Investigation on Flexural Behavior of Geopolymer-Based Carbon Textile/Basalt Fiber Hybrid Composite
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33670951
PubMed Central
PMC7957793
DOI
10.3390/polym13050751
PII: polym13050751
Knihovny.cz E-resources
- Keywords
- Charpy impact strength, carbon textile, chopped basalt fibers, failure mode, flexural strength, textile-reinforced geomortar,
- Publication type
- Journal Article MeSH
This paper presents an experimental research on the mechanical properties of the hybrid composite thin-plates of the short basalt fibers (CBFs)/carbon textile-reinforced geomortar. The effect of fiber contents and lengths of CBFs on the flexural behavior of carbon textile-reinforced geopolymer specimens (TRGs) was investigated by the four-point flexural strength and Charpy impact test. The experimental results of hybrid TRGs, on the one hand, were compared with reference TRGs, without CBF addition; on the other hand, they were compared with the results of our previous publication. According to the mixing manner applied, fresh geomortar indicated a marked reduction in workability, increasing the CBF loading. Furthermore, using CBFs with lengths of 12 mm and 24 mm makes it easy to form the fiber clusters in geomortar during mixing. According to all the CBF loadings used, it was found that TRGs showed a significant improvement in both static and dynamic flexural strength. However, the failure mode of these TRGs is similar to that of the reference TRGs, described by the process of fiber debonding or simultaneously fiber debonding and collapse. In comparison with our prior work results, neither the CBF dose levels nor the fiber lengths used in this work have yielded a positive effect on the failure manner of TRGs. According to the results of the Charpy impact test, this reveals that the anchoring capacity of textile layers in geomortar plays an important role in specimens' strength.
See more in PubMed
Cevallos O., Olivito R. Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites. Compos. Part B Eng. 2015;69:256–266. doi: 10.1016/j.compositesb.2014.10.004. DOI
D’Antino T., Papanicolaou C. Mechanical characterization of textile reinforced inorganic-matrix composites. Compos. Part B Eng. 2017;127:78–91. doi: 10.1016/j.compositesb.2017.02.034. DOI
Lignola G.P., Caggegi C., Ceroni F., de Santis S., Krajewski P., Lourenço P.B., Morganti M., Papanicolaou C., Pellegrino C., Prota A., et al. Performance assessment of basalt FRCM for retrofit applications on masonry. Compos. Part B. Eng. 2017;128:1–18. doi: 10.1016/j.compositesb.2017.05.003. DOI
Ferrara G., Coppola B., Di Maio L., Incarnato L., Martinelli E. Tensile strength of flax fabrics to be used as reinforcement in cement-based composites: Experimental tests under different environmental exposures. Compos. Part B Eng. 2019;168:511–523. doi: 10.1016/j.compositesb.2019.03.062. DOI
Colombo I.G., Colombo M., Di Prisco M. Bending behaviour of Textile Reinforced Concrete sandwich beams. Constr. Build. Mater. 2015;95:675–685. doi: 10.1016/j.conbuildmat.2015.07.169. DOI
Mechtcherine V. Novel cement-based composites for the strengthening and repair of concrete structures. Constr. Build. Mater. 2013;41:365–373. doi: 10.1016/j.conbuildmat.2012.11.117. DOI
Portal N.W., Flansbjer M., Zandi K., Wlasak L., Malaga K. Bending behaviour of novel Textile Reinforced Concrete-foamed concrete (TRC-FC) sandwich elements. Compos. Struct. 2017;177:104–118. doi: 10.1016/j.compstruct.2017.06.051. DOI
Dey V., Zani G., Colombo M., Di Prisco M., Mobasher B. Flexural impact response of textile-reinforced aerated concrete sandwich panels. Mater. Des. 2015;86:187–197. doi: 10.1016/j.matdes.2015.07.004. DOI
Yin S., Wang B., Wang F., Xu S. Bond investigation of hybrid textile with self-compacting fine-grain concrete. J. Ind. Text. 2017;46:1616–1632. doi: 10.1177/1528083716629137. DOI
Shiping Y.I.N., Shilang X.U., Hedong L.I. Improved Mechanical Properties of Textile Reinforced Concrete Thin Plate. J. Wuhan Univ. Technol. Mat. Sci. Edit. 2013;28:11–12.
Li Q., Xu S. Experimental Research on Mechanical Performance of Hybrid Fiber Reinforced Cementitious Composites with Polyvinyl Alcohol Short Fiber and Carbon Textile. J. Compos. Mater. 2010;45:5–28. doi: 10.1177/0021998310371529. DOI
Dvorkin D., Peled A. Cement and concrete research effect of reinforcement with carbon fabrics impregnated with nanoparticles on the tensile behavior of cement-based composites. Cem. Concr. Res. 2016;85:28–38. doi: 10.1016/j.cemconres.2016.03.008. DOI
Du Y., Zhang X., Zhou F., Zhu D., Zhang M., Pan W. Flexural behavior of basalt textile-reinforced concrete. Constr. Build. Mater. 2018;183:7–21. doi: 10.1016/j.conbuildmat.2018.06.165. DOI
Ding Y., Wang Q., Pacheco-Torgal F., Zhang Y. Hybrid effect of basalt fiber textile and macro polypropylene fiber on flexural load-bearing capacity and toughness of two-way concrete slabs. Constr. Build. Mater. 2020;261:119881. doi: 10.1016/j.conbuildmat.2020.119881. DOI
Zhu D., Liu S., Yao Y., Li G., Du Y., Shi C. Effects of short fiber and pre-tension on the tensile behavior of basalt textile reinforced concrete. Cem. Concr. Compos. 2019;96:33–45. doi: 10.1016/j.cemconcomp.2018.11.015. DOI
Liu S., Zhu D., Li G., Yao Y., Ou Y., Shi C., Du Y. Flexural response of basalt textile reinforced concrete with pre-tension and short fibers under low-velocity impact loads. Constr. Build. Mater. 2018;169:859–876. doi: 10.1016/j.conbuildmat.2018.02.168. DOI
Du Y., Zhang M., Zhou F., Zhu D. Experimental study on basalt textile reinforced concrete under uniaxial tensile loading. Constr. Build. Mater. 2017;138:88–100. doi: 10.1016/j.conbuildmat.2017.01.083. DOI
Barhum R., Mechtcherine V. Influence of short dispersed and short integral glass fibres on the mechanical behaviour of textile-reinforced concrete. Mater. Struct. 2013;46:557–572. doi: 10.1617/s11527-012-9913-3. DOI
Du Y., Zhang X., Liu L., Zhou F., Zhu D., Pan W. Flexural Behaviour of Carbon Textile-Reinforced Concrete with Prestress and Steel Fibres. Polymers. 2018;10:98. doi: 10.3390/polym10010098. PubMed DOI PMC
Pakravan H.R., Jamshidi M., Rezaei H. Effect of textile surface treatment on the flexural properties of cementitious composites. J. Ind. Text. 2016;46:116–129. doi: 10.1177/1528083715576320. DOI
Peled A., Zaguri E., Marom G. Bonding characteristics of multifilament polymer yarns and cement matrices. Compos. Part A. 2008;39:930–939. doi: 10.1016/j.compositesa.2008.03.012. DOI
Davidovits J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989;35:429–441. doi: 10.1007/BF01904446. DOI
Duxson P., Mallicoat S., Lukey G., Kriven W., van Deventer J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007;292:8–20. doi: 10.1016/j.colsurfa.2006.05.044. DOI
Da Silva Rocha T., Dias D.P., França F.C.C., de Salles Guerra R.R., da Costa de Oliveira Marques L.R. Metakaolin-based geopolymer mortars with different alkaline activators. Constr. Build. Mater. 2018;178:453–461. doi: 10.1016/j.conbuildmat.2018.05.172. DOI
Yu X., Chen L., Komarneni S., Hui C. Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 2016;125:253–267.
Abdalqader A.F., Jin F., Al-Tabbaa A. Development of greener alkali-activated cement: Utilisation of sodium carbonate for activating slag and fly ash mixtures. J. Clean. Prod. 2016;113:66–75. doi: 10.1016/j.jclepro.2015.12.010. DOI
Tennakoon C., Shayan A., Sanjayan J.G., Xu A. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests. Mater. Des. 2017;116:287–299. doi: 10.1016/j.matdes.2016.12.030. DOI
Singh B., Rahman M., Paswan R., Bhattacharyya S. Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Constr. Build. Mater. 2016;118:171–179. doi: 10.1016/j.conbuildmat.2016.05.008. DOI
Nazari A., Bagheri A., Sanjayan J.G., Dao M., Mallawa C., Zannis P., Zumbo S. Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: Microstructural and mechanical investigation. Constr. Build. Mater. 2019;196:492–498. doi: 10.1016/j.conbuildmat.2018.11.098. DOI
Hussin M.W., Bhutta M.A.R., Azreen M., Ramadhansyah P.J., Mirza J. Performance of blended ash geopolymer concrete at elevated temperatures. Mater. Struct. 2015;48:709–720. doi: 10.1617/s11527-014-0251-5. DOI
Menna C., Asprone D., Ferone C., Colangelo F., Balsamo A., Prota A., Cioffi R., Manfredi G. Use of geopolymers for composite external reinforcement of RC members. Compos. Part B Eng. 2013;45:1667–1676. doi: 10.1016/j.compositesb.2012.09.019. DOI
Hung T.D., Louda P., Kroisova D., Bortnovsky O., Xiem N.T. New Generation of Geopolymer Composite for Fire-Resistance. In: Těšinova P., editor. Advances in Composite Materials—Analysis of Natural and Man-Made Materials. IntechOpen; London, UK: 2012.
Khalid H.R., Ha S., Park S.M., Kim G., Lee H. Interfacial bond behavior of FRP fabrics bonded to fiber-reinforced geopolymer mortar. Compos. Struct. 2015;134:353–368. doi: 10.1016/j.compstruct.2015.08.070. DOI
Samal S., Marvalová B., Petríková I., Vallons K.A.M., Lomov S.V., Rahier H. Impact and post impact behavior of fabric reinforced geopolymer composite. Constr. Build. Mater. 2016;127:111–124. doi: 10.1016/j.conbuildmat.2016.09.145. DOI
Rill E., Lowry D.R., Kriven W.M. Strategic Materials and Computational Design—A Collection of Papers Presented at the 34th International Conference on Advanced Ceramics and Composites. Volume 31. Wiley; Hoboken, NJ, USA: 2010. Properties of Basalt Fiber Reinforced Geopolymer Composites; pp. 57–67.
Ribero D., Kriven W.M. Properties of Geopolymer Composites Reinforced with Basalt Chopped Strand Mat or Woven Fabric. J. Am. Ceram. Soc. 2016;99:1192–1199. doi: 10.1111/jace.14079. DOI
Shaikh F., Haque S. Behaviour of Carbon and Basalt Fibres Reinforced Fly Ash Geopolymer at Elevated Temperatures. Int. J. Concr. Struct. Mater. 2018;12:35. doi: 10.1186/s40069-018-0267-2. DOI
Zhang H.Y., Yan J., Kodur V., Cao L. Mechanical behavior of concrete beams shear strengthened with textile reinforced geopolymer mortar. Eng. Struct. 2019;196:109348. doi: 10.1016/j.engstruct.2019.109348. DOI
Tamburini S., Natali M., Garbin E., Panizza M., Favaro M., Valluzzi M.R. Geopolymer matrix for fibre reinforced composites aimed at strengthening masonry structures. Constr. Build. Mater. 2017;141:542–552. doi: 10.1016/j.conbuildmat.2017.03.017. DOI
Najm H., Secaras J., Balaguru P. Compression Tests of Circular Timber Column Confined with Carbon Fibers Using Inorganic Matrix. J. Mater. Civ. Eng. 2007;19:198–204. doi: 10.1061/(ASCE)0899-1561(2007)19:2(198). DOI
Zhang H.-Y., Hao X., Fan W. Experimental Study on High Temperature Properties of Carbon Fiber Sheets Strengthened Concrete Cylinders Using Geopolymer as Adhesive. Procedia Eng. 2016;135:47–55. doi: 10.1016/j.proeng.2016.01.078. DOI
Kurtz S., Balaguru P. Comparison of Inorganic and Organic Matrices for Strengthening of RC Beams with Carbon Sheets. J. Struct. Eng. 2001;127:35–42. doi: 10.1061/(ASCE)0733-9445(2001)127:1(35). DOI
Le Chi H., Louda P., Periyasamy A.P., Bakalova T., Kovacic V. Flexural Behavior of Carbon Textile-Reinforced Geopolymer Composite Thin Plate. Fibers. 2018;6:87. doi: 10.3390/fib6040087. DOI
Chi H.L.E., Louda P. Flexural performance evaluation of various carbon fibre fabric reinforced geopolymer composite. Ceramics-Silikáty. 2020;64:215–226. doi: 10.13168/cs.2020.0010. DOI
Engineering M., Safi S., Zadhoush A., Ahmadi M. Flexural and Charpy impact behaviour of epoxy/glass fabric treated by nano-SiO2 and silane blend. Plast. Rubber Compos. 2017;46:314–321.