Genomic comparisons of Escherichia coli ST131 from Australia
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34910614
PubMed Central
PMC8767332
DOI
10.1099/mgen.0.000721
Knihovny.cz E-zdroje
- Klíčová slova
- H41, ST131, blaCTX-M-27, class 1 integrons, extraintestinal pathogenic Escherichia coli (ExPEC), one health, urinary tract infection (UTI),
- MeSH
- Escherichia coli klasifikace genetika MeSH
- fylogeneze MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé MeSH
- proteiny z Escherichia coli genetika MeSH
- psi MeSH
- ptáci MeSH
- sekvenování celého genomu metody MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
- Názvy látek
- proteiny z Escherichia coli MeSH
Escherichia coli ST131 is a globally dispersed extraintestinal pathogenic E. coli lineage contributing significantly to hospital and community acquired urinary tract and bloodstream infections. Here we describe a detailed phylogenetic analysis of the whole genome sequences of 284 Australian ST131 E. coli isolates from diverse sources, including clinical, food and companion animals, wildlife and the environment. Our phylogeny and the results of single nucleotide polymorphism (SNP) analysis show the typical ST131 clade distribution with clades A, B and C clearly displayed, but no niche associations were observed. Indeed, interspecies relatedness was a feature of this study. Thirty-five isolates (29 of human and six of wild bird origin) from clade A (32 fimH41, 2 fimH89, 1 fimH141) were observed to differ by an average of 76 SNPs. Forty-five isolates from clade C1 from four sources formed a cluster with an average of 46 SNPs. Within this cluster, human sourced isolates differed by approximately 37 SNPs from isolates sourced from canines, approximately 50 SNPs from isolates from wild birds, and approximately 52 SNPs from isolates from wastewater. Many ST131 carried resistance genes to multiple antibiotic classes and while 41 (14 %) contained the complete class one integron-integrase intI1, 128 (45 %) isolates harboured a truncated intI1 (462-1014 bp), highlighting the ongoing evolution of this element. The module intI1-dfrA17-aadA5-qacEΔ1-sul1-ORF-chrA-padR-IS1600-mphR-mrx-mphA, conferring resistance to trimethoprim, aminoglycosides, quaternary ammonium compounds, sulphonamides, chromate and macrolides, was the most common structure. Most (73 %) Australian ST131 isolates carry at least one extended spectrum β-lactamase gene, typically blaCTX-M-15 and blaCTX-M-27. Notably, dual parC-1aAB and gyrA-1AB fluoroquinolone resistant mutations, a unique feature of clade C ST131 isolates, were identified in some clade A isolates. The results of this study indicate that the the ST131 population in Australia carries diverse antimicrobial resistance genes and plasmid replicons and indicate cross-species movement of ST131 strains across diverse reservoirs.
Biomedical Center Charles University Czech Republic
CEITEC VETUNI University of Veterinary Sciences Brno Brno Czech Republic
Central West Pathology Laboratory Charles Sturt University Orange NSW 2800 Australia
Future Industries Institute University of South Australia Adelaide South Australia Australia
iThree Institute University of Technology Sydney Ultimo NSW Australia
San Pathology Sydney Adventist Hospital Wahroonga NSW 2076 Australia
Zobrazit více v PubMed
Hastak P, Fourment M, Darling AE, Gottlieb T, Cheong E, et al. Escherichia coli ST8196 is a novel, locally evolved, and extensively drug resistant pathogenic lineage within the ST131 clonal complex. Emerg Microbes Infect. 2020;9:1780–1792. doi: 10.1080/22221751.2020.1797541. PubMed DOI PMC
Pitout JDD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res. 2017;(6):195. doi: 10.12688/f1000research.10609.1. PubMed DOI PMC
