Clinically relevant antibiotic resistance in Escherichia coli from black kites in southwestern Siberia: a genetic and phenotypic investigation

. 2023 Aug 24 ; 8 (4) : e0009923. [epub] 20230613

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37310717

Wild birds including raptors can act as vectors of clinically relevant bacteria with antibiotic resistance. The aim of this study was to investigate the occurrence of antibiotic-resistant Escherichia coli in black kites (Milvus migrans) inhabiting localities in proximity to human-influenced environments in southwestern Siberia and investigate their virulence and plasmid contents. A total of 51 E. coli isolates mostly with multidrug resistance (MDR) profiles were obtained from cloacal swabs of 35 (64%, n = 55) kites. Genomic analyses of 36 whole genome sequenced E. coli isolates showed: (i) high prevalence and diversity of their antibiotic resistance genes (ARGs) and common association with ESBL/AmpC production (27/36, 75%), (ii) carriage of mcr-1 for colistin resistance on IncI2 plasmids in kites residing in proximity of two large cities, (iii) frequent association with class one integrase (IntI1, 22/36, 61%), and (iv) presence of sequence types (STs) linked to avian-pathogenic (APEC) and extra-intestinal pathogenic E. coli (ExPEC). Notably, numerous isolates had significant virulence content. One E. coli with APEC-associated ST354 carried qnrE1 encoding fluoroquinolone resistance on IncHI2-ST3 plasmid, the first detection of such a gene in E. coli from wildlife. Our results implicate black kites in southwestern Siberia as reservoirs for antibiotic-resistant E. coli. It also highlights the existing link between proximity of wildlife to human activities and their carriage of MDR bacteria including pathogenic STs with significant and clinically relevant antibiotic resistance determinants. IMPORTANCE Migratory birds have the potential to acquire and disperse clinically relevant antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs) through vast geographical regions. The opportunistic feeding behavior associated with some raptors including black kites and the growing anthropogenic influence on their natural habitats increase the transmission risk of multidrug resistance (MDR) and pathogenic bacteria from human and agricultural sources into the environment and wildlife. Thus, monitoring studies investigating antibiotic resistance in raptors may provide essential data that facilitate understanding the fate and evolution of ARB and ARGs in the environment and possible health risks for humans and animals associated with the acquisition of these resistance determinants by wildlife.

Zobrazit více v PubMed

Arnold KE, Williams NJ, Bennett M. 2016. 'Disperse abroad in the land': the role of wildlife in the dissemination of antimicrobial resistance. Biol Lett 12:20160137. doi:10.1098/rsbl.2016.0137 PubMed DOI PMC

Dolejska M, Literak I. 2019. Wildlife is overlooked in the epidemiology of medically important antibiotic-resistant bacteria. Antimicrob Agents Chemother 63:e01167-19. doi:10.1128/AAC.01167-19 PubMed DOI PMC

Skarżyńska M, Zaja C M, Bomba A, Bocian Ł, Kozdruń W, Polak M, Wia Cek J, Wasyl D. 2021. Antimicrobial resistance glides in the sky-free-living birds as a reservoir of resistant Escherichia coli with zoonotic potential. Front Microbiol 12:656223. doi:10.3389/fmicb.2021.656223 PubMed DOI PMC

Villa L, Guerra B, Schmoger S, Fischer J, Helmuth R, Zong Z, García-Fernández A, Carattoli A. 2015. IncA/C plasmid carrying blaNDM-1, blaCMY-16, and fosA3 in a Salmonella enterica serovar corvallis strain isolated from a migratory wild bird in Germany. Antimicrob Agents Chemother 59:6597–6600. doi:10.1128/AAC.00944-15 PubMed DOI PMC

Tarabai H, Valcek A, Jamborova I, Vazhov SV, Karyakin IV, Raab R, Literak I, Dolejska M. 2019. Plasmid-mediated mcr-1 colistin resistance in Escherichia coli from a black kite in Russia. Antimicrob Agents Chemother 63:e01266-19. doi:10.1128/AAC.01266-19 PubMed DOI PMC

International B. 2023. Black kite Milvus migrans, on birdlife international. Available from: http://datazone.birdlife.org/species/factsheet/black-kite-milvus-migrans

Karyakin I, Center of Field Studies . 2017. Problem of identification of Eurasian subspecies of the black kite and records of the pariah kite in Southern Siberia, Russia Проблемы Идентификации Евразийских Подвидов Чёрного Коршуна И Встречи Индо-Малайского Подвида В Южной Сибири, Россия. Raptors Conserv, no. 34:49–67. doi:10.19074/1814-8654-2017-34-49-67 DOI

Sergio F, Pedrini P, Marchesi L. 2003. Adaptive selection of foraging and nesting habitat by black kites (Milvus migrans) and its implications for conservation: a multi-scale approach. Biol Conserv 112:351–362. doi:10.1016/S0006-3207(02)00332-4 DOI

Cortés-Avizanda A, Almaraz P, Carrete M, Sánchez-Zapata JA, Delgado A, Hiraldo F, Donázar JA. 2011. Spatial heterogeneity in resource distribution promotes facultative sociality in two Trans-Saharan migratory birds. PLoS One 6:e21016. doi:10.1371/journal.pone.0021016 PubMed DOI PMC

Andreyenkova NG, Karyakin IV, Starikov IJ, Sauer‐Gürth H, Literák I, Andreyenkov OV, Shnayder EP, Bekmansurov RH, Alexeyenko MN, Wink M, Zhimulev IF. 2021. Phylogeography and demographic history of the black kite Milvus Migrans, a widespread Raptor in Eurasia, Australia and Africa. J Avian Biol 52:e02822. doi:10.1111/jav.02822 DOI

Ferguson-Lees J, Christie DA, Franklin K, Burton P, Mead D. 2001. In Raptors of the world. Houghton Mifflin.

Skyrpan M, Panter C, Nachtigall W, Riols R, Systad G, Škrábal J, Literák I. 2021. Kites Milvus migrans lineatus (Milvus migrans migrans/lineatus) are spreading west across Europe. J Ornithol 162:317–323. doi:10.1007/s10336-020-01832-2 DOI

Kumar N, Gupta U, Jhala YV, Qureshi Q, Gosler AG, Sergio F. 2020. GPS-telemetry unveils the regular high-elevation crossing of the Himalayas by a migratory raptor: implications for definition of a `` central Asian flyway’’. Sci Rep 10:15988. doi:10.1038/s41598-020-72970-z PubMed DOI PMC

Literák I, Škrábal J, Karyakin IV, Andreyenkova NG, Vazhov SV. 2022. Black Kites on a flyway between Western Siberia and the Indian Subcontinent. Sci Rep 12:5581. doi:10.1038/s41598-022-09246-1 PubMed DOI PMC

De Giacomo U, Guerrieri G. 2008. The feeding behavior of the black kite (Milvus migrans) in the rubbish dump of Rome. J Raptor Res 42:110–118. doi:10.3356/JRR-07-09.1 DOI

Tanferna A, López-Jiménez L, Blas J, Hiraldo F, Sergio F. 2013. Habitat selection by black kite breeders and floaters: implications for conservation management of raptor floaters. Biol Conserv 160:1–9. doi:10.1016/j.biocon.2012.12.031 DOI

Makarov DA, Ivanova OE, Karabanov SY, Gergel MA, Pomazkova AV. 2020. Antimicrobial resistance of commensal Escherichia coli from food-producing animals in Russia. Vet World 13:2053–2061. doi:10.14202/vetworld.2020.2053-2061 PubMed DOI PMC

Khmelevtsova LE, Sazykin IS, Azhogina TN, Sazykina MA. 2020. The dissemination of antibiotic resistance in various environmental objects (Russia). Environ Sci Pollut Res Int 27:43569–43581. doi:10.1007/s11356-020-10231-2 PubMed DOI

WHO . 2020. Central Asian and European surveillance of antimicrobial resistance: annual report 2020. WHO, Geneva: WHO Regional Office for Europe;

Kuznetsova MV, Gizatullina JS, Nesterova LY, Starčič Erjavec M. 2020. Escherichia Coli isolated from cases of colibacillosis in Russian poultry farms (Perm Krai): sensitivity to antibiotics and bacteriocins. Microorganisms 8:741. doi:10.3390/microorganisms8050741 PubMed DOI PMC

Rafalskiy V, Pushkar D, Yakovlev S, Epstein O, Putilovskiy M, Tarasov S, Glazunov A, Korenev S, Moiseeva E, Gorelysheva N. 2020. Distribution and antibiotic resistance profile of key gram-negative bacteria that cause community-onset urinary tract infections in the Russian Federation: resource multicentre surveillance 2017 study. J Glob Antimicrob Resist 21:188–194. doi:10.1016/j.jgar.2019.09.008 PubMed DOI

Hernandez J, Bonnedahl J, Eliasson I, Wallensten A, Comstedt P, Johansson A, Granholm S, Melhus A, Olsen B, Drobni M. 2010. Globally disseminated human pathogenic Escherichia coli of o25b-st131 clone, harbouring blaCTX-M-15, found in Glaucous-winged gull at remote commander Islands, Russia. Environ Microbiol Rep 2:329–332. doi:10.1111/j.1758-2229.2010.00142.x PubMed DOI

Nordmann P, Jayol A, Poirel L. 2016. A universal culture medium for screening polymyxin-resistant gram-negative isolates. J Clin Microbiol 54:1395–1399. doi:10.1128/JCM.00446-16 PubMed DOI PMC

Strejcek M, Smrhova T, Junkova P, Uhlik O. 2018. Whole-Cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front Microbiol 9:1294. doi:10.3389/fmicb.2018.01294 PubMed DOI PMC

Kutilova I, Medvecky M, Leekitcharoenphon P, Munk P, Masarikova M, Davidova-Gerzova L, Jamborova I, Bortolaia V, Pamp SJ, Dolejska M. 2021. Extended-Spectrum beta-lactamase-producing Escherichia coli and antimicrobial resistance in municipal and hospital wastewaters in Czech Republic: culture-based and metagenomic approaches. Environ Res 193:110487. doi:10.1016/j.envres.2020.110487 PubMed DOI

Albornoz E, Tijet N, De Belder D, Gomez S, Martino F, Corso A, Melano RG, Petroni A. 2017. QnrE1, a member of a new family of plasmid-located quinolone resistance genes, originated from the chromosome of Enterobacter species. Antimicrob Agents Chemother 61:e02555-16. doi:10.1128/AAC.02555-16 PubMed DOI PMC

Dobiasova H, Dolejska M, Jamborova I, Brhelova E, Blazkova L, Papousek I, Kozlova M, Klimes J, Cizek A, Literak I. 2013. Extended spectrum beta-lactamase and fluoroquinolone resistance genes and plasmids among Escherichia coli isolates from zoo animals, Czech Republic. FEMS Microbiol Ecol 85:604–611. doi:10.1111/1574-6941.12149 PubMed DOI

Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, Hansen IM, Guerra B, Malorny B, Borowiak M, Hammerl JA, Battisti A, Franco A, Alba P, Perrin-Guyomard A, Granier SA, De Frutos Escobar C, Malhotra-Kumar S, Villa L, Carattoli A, Hendriksen RS. 2018. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill 23:17-00672. doi:10.2807/1560-7917.ES.2018.23.6.17-00672 PubMed DOI PMC

EUCAST . 2019. In Antimicrobial susceptibility testing, EUCAST disk diffusion method

EUCAST . 2019. In Breakpoint tables for interpretation of MICs and zone diameters

CLSI . 2017. In Performance standards for antimicrobial susceptibility testing

Cusack TP, Ashley EA, Ling CL, Roberts T, Turner P, Wangrangsimakul T, Dance DAB. 2019. Time to switch from CLSI to EUCAST? A Southeast Asian perspective. Clin Microbiol Infect 25:782–785. doi:10.1016/j.cmi.2019.03.016 PubMed DOI PMC

Kahlmeter G, Giske CG, Kirn TJ, Sharp SE. 2019. Point-counterpoint: differences between the European Committee on antimicrobial susceptibility testing and clinical and laboratory standards Institute recommendations for reporting antimicrobial susceptibility results. J Clin Microbiol 57:e01129-19. doi:10.1128/JCM.01129-19 PubMed DOI PMC

Jouy E, Haenni M, Le Devendec L, Le Roux A, Châtre P, Madec J-Y, Kempf I. 2017. Improvement in routine detection of colistin resistance in E. coli isolated in veterinary diagnostic laboratories. J Microbiol Methods 132:125–127. doi:10.1016/j.mimet.2016.11.017 PubMed DOI

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170 PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021 PubMed DOI PMC

Chen L, Zheng D, Liu B, Yang J, Jin Q. 2016. VFDB 2016: hierarchical and refined dataset for big data analysis -- 10 years on. Nucleic Acids Res 44:D694–D697. doi:10.1093/nar/gkv1239 PubMed DOI PMC

Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. doi:10.1038/srep08365 PubMed DOI PMC

Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. doi:10.1186/1471-2164-12-402 PubMed DOI PMC

Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. 2014. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 9:e104984. doi:10.1371/journal.pone.0104984 PubMed DOI PMC

Letunic I, Bork P. 2021. Interactive tree of life (iTOL) V5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. doi:10.1093/nar/gkab301 PubMed DOI PMC

Valcek A, Overballe-Petersen S, Hansen F, Dolejska M, Hasman H. 2019. Complete genome sequence of Escherichia coli MT102, a plasmid-free recipient resistant to rifampin, azide, and streptomycin, used in conjugation experiments. Microbiol Resour Announc 8:e00383-19. doi:10.1128/MRA.00383-19 PubMed DOI PMC

Jamborova I, Dolejska M, Vojtech J, Guenther S, Uricariu R, Drozdowska J, Papousek I, Pasekova K, Meissner W, Hordowski J, Cizek A, Literak I. 2015. Plasmid-Mediated resistance to cephalosporins and fluoroquinolones in various Escherichia coli sequence types isolated from rooks wintering in Europe. Appl Environ Microbiol 81:648–657. doi:10.1128/AEM.02459-14 PubMed DOI PMC

Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228. doi:10.1016/j.mimet.2005.03.018 PubMed DOI

Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. 2018. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules 23:795. doi:10.3390/molecules23040795 PubMed DOI PMC

Larsson DGJ, Flach C-F. 2022. Antibiotic resistance in the environment. Nat Rev Microbiol 20:257–269. doi:10.1038/s41579-021-00649-x PubMed DOI PMC

Greig J, Rajić A, Young I, Mascarenhas M, Waddell L, LeJeune J. 2015. A scoping review of the role of wildlife in the transmission of bacterial pathogens and antimicrobial resistance to the food chain. Zoonoses Public Health 62:269–284. doi:10.1111/zph.12147 PubMed DOI

Lee S, Fan P, Liu T, Yang A, Boughton RK, Pepin KM, Miller RS, Jeong KC. 2022. Transmission of antibiotic resistance at the wildlife-livestock interface. Commun Biol 5:585. doi:10.1038/s42003-022-03520-8 PubMed DOI PMC

Radhouani H, Silva N, Poeta P, Torres C, Correia S, Igrejas G. 2014. Potential impact of antimicrobial resistance in wildlife, environment and human health. Front Microbiol 5:23. doi:10.3389/fmicb.2014.00023 PubMed DOI PMC

Bachtin R, Vazhov S, Makarov AJRC. 2010. In Ecology of synanthropic populations of the black kite in the vicinities of biysk. Altai Kray, Russia.

Ponkina E, Bavorova M, prishepov A, Kovaleva I. 2013. Positive quantitative analysis of farms in Altai Krai, Russia regarding natural conditions, structure, production program, factor endowment, productivity, economic success and income. Barnaul: Altai State Agrarian University of Barnaul; Subproject No. 8. doi:10.13140/RG.2.1.3702.1202 DOI

Haulisah NA, Hassan L, Bejo SK, Jajere SM, Ahmad NI. 2021. High levels of antibiotic resistance in isolates from diseased livestock. Front Vet Sci 8:652351. doi:10.3389/fvets.2021.652351 PubMed DOI PMC

Zhang R, Yang S, An Y, Wang Y, Lei Y, Song L. 2022. Antibiotics and antibiotic resistance genes in landfills: a review. Sci Total Environ 806:150647. doi:10.1016/j.scitotenv.2021.150647 PubMed DOI

Jauregi L, Epelde L, Alkorta I, Garbisu C. 2021. Antibiotic resistance in agricultural soil and crops associated to the application of cow manure-derived amendments from conventional and organic livestock farms. Front Vet Sci 8:633858. doi:10.3389/fvets.2021.633858 PubMed DOI PMC

Atterby C, Ramey AM, Hall GG, Järhult J, Börjesson S, Bonnedahl J. 2016. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in southcentral Alaska is associated with urban environments. Infect Ecol Epidemiol 6:32334. doi:10.3402/iee.v6.32334 PubMed DOI PMC

Jarma D, Sánchez MI, Green AJ, Peralta-Sánchez JM, Hortas F, Sánchez-Melsió A, Borrego CM. 2021. Faecal microbiota and antibiotic resistance genes in migratory waterbirds with contrasting habitat use. Sci Total Environ 783:146872. doi:10.1016/j.scitotenv.2021.146872 PubMed DOI

Wyrsch ER, Nesporova K, Tarabai H, Jamborova I, Bitar I, Literak I, Dolejska M, Djordjevic SP. 2022. Urban wildlife crisis: Australian silver gull is a bystander host to widespread clinical antibiotic resistance. mSystems 7:e0015822. doi:10.1128/msystems.00158-22 PubMed DOI PMC

Purohit MR, Chandran S, Shah H, Diwan V, Tamhankar AJ, Stålsby Lundborg C. 2017. Antibiotic resistance in an Indian rural community: a 'one-health' observational study on commensal coliform from humans, animals, and water. Int J Environ Res Public Health 14:386. doi:10.3390/ijerph14040386 PubMed DOI PMC

Bartoloni A, Pallecchi L, Rodríguez H, Fernandez C, Mantella A, Bartalesi F, Strohmeyer M, Kristiansson C, Gotuzzo E, Paradisi F, Rossolini GM. 2009. Antibiotic resistance in a very remote amazonas community. Int J Antimicrob Agents 33:125–129. doi:10.1016/j.ijantimicag.2008.07.029 PubMed DOI

Lombardo MP, Thorpe PA, Cichewicz R, Henshaw M, Millard C, Steen C, Zeller TK. 1996. Communities of cloacal bacteria in tree swallow families. The Condor 98:167–172. doi:10.2307/1369521 DOI

Sandegren L, Stedt J, Lustig U, Bonnedahl J, Andersson DI, Järhult JD. 2018. Long-Term carriage and rapid transmission of extended spectrum beta-lactamase-producing E. coli within a flock of mallards in the absence of antibiotic selection. Environ Microbiol Rep 10:576–582. doi:10.1111/1758-2229.12681 PubMed DOI

Franklin AB, Ramey AM, Bentler KT, Barrett NL, McCurdy LM, Ahlstrom CA, Bonnedahl J, Shriner SA, Chandler JC. 2020. Gulls as sources of environmental contamination by colistin-resistant bacteria. Sci Rep 10:4408. doi:10.1038/s41598-020-61318-2 PubMed DOI PMC

Plaza-Rodríguez C, Alt K, Grobbel M, Hammerl JA, Irrgang A, Szabo I, Stingl K, Schuh E, Wiehle L, Pfefferkorn B, Naumann S, Kaesbohrer A, Tenhagen B-A. 2020. Wildlife as sentinels of antimicrobial resistance in Germany? Front Vet Sci 7:627821. doi:10.3389/fvets.2020.627821 PubMed DOI PMC

Guenther S, Aschenbrenner K, Stamm I, Bethe A, Semmler T, Stubbe A, Stubbe M, Batsajkhan N, Glupczynski Y, Wieler LH, Ewers C. 2012. Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS One 7:e53039. doi:10.1371/journal.pone.0053039 PubMed DOI PMC

Pinto L, Radhouani H, Coelho C, Martins da Costa P, Simões R, Brandão RML, Torres C, Igrejas G, Poeta P. 2010. Genetic detection of extended-spectrum beta-lactamase-containing Escherichia coli isolates from birds of prey from serra da Estrela natural reserve in Portugal. Appl Environ Microbiol 76:4118–4120. doi:10.1128/AEM.02761-09 PubMed DOI PMC

Maluta RP, Logue CM, Casas MRT, Meng T, Guastalli EAL, Rojas TCG, Montelli AC, Sadatsune T, de Carvalho Ramos M, Nolan LK, da Silveira WD. 2014. Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. PLoS One 9:e105016. doi:10.1371/journal.pone.0105016 PubMed DOI PMC

Lu Q, Zhang W, Luo L, Wang H, Shao H, Zhang T, Luo Q. 2022. Genetic diversity and multidrug resistance of phylogenic groups B2 and D in inpec and expec isolated from chickens in central China. BMC Microbiol 22:60. doi:10.1186/s12866-022-02469-2 PubMed DOI PMC

Solà-Ginés M, Cameron-Veas K, Badiola I, Dolz R, Majó N, Dahbi G, Viso S, Mora A, Blanco J, Piedra-Carrasco N, González-López JJ, Migura-Garcia L. 2015. Diversity of multi-drug resistant avian pathogenic Escherichia coli (APEC) causing outbreaks of colibacillosis in broilers during 2012 in Spain. PLoS One 10:e0143191. doi:10.1371/journal.pone.0143191 PubMed DOI PMC

Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. 2019. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev 32:e00135-18. doi:10.1128/CMR.00135-18 PubMed DOI PMC

Mehat JW, van Vliet AHM, La Ragione RM. 2021. The avian pathogenic Escherichia coli (APEC) pathotype is comprised of multiple distinct, independent genotypes. Avian Pathol 50:402–416. doi:10.1080/03079457.2021.1915960 PubMed DOI

Dahms C, Hübner N-O, Kossow A, Mellmann A, Dittmann K, Kramer A. 2015. Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. PLoS One 10:e0143326. doi:10.1371/journal.pone.0143326 PubMed DOI PMC

Umpiérrez A, Bado I, Oliver M, Acquistapace S, Etcheverría A, Padola NL, Vignoli R, Zunino P. 2017. Zoonotic potential and antibiotic resistance of Escherichia coli in neonatal calves in Uruguay. Microbes Environ 32:275–282. doi:10.1264/jsme2.ME17046 PubMed DOI PMC

Moon DC, Mechesso AF, Kang HY, Kim S-J, Choi J-H, Kim MH, Song H-J, Yoon S-S, Lim S-K. 2020. First report of an Escherichia Coli strain carrying the colistin resistance determinant mcr-1 from a dog in South Korea. Antibiotics (Basel) 9:768. doi:10.3390/antibiotics9110768 PubMed DOI PMC

Dierikx CM, van Duijkeren E, Schoormans AHW, van Essen-Zandbergen A, Veldman K, Kant A, Huijsdens XW, van der Zwaluw K, Wagenaar JA, Mevius DJ. 2012. Occurrence and characteristics of extended-spectrum-β-lactamase- and ampc-producing clinical isolates derived from companion animals and horses. J Antimicrob Chemother 67:1368–1374. doi:10.1093/jac/dks049 PubMed DOI

Wyrsch ER, Chowdhury PR, Wallis L, Cummins ML, Zingali T, Brandis KJ, Djordjevic SP. 2020. Whole-genome sequence analysis of environmental Escherichia Coli from the faeces of straw-Necked Ibis (Threskiornis spinicollis) nesting on inland wetlands. Microb Genom 6:e000385. doi:10.1099/mgen.0.000385 PubMed DOI PMC

Fuentes-Castillo D, Esposito F, Cardoso B, Dalazen G, Moura Q, Fuga B, Fontana H, Cerdeira L, Dropa M, Rottmann J, González-Acuña D, Catão-Dias JL, Lincopan N. 2020. Genomic data reveal international lineages of critical priority Escherichia coli harbouring wide resistome in Andean condors (vultur gryphus Linnaeus, 1758). Mol Ecol 29:1919–1935. doi:10.1111/mec.15455 PubMed DOI

Mukerji S, Gunasekera S, Dunlop JN, Stegger M, Jordan D, Laird T, Abraham RJ, Barton M, O’Dea M, Abraham S. 2020. Implications of foraging and interspecies interactions of birds for carriage of Escherichia coli strains resistant to critically important antimicrobials. Appl Environ Microbiol 86:e01610-20. doi:10.1128/AEM.01610-20 PubMed DOI PMC

Ahlstrom CA, Bonnedahl J, Woksepp H, Hernandez J, Olsen B, Ramey AM. 2018. Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis. Sci Rep 8:7361. doi:10.1038/s41598-018-25474-w PubMed DOI PMC

Höfle U, Jose Gonzalez-Lopez J, Camacho MC, Solà-Ginés M, Moreno-Mingorance A, Manuel Hernández J, De La Puente J, Pineda-Pampliega J, Aguirre JI, Torres-Medina F, Ramis A, Majó N, Blas J, Migura-Garcia L. 2020. Foraging at solid urban waste disposal sites as risk factor for cephalosporin and colistin resistant Escherichia Coli carriage in white storks (Ciconia ciconia). Front Microbiol 11:1397. doi:10.3389/fmicb.2020.01397 PubMed DOI PMC

Roe MT, Vega E, Pillai SD. 2003. Antimicrobial resistance markers of class 1 and class 2 integron-bearing Escherichia coli from irrigation water and sediments. Emerg Infect Dis 9:822–826. doi:10.3201/eid0907.020529 PubMed DOI PMC

Harmer CJ, Moran RA, Hall RM. 2014. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. mBio 5:e01801–14. doi:10.1128/mBio.01801-14 PubMed DOI PMC

Varani A, He S, Siguier P, Ross K, Chandler M. 2021. The Is6 family, a clinically important group of insertion sequences including IS26. Mob DNA 12:11. doi:10.1186/s13100-021-00239-x PubMed DOI PMC

Ruzauskas M, Vaskeviciute L. 2016. Detection of the mcr-1 gene in Escherichia coli prevalent in the migratory bird species Larus argentatus. J Antimicrob Chemother 71:2333–2334. doi:10.1093/jac/dkw245 PubMed DOI

Guo S, Wakeham D, Brouwers HJM, Cobbold RN, Abraham S, Mollinger JL, Johnson JR, Chapman TA, Gordon DM, Barrs VR, Trott DJ. 2015. Human-Associated fluoroquinolone-resistant Escherichia coli clonal lineages, including ST354, isolated from canine feces and extraintestinal infections in Australia. Microbes Infect 17:266–274. doi:10.1016/j.micinf.2014.12.016 PubMed DOI

Mora A, Blanco M, López C, Mamani R, Blanco JE, Alonso MP, García-Garrote F, Dahbi G, Herrera A, Fernández A, Fernández B, Agulla A, Bou G, Blanco J. 2011. Emergence of clonal groups O1:HNM-D-ST59, O15:H1-D-ST393, O20:H34/HNM-D-ST354, O25b:H4-B2-ST131 and ONT:H21,42-B1-ST101 among CTX-M-14-producing Escherichia coli clinical isolates in Galicia, northwest Spain. Int J Antimicrob Agents 37:16–21. doi:10.1016/j.ijantimicag.2010.09.012 PubMed DOI

Lyu N, Feng Y, Pan Y, Huang H, Liu Y, Xue C, Zhu B, Hu Y. 2021. Genomic characterization of Salmonella enterica isolates from retail meat in Beijing, China. Front Microbiol 12:636332. doi:10.3389/fmicb.2021.636332 PubMed DOI PMC

Kerdsin A, Deekae S, Chayangsu S, Hatrongjit R, Chopjitt P, Takeuchi D, Akeda Y, Tomono K, Hamada S. 2019. Genomic characterization of an emerging blaKPC-2 carrying Enterobacteriaceae clinical isolates in Thailand. Sci Rep 9:18521. doi:10.1038/s41598-019-55008-x PubMed DOI PMC

Coppola N, Freire B, Umpiérrez A, Cordeiro NF, Ávila P, Trenchi G, Castro G, Casaux ML, Fraga M, Zunino P, Bado I, Vignoli R. 2020. Transferable resistance to highest priority critically important antibiotics for human health in Escherichia Coli strains obtained from livestock Feces in Uruguay. Front Vet Sci 7:588919. doi:10.3389/fvets.2020.588919 PubMed DOI PMC

Coppola N, Cordeiro NF, Trenchi G, Esposito F, Fuga B, Fuentes-Castillo D, Lincopan N, Iriarte A, Bado I, Vignoli R. 2022. Imported one-day-old chicks as Trojan horses for multidrug-resistant priority pathogens harboring mcr-9, rmtG, and extended-spectrum beta-lactamase genes. Appl Environ Microbiol 88:e0167521. doi:10.1128/AEM.01675-21 PubMed DOI PMC

Calarga AP, Gontijo MTP, de Almeida LGP, de Vasconcelos ATR, Nascimento LC, de Moraes Barbosa TMC, de Carvalho Perri TM, Dos Santos SR, Tiba-Casas MR, Marques EGL, Ferreira CM, Brocchi M. 2022. Antimicrobial resistance and genetic background of non-typhoidal Salmonella enterica strains isolated from human infections in São Paulo, Brazil (2000-2019). Braz J Microbiol 53:1249–1262. doi:10.1007/s42770-022-00748-8 PubMed DOI PMC

Sartori L, Sellera FP, Moura Q, Cardoso B, Fontana H, Côrtes LA, Cerdeira L, Lincopan N. 2020. Genomic features of a polymyxin-resistant Klebsiella pneumoniae ST491 isolate co-harbouring blaCTX-M-8 and qnrE1 genes from a hospitalised cat in São Paulo, Brazil. J Glob Antimicrob Resist 21:186–187. doi:10.1016/j.jgar.2020.03.006 PubMed DOI

Soares FB, Camargo CH, Cunha MPV, de Almeida EA, Bertani AM de J, Carvalho E de, de Paiva JB, Fernandes SA, Tiba-Casas MR. 2019. Co-Occurrence of qnre1 and blaCTX-M-8 in incm1 transferable plasmids contributing to MDR in different Salmonella serotypes. J Antimicrob Chemother 74:1155–1156. doi:10.1093/jac/dky516 PubMed DOI

Monte DF, Lincopan N, Cerdeira L, Fedorka-Cray PJ, Landgraf M. 2019. Early dissemination of qnrE1 in salmonella enterica serovar typhimurium from livestock in South America. Antimicrob Agents Chemother 63:e00571-19. doi:10.1128/AAC.00571-19 PubMed DOI PMC

Cunha MPV, Davies YM, Cerdeira L, Dropa M, Lincopan N, Knöbl T. 2017. Complete DNA sequence of an IncM1 plasmid bearing the novel qnrE1 plasmid-mediated quinolone resistance variant and blaCTX-M-8 from klebsiella pneumoniae sequence type 147. Antimicrob Agents Chemother 61:e00592-17. doi:10.1128/AAC.00592-17 PubMed DOI PMC

Cerdeira L, Monte DFM, Fuga B, Sellera FP, Neves I, Rodrigues L, Landgraf M, Lincopan N. 2020. Genomic insights of Klebsiella pneumoniae isolated from a native Amazonian fish reveal wide resistome against heavy metals, disinfectants, and clinically relevant antibiotics. Genomics 112:5143–5146. doi:10.1016/j.ygeno.2020.09.015 PubMed DOI PMC

Wyrsch ER, Reid CJ, DeMaere MZ, Liu MY, Chapman TA, Roy Chowdhury P, Djordjevic SP. 2019. Complete sequences of multiple-drug resistant IncHI2 ST3 plasmids in Escherichia coli of porcine origin in Australia. Front Sustain Food Syst 3. doi:10.3389/fsufs.2019.00018 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...