Genomic characterization of ST38 NDM-5-producing Escherichia coli isolates from an outbreak in the Czech Republic
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NU20J-05-00033
Agentura Pro Zdravotnický Výzkum České Republiky (AZV ČR)
NU22-09-00645
Agentura Pro Zdravotnický Výzkum České Republiky (AZV ČR)
LX22NPO5103
European Union-Next generation EU
PubMed
38624228
PubMed Central
PMC11620504
DOI
10.1128/aac.00133-24
Knihovny.cz E-zdroje
- Klíčová slova
- Escherichia coli, ST38, blaNDM-5,
- MeSH
- antibakteriální látky farmakologie MeSH
- beta-laktamasy * genetika MeSH
- biofilmy růst a vývoj MeSH
- epidemický výskyt choroby * MeSH
- Escherichia coli * genetika účinky léků izolace a purifikace enzymologie MeSH
- faktory virulence genetika MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genomika metody MeSH
- infekce vyvolané Escherichia coli * mikrobiologie epidemiologie MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
- beta lactamase NDM-5, E coli MeSH Prohlížeč
- beta-laktamasy * MeSH
- faktory virulence MeSH
A 2-year national genomic screening in the Czech Republic identified a notable prevalence of the New Delhi metallo-β-lactamase 5 (NDM-5)-producing Escherichia coli sequence type 38 (ST38) in the city of Brno. Forty-two ST38 E. coli isolates harbored the blaNDM-5 gene on the chromosome. Virulence factors confirmed the persistence of these isolates through biofilm formation. Single Nucleotide Polymorphisms (SNPs)-based phylogeny and CRISPR assay typing showed minimal genomic variations, implying a clonally driven outbreak. Results suggest that this high-risk clone may impose a nationwide problem.
Central European Institute of Technology University of Veterinary Sciences Brno Brno Czech Republic
Department of Microbiology University Hospital of Larissa Larissa Greece
Zobrazit více v PubMed
Bitar I, Papagiannitsis CC, Kraftova L, Marchetti VM, Petinaki E, Finianos M, Chudejova K, Zemlickova H, Hrabak J. 2022. Implication of different replicons in the spread of the vim-1-encoding integron, in110, in enterobacterales from Czech hospitals. Front Microbiol 13:993240. doi:10.3389/fmicb.2022.993240 PubMed DOI PMC
Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualisation of de novo genome assemblies. Bioinformatics 31:3350–3352. doi:10.1093/bioinformatics/btv383 PubMed DOI PMC
Treangen TJ, Ondov BD, Koren S, Phillippy AM. 2014. The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15:524. doi:10.1186/s13059-014-0524-x PubMed DOI PMC
Seemann T. Tseemann/snippy: scissors: rapid haploid variant calling and core genome alignment. GitHub.
Reslan L, Araj GF, Finianos M, El Asmar R, Hrabak J, Dbaibo G, Bitar I. 2021. Molecular characterization of Candida auris isolates at a major tertiary care center in lebanon. Front Microbiol 12:770635. doi:10.3389/fmicb.2021.770635 PubMed DOI PMC
Gagaletsios LA, Papagiannitsis CC, Petinaki E. 2022. Prevalence and analysis of CRISPR/CAS systems in Pseudomonas aeruginosa isolates from greece. Mol Genet Genomics 297:1767–1776. doi:10.1007/s00438-022-01957-4 PubMed DOI
Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, Rocha EPC, Vergnaud G, Gautheret D, Pourcel C. 2018. Crisprcasfinder, an update of crisrfinder, includes a portable version, enhanced performance and integrates search for CAS proteins. Nucleic Acids Res. 46:W246–W251. doi:10.1093/nar/gky425 PubMed DOI PMC
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the phast phage search tool. Nucleic Acids Res 44:W16–21. doi:10.1093/nar/gkw387 PubMed DOI PMC
Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325–D328. doi:10.1093/nar/gki008 PubMed DOI PMC
Hassan J, Eddine RZ, Mann D, Li S, Deng X, Saoud IP, Kassem II. 2020. The mobile colistin resistance gene, MCR-1.1, is carried on Incx4 plasmids in multidrug resistant E. coli isolated from rainbow trout aquaculture. Microorganisms 8:1636. doi:10.3390/microorganisms8111636 PubMed DOI PMC
Hans JB, Pfennigwerth N, Neumann B, Pfeifer Y, Fischer MA, Eisfeld J, Schauer J, Haller S, Eckmanns T, Gatermann S, Werner G. 2023. Molecular surveillance reveals the emergence and dissemination of NDM-5-producing Escherichia coli high-risk clones in Germany. Euro Surveill 28:2200509. doi:10.2807/1560-7917.ES.2023.28.10.2200509 PubMed DOI PMC
Huang L, Hu H, Xu C, Zhou M, Li Y, Li Y, Wu S, Dong N. 2023. Characterization of NDM-5-producing Escherichia coli strains isolated from pediatric patients with bloodstream infections in a Chinese hospital. Genes (Basel) 14:520. doi:10.3390/genes14020520 PubMed DOI PMC
Roy Chowdhury P, Hastak P, DeMaere M, Wyrsch E, Li D, Elankumaran P, Dolejska M, Browning GF, Marenda MS, Gottlieb T, Cheong E, Merlino J, Myers GSA, Djordjevic SP. 2023. Phylogenomic analysis of a global collection of Escherichia coli ST38: evidence of interspecies and environmental transmission. mSystems 8:e0123622. doi:10.1128/msystems.01236-22 PubMed DOI PMC