Nicolas-Chanoine M-H, Bertrand X, Madec J-Y. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev. 2014;27:543–574. doi: 10.1128/CMR.00125-13. PubMed DOI PMC
Banerjee R, Johnson JR. A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob Agents Chemother. 2014;58:4997–5004. doi: 10.1128/AAC.02824-14. PubMed DOI PMC
Nicolas-Chanoine M-H, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother. 2008;61:273–281. doi: 10.1093/jac/dkm464. PubMed DOI
Dahbi G, Mora A, Mamani R, López C, Alonso MP, et al. Molecular epidemiology and virulence of Escherichia coli O16:H5-ST131: comparison with H30 and H30-Rx subclones of O25b:H4-ST131. Int J Med Microbiol. 2014;304:1247–1257. doi: 10.1016/j.ijmm.2014.10.002. PubMed DOI
Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M, et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A. 2014;111:5694–5699. doi: 10.1073/pnas.1322678111. PubMed DOI PMC
Price LB, Johnson JR, Aziz M, Clabots C, Johnston B, et al. The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio. 2013;4:e00377-13. doi: 10.1128/mBio.00377-13. PubMed DOI PMC
Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE, et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio. 2016;7:e02162-15. doi: 10.1128/mBio.02162-15. PubMed DOI PMC
Finn TJ, Scriver L, Lam L, Duong M, Peirano G, et al. A comprehensive account of Escherichia coli sequence type 131 in wastewater reveals an abundance of fluoroquinolone-resistant clade A strains. Appl Environ Microbiol. 2020;86:e01913-19. doi: 10.1128/AEM.01913-19. PubMed DOI PMC
Nickel JC. Practical management of recurrent urinary tract infections in premenopausal women. Rev Urol. 2005;7:11–17. PubMed PMC
Raz R, Chazan B, Kennes Y, Colodner R, Rottensterich E, et al. Empiric use of trimethoprim-sulfamethoxazole (TMP-SMX) in the treatment of women with uncomplicated urinary tract infections, in a geographical area with a high prevalence of TMP-SMX-resistant uropathogens. Clin Infect Dis. 2002;34:1165–1169. doi: 10.1086/339812. PubMed DOI
Le Saux N, Robinson J. Aminoglycosides—alive and well in treatment of pediatric infections: a case of benefit versus risk. Official J Assoc Med Microbiol Infect Dis Canada. 2019;4:1–5. doi: 10.3138/jammi.2018.09.19. PubMed DOI PMC
Kudinha T, Johnson JR, Andrew SD, Kong F, Anderson P, et al. Escherichia coli sequence type 131 as a prominent cause of antibiotic resistance among urinary Escherichia coli isolates from reproductive-age women. J Clin Microbiol. 2013;51:3270–3276. doi: 10.1128/JCM.01315-13. PubMed DOI PMC
Ludden C, Decano AG, Jamrozy D, Pickard D, Morris D, et al. Genomic surveillance of Escherichia coli ST131 identifies local expansion and serial replacement of subclones. Microb Genom. 2020;6 doi: 10.1099/mgen.0.000352. PubMed DOI PMC
Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW, et al. Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. mBio. 2016;7:e00347-16. doi: 10.1128/mBio.00347-16. PubMed DOI PMC
Decano AG, Downing T. An Escherichia coli ST131 pangenome atlas reveals population structure and evolution across 4,071 isolates. Sci Rep. 2019;9:17394. doi: 10.1038/s41598-019-54004-5. PubMed DOI PMC
Reid CJ, McKinnon J, Djordjevic SP. Clonal ST131-H22 Escherichia coli strains from a healthy pig and a human urinary tract infection carry highly similar resistance and virulence plasmids. Microb Genom. 2019;5 doi: 10.1099/mgen.0.000295. PubMed DOI PMC
Liu CM, Stegger M, Aziz M, Johnson TJ, Waits K, et al. Escherichia coli ST131-H22 as a foodborne uropathogen. mBio. 2018;9:e00470-18. doi: 10.1128/mBio.00470-18. PubMed DOI PMC
Roer L, Overballe-Petersen S, Hansen F, Johannesen TB, Stegger M, et al. ST131 fimH22 Escherichia coli isolate with a blaCMY-2/IncI1/ST12 plasmid obtained from a patient with bloodstream infection: highly similar to E. coli isolates of broiler origin. J Antimicrob Chemother. 2019;74:557–560. doi: 10.1093/jac/dky484. PubMed DOI
Cummins ML, Reid CJ, Roy Chowdhury P, Bushell RN, Esbert N, et al. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb Genom. 2019;5 doi: 10.1099/mgen.0.000250. PubMed DOI PMC
Johnson TJ, Siek KE, Johnson SJ, Nolan LK. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. J Bacteriol. 2006;188:745–758. doi: 10.1128/JB.188.2.745-758.2006. PubMed DOI PMC
Tivendale KA, Logue CM, Kariyawasam S, Jordan D, Hussein A, et al. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect Immun. 2010;78:3412–3419. doi: 10.1128/IAI.00347-10. PubMed DOI PMC
Skyberg JA, Johnson TJ, Johnson JR, Clabots C, Logue CM, et al. Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect Immun. 2006;74:6287–6292. doi: 10.1128/IAI.00363-06. PubMed DOI PMC
Tivendale KA, Noormohammadi AH, Allen JL, Browning GF. The conserved portion of the putative virulence region contributes to virulence of avian pathogenic Escherichia coli . Microbiology (Reading) 2009;155:450–460. doi: 10.1099/mic.0.023143-0. PubMed DOI
McKinnon J, Roy Chowdhury P, Djordjevic SP. Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int J Antimicrob Agents. 2018;52:430–435. doi: 10.1016/j.ijantimicag.2018.06.017. PubMed DOI
McKinnon J, Roy Chowdhury P, Djordjevic SP. Molecular analysis of an IncF ColV-like plasmid lineage that carries a complex resistance locus with a trackable genetic signature. Microb Drug Resist. 2020;26:787–793. doi: 10.1089/mdr.2019.0277. PubMed DOI
Cointe A, Birgy A, Mariani-Kurkdjian P, Liguori S, Courroux C, et al. Emerging multidrug-resistant hybrid pathotype shiga toxin-producing Escherichia coli o80 and related strains of clonal complex 165, Europe. Emerg Infect Dis. 2018;24:2262–2269. doi: 10.3201/eid2412.180272. PubMed DOI PMC
Saidenberg ABS, Stegger M, Price LB, Johannesen TB, Aziz M, et al. mcr-positive Escherichia coli ST131-H22 from poultry in Brazil. Emerg Infect Dis. 2020;26:1951–1954. doi: 10.3201/eid2608.191724. PubMed DOI PMC
Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM, et al. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res. 2017;27:1437–1449. doi: 10.1101/gr.216606.116. PubMed DOI PMC
Johnson TJ, Danzeisen JL, Youmans B, Case K, Llop K, et al. Separate F-Type plasmids have shaped the evolution of the H30 subclone of Escherichia coli sequence Type 131. mSphere. 2016;1:e00121-16. doi: 10.1128/mSphere.00121-16. PubMed DOI PMC
Mahon BM, Brehony C, Cahill N, McGrath E, O’Connor L, et al. Detection of OXA-48-like-producing Enterobacterales in Irish recreational water. Sci Total Environ. 2019;690:1–6. doi: 10.1016/j.scitotenv.2019.06.480. PubMed DOI
Peirano G, Schreckenberger PC, Pitout JDD. Characteristics of NDM-1-producing Escherichia coli isolates that belong to the successful and virulent clone ST131. Antimicrob Agents Chemother. 2011;55:2986–2988. doi: 10.1128/AAC.01763-10. PubMed DOI PMC
Mahérault A-C, Kemble H, Magnan M, Gachet B, Roche D, et al. Advantage of the F2:A1:B- IncF pandemic plasmid over IncC plasmids in in vitro acquisition and evolution of bla CTX-M gene-bearing plasmids in Escherichia coli . Antimicrob Agents Chemother. 2019;63:10. doi: 10.1128/AAC.01130-19. PubMed DOI PMC
Hayashi M, Matsui M, Sekizuka T, Shima A, Segawa T, et al. Dissemination of IncF group F1:A2:B20 plasmid-harbouring multidrug-resistant Escherichia coli ST131 before the acquisition of bla CTX-M in Japan. J Glob Antimicrob Resist. 2020;23:456–465. doi: 10.1016/j.jgar.2020.10.021. PubMed DOI
Villa L, García-Fernández A, Fortini D, Carattoli A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother. 2010;65:2518–2529. doi: 10.1093/jac/dkq347. PubMed DOI
Rogers BA, Ingram PR, Runnegar N, Pitman MC, Freeman JT, et al. Sequence type 131 fimH30 and fimH41 subclones amongst Escherichia coli isolates in Australia and New Zealand. Int J Antimicrob Agents. 2015;45:351–358. doi: 10.1016/j.ijantimicag.2014.11.015. PubMed DOI
Rogers BA, Ingram PR, Runnegar N, Pitman MC, Freeman JT, et al. Community-onset Escherichia coli infection resistant to expanded-spectrum cephalosporins in low-prevalence countries. Antimicrob Agents Chemother. 2014;58:2126–2134. doi: 10.1128/AAC.02052-13. PubMed DOI PMC
Li D, Reid CJ, Kudinha T, Jarocki VM, Djordjevic SP. Genomic analysis of trimethoprim-resistant extraintestinal pathogenic Escherichia coli and recurrent urinary tract infections. Microb Genom. 2020;6 doi: 10.1099/mgen.0.000475. PubMed DOI PMC
Hastak P, Cummins ML, Gottlieb T, Cheong E, Merlino J, et al. Genomic profiling of Escherichia coli isolates from bacteraemia patients: a 3-year cohort study of isolates collected at a Sydney teaching hospital. Microb Genom. 2020;6 doi: 10.1099/mgen.0.000371. PubMed DOI PMC
Kidsley AK, White RT, Beatson SA, Saputra S, Schembri MA, et al. Companion animals are spillover hosts of the multidrug-resistant human extraintestinal Escherichia coli pandemic clones ST131 and ST1193. Front Microbiol. 2020;11:1968. doi: 10.3389/fmicb.2020.01968. PubMed DOI PMC
Mukerji S, Stegger M, Truswell AV, Laird T, Jordan D, et al. Resistance to critically important antimicrobials in Australian silver gulls (Chroicocephalus novaehollandiae) and evidence of anthropogenic origins. J Antimicrob Chemother. 2019;74:2566–2574. doi: 10.1093/jac/dkz242. PubMed DOI
Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15. doi: 10.1093/nar/gku1196. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–W259. doi: 10.1093/nar/gkz239. PubMed DOI PMC
Yu G, Smith DK, Zhu H, Guan Y, Lam TT, et al. ggtree : an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2016;8:28–36. doi: 10.1111/2041-210X.12628. DOI
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3693. doi: 10.1093/bioinformatics/btv421. PubMed DOI PMC
Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res. 2019;47:5539–5549. doi: 10.1093/nar/gkz361. PubMed DOI PMC
Roer L, Tchesnokova V, Allesøe R, Muradova M, Chattopadhyay S, et al. Development of a web tool for Escherichia coli subtyping based on fimH alleles. J Clin Microbiol. 2017;55:2538–2543. doi: 10.1128/JCM.00737-17. PubMed DOI PMC
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75:3491–3500. doi: 10.1093/jac/dkaa345. PubMed DOI PMC
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, et al. In silico detection and typing of plasmids using plasmid finder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI
Stothard P, Grant JR, Van Domselaar G. Visualizing and comparing circular genomes using the CGView family of tools. Brief Bioinform. 2019;20:1576–1582. doi: 10.1093/bib/bbx081. PubMed DOI PMC
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016;17:238. doi: 10.1186/s13059-016-1108-8. PubMed DOI PMC
Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM, et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics. 2018;34:292–293. doi: 10.1093/bioinformatics/btx610. PubMed DOI PMC
Blanco J, Mora A, Mamani R, López C, Blanco M, et al. Four main virotypes among extended-spectrum-β-lactamase-producing isolates of Escherichia coli O25b:H4-B2-ST131: bacterial, epidemiological, and clinical characteristics. J Clin Microbiol. 2013;51:3358–3367. doi: 10.1128/JCM.01555-13. PubMed DOI PMC
Manges AR. Escherichia coli causing bloodstream and other extraintestinal infections: tracking the next pandemic. Lancet Infect Dis. 2019;19:1269–1270. doi: 10.1016/S1473-3099(19)30538-9. PubMed DOI
Matsumura Y, Pitout JDD, Gomi R, Matsuda T, Noguchi T, et al. Global Escherichia coli sequence type 131 clade with bla CTX-M-27 Gene. Emerg Infect Dis. 2016;22:1900–1907. doi: 10.3201/eid2211.160519. PubMed DOI PMC
Sáenz Y, Zarazaga M, Briñas L, Ruiz-Larrea F, Torres C. Mutations in gyrA and parC genes in nalidixic acid-resistant Escherichia coli strains from food products, humans and animals. J Antimicrob Chemother. 2003;51:1001–1005. doi: 10.1093/jac/dkg168. PubMed DOI
Gillings MR. Integrons: past, present, and future. Microbiol Mol Biol Rev. 2014;78:257–277. doi: 10.1128/MMBR.00056-13. PubMed DOI PMC
Stephens CM, Adams-Sapper S, Sekhon M, Johnson JR, Riley LW. Genomic analysis of factors associated with low prevalence of antibiotic resistance in extraintestinal pathogenic Escherichia coli sequence type 95 strains. mSphere. 2017;2:e00390-16. doi: 10.1128/mSphere.00390-16. PubMed DOI PMC
Kaur P, Chakraborti A, Asea A. Enteroaggregative Escherichia coli: an emerging enteric food borne pathogen. Interdiscip Perspect Infect Dis. 2010;2010:254159. doi: 10.1155/2010/254159. PubMed DOI PMC
Boll EJ, Overballe-Petersen S, Hasman H, Roer L, Ng K, et al. Emergence of enteroaggregative Escherichia coli within the ST131 lineage as a cause of extraintestinal infections. mBio. 2020;11:e00353-20. doi: 10.1128/mBio.00353-20. PubMed DOI PMC
Sidjabat HE, Derrington P, Nimmo GR, Paterson DL. Escherichia coli ST131 producing CTX-M-15 in Australia. J Antimicrob Chemother. 2010;65:1301–1303. doi: 10.1093/jac/dkq098. PubMed DOI
Flament-Simon S-C, de Toro M, Mora A, García V, García-Meniño I, et al. Whole genome sequencing and characteristics of mcr-1-harboring plasmids of porcine Escherichia coli isolates belonging to the high-risk clone O25b:H4-ST131 Clade B. Front Microbiol. 2020;11:387. doi: 10.3389/fmicb.2020.00387. PubMed DOI PMC
Jamborova I, Johnston BD, Papousek I, Kachlikova K, Micenkova L, et al. Extensive genetic commonality among wildlife, wastewater, community, and nosocomial isolates of Escherichia coli sequence type 131 (H30R1 and H30Rx Subclones) that Carry bla CTX-M-27 or bla CTX-M-15 . Antimicrob Agents Chemother. 2018;62:e00519-18. doi: 10.1128/AAC.00519-18. PubMed DOI PMC
McNally A, Oren Y, Kelly D, Pascoe B, Dunn S, et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet. 2016;12:e1006280. doi: 10.1371/journal.pgen.1006280. PubMed DOI PMC
Ingle DJ, Howden BP, Duchene S. Development of phylodynamic methods for bacterial pathogens phylodynamic methods for bacterial pathogens. Trends Microbiol. 2021;29:797. doi: 10.1016/j.tim.2021.02.008. PubMed DOI
Rodríguez-Beltrán J, Tourret J, Tenaillon O, López E, Bourdelier E, et al. High recombinant frequency in extraintestinal pathogenic Escherichia coli strains. Mol Biol Evol. 2015;32:1708–1716. doi: 10.1093/molbev/msv072. PubMed DOI
Paul S, Linardopoulou EV, Billig M, Tchesnokova V, Price LB, et al. Role of homologous recombination in adaptive diversification of extraintestinal Escherichia coli . J Bacteriol. 2013;195:231–242. doi: 10.1128/JB.01524-12. PubMed DOI PMC
Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. Nat Rev Genet. 2018;19:549–565. doi: 10.1038/s41576-018-0032-z. PubMed DOI
Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017;72:2145–2155. doi: 10.1093/jac/dkx146. PubMed DOI
Forde BM, Roberts LW, Phan M-D, Peters KM, Fleming BA, et al. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat Commun. 2019;10:3643. doi: 10.1038/s41467-019-11571-5. PubMed DOI PMC
Brilhante M, Menezes J, Belas A, Feudi C, Schwarz S, et al. OXA-181-producing extraintestinal pathogenic Escherichia coli sequence type 410 isolated from a dog in Portugal. Antimicrob Agents Chemother. 2020;64 doi: 10.1128/AAC.02298-19. PubMed DOI PMC
Pitout JDD, Finn TJ. The evolutionary puzzle of Escherichia coli ST131. Infect Genet Evol. 2020;81:104265. doi: 10.1016/j.meegid.2020.104265. PubMed DOI
Alsharapy SA, Yanat B, Lopez-Cerero L, Nasher SS, Díaz-De-Alba P, et al. Prevalence of ST131 clone producing both ESBL CTX-M-15 and AAC(6’)Ib-cr among ciprofloxacin-resistant Escherichia coli isolates from Yemen. Microb Drug Resist. 2018;24:1537–1542. doi: 10.1089/mdr.2018.0024. PubMed DOI
Livermore DM, Day M, Cleary P, Hopkins KL, Toleman MA, et al. OXA-1 β-lactamase and non-susceptibility to penicillin/β-lactamase inhibitor combinations among ESBL-producing Escherichia coli . J Antimicrob Chemother. 2019;74:326–333. doi: 10.1093/jac/dky453. PubMed DOI
Blanc V, Leflon-Guibout V, Blanco J, Haenni M, Madec J-Y, et al. Prevalence of day-care centre children (France) with faecal CTX-M-producing Escherichia coli comprising O25b:H4 and O16:H5 ST131 strains. J Antimicrob Chemother. 2014;69:1231–1237. doi: 10.1093/jac/dkt519. PubMed DOI
Zhang L, Lü X, Zong Z. The emergence of blaCTX-M-15-carrying Escherichia coli of ST131 and new sequence types in Western China. Ann Clin Microbiol Antimicrob. 2013;12:35. doi: 10.1186/1476-0711-12-35. PubMed DOI PMC
Bonnet R, Recule C, Baraduc R, Chanal C, Sirot D, et al. Effect of D240G substitution in a novel ESBL CTX-M-27. J Antimicrob Chemother. 2003;52:29–35. doi: 10.1093/jac/dkg256. PubMed DOI
Birgy A, Levy C, Nicolas-Chanoine M-H, Cointe A, Hobson CA, et al. Independent host factors and bacterial genetic determinants of the emergence and dominance of Escherichia coli sequence type 131 CTX-M-27 in a community pediatric cohort study. Antimicrob Agents Chemother. 2019;63 doi: 10.1128/AAC.00382-19. PubMed DOI PMC
Ghosh H, Doijad S, Falgenhauer L, Fritzenwanker M, Imirzalioglu C, et al. bla CTX-M-27 –Encoding Escherichia coli sequence type 131 lineage C1-M27 clone in clinical isolates, Germany. Emerg Infect Dis. 2017;23:1754–1756. doi: 10.3201/eid2310.170938. PubMed DOI PMC
Melo LC, Haenni M, Saras E, Duprilot M, Nicolas-Chanoine M-H, et al. Emergence of the C1-M27 cluster in ST131 Escherichia coli from companion animals in France. J Antimicrob Chemother. 2019;74:3111–3113. doi: 10.1093/jac/dkz304. PubMed DOI
Zendri F, Maciuca IE, Moon S, Jones PH, Wattret A, et al. Occurrence of ESBL-producing Escherichia coli ST131, including the H30-Rx and C1-M27 subclones, among urban seagulls from the United Kingdom. Microb Drug Resist. 2020;26:697–708. doi: 10.1089/mdr.2019.0351. PubMed DOI
Crozat E, Philippe N, Lenski RE, Geiselmann J, Schneider D. Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics. 2005;169:523–532. doi: 10.1534/genetics.104.035717. PubMed DOI PMC
Zhong Y-M, Liu W-E, Liang X-H, Li Y-M, Jian Z-J, et al. Emergence and spread of O16-ST131 and O25b-ST131 clones among faecal CTX-M-producing Escherichia coli in healthy individuals in Hunan Province, China. J Antimicrob Chemother. 2015;70:2223–2227. doi: 10.1093/jac/dkv114. PubMed DOI PMC
Downing T. Tackling drug resistant infection outbreaks of global pandemic Escherichia coli ST131 using evolutionary and epidemiological genomics. Microorganisms. 2015;3:236–267. doi: 10.3390/microorganisms3020236. PubMed DOI PMC
Cusumano CK, Hung CS, Chen SL, Hultgren SJ. Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun. 2010;78:1457–1467. doi: 10.1128/IAI.01260-09. PubMed DOI PMC
Boll EJ, Ayala-Lujan J, Szabady RL, Louissaint C, Smith RZ, et al. Enteroaggregative Escherichia coli adherence fimbriae drive inflammatory cell recruitment via interactions with epithelial MUC1. mBio. 2017;8:e00717-17. doi: 10.1128/mBio.00717-17. PubMed DOI PMC
Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli