Exploring Virulence Characteristics of Clinical Escherichia coli Isolates from Greece
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40731998
PubMed Central
PMC12300496
DOI
10.3390/microorganisms13071488
PII: microorganisms13071488
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR/Cas, Escherichia coli, biofilm formation, multidrug resistance, plasmids,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to examine the genetic characteristics that could be associated with the virulence characteristics of Escherichia coli collected from clinical samples. A collection of 100 non-repetitive E. coli isolates was analyzed. All isolates were typed by MLST. String production, biofilm formation and serum resistance were examined for all isolates. Twenty E. coli isolates were completely sequenced Illumina platform. The results showed that the majority of E. coli isolates (87%) produced significant levels of biofilm, while none of the isolates were positive for string test and resistance to serum. Additionally, the presence of CRISPR/Cas systems (type I-E or I-F) was found in 18% of the isolates. Analysis of WGS data found that all sequenced isolates harbored a variety of virulence genes that could be implicated in adherence, invasion, iron uptake. Also, WGS data confirmed the presence of a wide variety of resistance genes, including ESBL- and carbapenemase-encoding genes. In conclusion, an important percentage (87%) of the E. coli isolates had a significant ability to form biofilm. Biofilms, due to their heterogeneous nature and ability to make microorganisms tolerant to multiple antimicrobials, complicate treatment strategies. Thus, in combination with the presence of multidrug resistance, expression of virulence factors could challenge antimicrobial therapy of infections caused by such bacteria.
Zobrazit více v PubMed
Da Silva G.J., Mendonça N. Association between antimicrobial resistance and virulence in Escherichia coli. Virulence. 2012;3:18–28. doi: 10.4161/viru.3.1.18382. PubMed DOI
Jang J., Hur H.G., Sadowsky M.J., Byappanahalli M., Yan T., Ishii S. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 2017;123:570–581. doi: 10.1111/jam.13468. PubMed DOI
Florez-Cuadrado D., Moreno M.A., Ugarte-Ruíz M., Domínguez L. Antimicrobial resistance in the food chain in the European union. Adv. Food Nutr. Res. 2018;86:115–136. doi: 10.1016/bs.afnr.2018.04.004. PubMed DOI
Toval F., Köhler C.-D., Vogel U., Wagenlehner F., Mellmann A., Fruth A., Schmidt M.A., Karch H., Bielaszewska M., Dobrindt U. Characterization of Escherichia coli isolates from hospital inpatients or outpatients with urinary tract infection. J. Clin. Microbiol. 2014;52:407–418. doi: 10.1128/JCM.02069-13. PubMed DOI PMC
Subedi M., Luitel H., Devkota B., Bhattarai R.K., Phuyal S., Panthi P., Shrestha A., Chaudhary D.K. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res. 2018;14:1–6. doi: 10.1186/s12917-018-1442-z. PubMed DOI PMC
Sanchez F., Fuenzalida V., Ramos R., Escobar B., Neira V., Borie C., Lapierre L., Lopez P., Venegas L., Dettleff P. Genomic features and antimicrobial resistance patterns of shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses Public Health. 2021;68:226–238. doi: 10.1111/zph.12818. PubMed DOI
Shen J., Zhi S., Guo D., Jiang Y., Xu X., Zhao L., Lv J. Prevalence, antimicrobial resistance, and whole genome sequencing analysis of shiga toxinproducing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from imported foods in China during 2015–2021. Toxins. 2022;14:68. doi: 10.3390/toxins14020068. PubMed DOI PMC
Hazen T.H., Michalski J., Luo Q., Shetty A.C., Daugherty S.C., Fleckenstein J.M., Rasko D.A. Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic Escherichia coli. Sci. Rep. 2017;7:3513. doi: 10.1038/s41598-017-03489-z. PubMed DOI PMC
Dadi B.R., Abebe T., Zhang L., Mihret A., Abebe W., Amogne W. Distribution of virulence genes and phylogenetics of uropathogenic Escherichia coli among urinary tract infection patients in Addis Ababa, Ethiopia. BMC Infect. Dis. 2020;20:108. doi: 10.1186/s12879-020-4844-z. PubMed DOI PMC
Tabasi M., Asadi Karam M.R., Habibi M., Yekaninejad M.S., Bouzari S. Phenotypic assays to determine virulence factors of uropathogenic Escherichia coli (UPEC) isolates and their correlation with antibiotic resistance pattern. Osong Public Health Res Perspect. 2015;6:261–268. doi: 10.1016/j.phrp.2015.08.002. PubMed DOI PMC
Farajzadah Sheikh A., Goodarzi H., Yadyad M.J., Aslani S., Amin M., Jomehzadeh N., Ranjbar R., Moradzadeh M., Azarpira S., Akhond M.R., et al. Virulence-associated genes and drug susceptibility patterns of uropathogenic Escherichia coli isolated from patients with urinary tract infection. Infect. Drug Resist. 2019;12:2039–2047. doi: 10.2147/IDR.S199764. PubMed DOI PMC
Papagiannitsis C.C., Študentová V., Jakubů V., Španělová P., Urbášková P., Žemličková H., Hrabák J. High prevalence of ST131 among CTX-M-producing Escherichia coli from community-acquired infections, in the Czech Republic. Microb. Drug Resist. 2015;21:74–84. doi: 10.1089/mdr.2014.0070. PubMed DOI
Chudejova K., Sourenian T., Palkovicova J., Stredanska K., Nechutna L., Vlkova K., Studentova V., Working Group for Monitoring of Antibiotic Resistance. Hrabak J., Papagiannitsis C.C., et al. Genomic characterization of ST38 NDM-5-producing Escherichia coli isolates from an outbreak in the Czech Republic. Antimicrob. Agents Chemother. 2024;68:e0013324. doi: 10.1128/aac.00133-24. PubMed DOI PMC
Zelendova M., Papagiannitsis C.C., Valcek A., Medvecky M., Bitar I., Hrabak J., Gelbicova T., Barakova A., Kutilova I., Karpiskova R., et al. Characterization of the Complete Nucleotide Sequences of mcr-1-Encoding Plasmids from Enterobacterales Isolates in Retailed Raw Meat Products from the Czech Republic. Front. Microbiol. 2021;11:604067. doi: 10.3389/fmicb.2020.604067. PubMed DOI PMC
Colinon C., Miriagou V., Carattoli A., Luzzaro F., Rossolini G.M. Characterization of the IncA/C plasmid pCC416 encoding VIM-4 and CMY-4 beta-lactamases. J. Antimicrob. Chemother. 2007;60:258–262. doi: 10.1093/jac/dkm171. PubMed DOI
Patel G., Huprikar S., Factor S.H., Jenkins S.G., Calfee D.P. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect. Control Hosp. Epidemiol. 2008;29:1099–1106. doi: 10.1086/592412. PubMed DOI
Louwen R., Staals R.H., Endtz H.P., van Baarlen P., van der Oost J. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol. Mol. Biol. Rev. 2014;78:74–88. doi: 10.1128/MMBR.00039-13. PubMed DOI PMC
Choi K.R., Lee S.Y. CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnol. Adv. 2016;34:1180–1209. doi: 10.1016/j.biotechadv.2016.08.002. PubMed DOI
Gunderson F.F., Cianciotto N.P. The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio. 2013;4:e00074-13. doi: 10.1128/mBio.00074-13. PubMed DOI PMC
Louwen R., Horst-Kreft D., de Boer A.G., van der Graaf L., de Knegt G., Hamersma M., Heikema A.P., Timms A.R., Jacobs B.C., Wagenaar J.A., et al. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 2013;32:207–226. doi: 10.1007/s10096-012-1733-4. PubMed DOI
Babu M., Beloglazova N., Flick R., Graham C., Skarina T., Nocek B., Gagarinova A., Pogoutse O., Brown G., Binkowski A., et al. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol. Microbiol. 2011;79:484–502. doi: 10.1111/j.1365-2958.2010.07465.x. PubMed DOI PMC
Makarova K.S., Anantharaman V., Aravind L., Koonin E.V. Live virus-free or die: Coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol. Direct. 2012;7:40. doi: 10.1186/1745-6150-7-40. PubMed DOI PMC
Zegans M.E., Wagner J.C., Cady K.C., Murphy D.M., Hammond J.H., O’Toole G.A. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J. Bacteriol. 2009;191:210–219. doi: 10.1128/JB.00797-08. PubMed DOI PMC
Hatoum-Aslan A., Marraffini L.A. Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens. Curr. Opin. Microbiol. 2014;17:82–90. doi: 10.1016/j.mib.2013.12.001. PubMed DOI PMC
Wayne P.A. CLSI 2013, 23rd International Supplement, CLSI document M100-S23. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2013. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing.
Wirth T., Falush R.D., Lan F., Colles P., Mensa L.H., Wieler H., Karch P.R., Reeves M.C., Maiden H., Ochman H., et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006;60:1136–1151. doi: 10.1111/j.1365-2958.2006.05172.x. PubMed DOI PMC
Stepanović S., Vuković D., Hola V., Di Bonaventura G., Djukić S., Cirković I., Ruzicka F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115:891–899. doi: 10.1111/j.1600-0463.2007.apm_630.x. PubMed DOI
Hamad P.A. Phenotypic and Molecular Detection of Biofilm Formation in Methicillin-Resistant Staphylococcus Aureus Isolated from Different Clinical Sources in Erbil City. Mediterr. J. Hematol. Infect. Dis. 2023;15:e2023016. doi: 10.4084/MJHID.2023.016. PubMed DOI PMC
Moghaddam M., Goldsmith K.L., Kerwick R.A. The preparation of blood grouping serum from human citrated plasma. Vox Sang. 1971;20:277–280. doi: 10.1111/j.1423-0410.1971.tb00442.x. PubMed DOI
Rakovitsky N., Lurie-Weinberger M.N., Hameir A., Wulffhart L., Keren Paz A., Schwartz D., Carmeli Y. Phenotypic and Genomic Characterization of Nine String-Positive Carbapenem-Resistant Acinetobacter baumannii Isolates from Israel. Microbiol Spectr. 2023;11:e0300222. doi: 10.1128/spectrum.03002-22. PubMed DOI PMC
Touchon M., Charpentier S., Clermont O., Rocha E.P., Denamur E., Branger C. CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection. J. Bacteriol. 2011;193:2460–2467. doi: 10.1128/JB.01307-10. PubMed DOI PMC
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC
Carattoli A., Zankari E., Garcia-Fernandez A., Voldby Larsen M., Lund O., Villa L., Aarestrup F.M., Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2024;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC
Malberg Tetzschner A.M., Johnson J.R., