j.conbuildmat.2016.05.008. DOI

Nazari A., Bagheri A., Sanjayan J.G., Dao M., Mallawa C., Zannis P., Zumbo S. Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: Microstructural and mechanical investigation. Constr. Build. Mater. 2019;196:492–498. doi: 10.1016/j.conbuildmat.2018.11.098. DOI

Hussin M.W., Bhutta M.A.R., Azreen M., Ramadhansyah P.J., Mirza J. Performance of blended ash geopolymer concrete at elevated temperatures. Mater. Struct. 2015;48:709–720. doi: 10.1617/s11527-014-0251-5. DOI

Menna C., Asprone D., Ferone C., Colangelo F., Balsamo A., Prota A., Cioffi R., Manfredi G. Use of geopolymers for composite external reinforcement of RC members. Compos. Part B Eng. 2013;45:1667–1676. doi: 10.1016/j.compositesb.2012.09.019. DOI

Hung T.D., Louda P., Kroisova D., Bortnovsky O., Xiem N.T. New Generation of Geopolymer Composite for Fire-Resistance. In: Těšinova P., editor. Advances in Composite Materials—Analysis of Natural and Man-Made Materials. IntechOpen; London, UK: 2012.

Khalid H.R., Ha S., Park S.M., Kim G., Lee H. Interfacial bond behavior of FRP fabrics bonded to fiber-reinforced geopolymer mortar. Compos. Struct. 2015;134:353–368. doi: 10.1016/j.compstruct.2015.08.070. DOI

Samal S., Marvalová B., Petríková I., Vallons K.A.M., Lomov S.V., Rahier H. Impact and post impact behavior of fabric reinforced geopolymer composite. Constr. Build. Mater. 2016;127:111–124. doi: 10.1016/j.conbuildmat.2016.09.145. DOI

Rill E., Lowry D.R., Kriven W.M. Strategic Materials and Computational Design—A Collection of Papers Presented at the 34th International Conference on Advanced Ceramics and Composites. Volume 31. Wiley; Hoboken, NJ, USA: 2010. Properties of Basalt Fiber Reinforced Geopolymer Composites; pp. 57–67.

Ribero D., Kriven W.M. Properties of Geopolymer Composites Reinforced with Basalt Chopped Strand Mat or Woven Fabric. J. Am. Ceram. Soc. 2016;99:1192–1199. doi: 10.1111/jace.14079. DOI

Shaikh F., Haque S. Behaviour of Carbon and Basalt Fibres Reinforced Fly Ash Geopolymer at Elevated Temperatures. Int. J. Concr. Struct. Mater. 2018;12:35. doi: 10.1186/s40069-018-0267-2. DOI

Zhang H.Y., Yan J., Kodur V., Cao L. Mechanical behavior of concrete beams shear strengthened with textile reinforced geopolymer mortar. Eng. Struct. 2019;196:109348. doi: 10.1016/j.engstruct.2019.109348. DOI

Tamburini S., Natali M., Garbin E., Panizza M., Favaro M., Valluzzi M.R. Geopolymer matrix for fibre reinforced composites aimed at strengthening masonry structures. Constr. Build. Mater. 2017;141:542–552. doi: 10.1016/j.conbuildmat.2017.03.017. DOI

Najm H., Secaras J., Balaguru P. Compression Tests of Circular Timber Column Confined with Carbon Fibers Using Inorganic Matrix. J. Mater. Civ. Eng. 2007;19:198–204. doi: 10.1061/(ASCE)0899-1561(2007)19:2(198). DOI

Zhang H.-Y., Hao X., Fan W. Experimental Study on High Temperature Properties of Carbon Fiber Sheets Strengthened Concrete Cylinders Using Geopolymer as Adhesive. Procedia Eng. 2016;135:47–55. doi: 10.1016/j.proeng.2016.01.078. DOI

Kurtz S., Balaguru P. Comparison of Inorganic and Organic Matrices for Strengthening of RC Beams with Carbon Sheets. J. Struct. Eng. 2001;127:35–42. doi: 10.1061/(ASCE)0733-9445(2001)127:1(35). DOI

Le Chi H., Louda P., Periyasamy A.P., Bakalova T., Kovacic V. Flexural Behavior of Carbon Textile-Reinforced Geopolymer Composite Thin Plate. Fibers. 2018;6:87. doi: 10.3390/fib6040087. DOI

Chi H.L.E., Louda P. Flexural performance evaluation of various carbon fibre fabric reinforced geopolymer composite. Ceramics-Silikáty. 2020;64:215–226. doi: 10.13168/cs.2020.0010. DOI

Engineering M., Safi S., Zadhoush A., Ahmadi M. Flexural and Charpy impact behaviour of epoxy/glass fabric treated by nano-SiO2 and silane blend. Plast. Rubber Compos. 2017;46:314–321.

Newest 20 citations...

See more in
Medvik | PubMed

Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering

. 2021 Jun 25 ; 13 (13) : . [epub] 20210625

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...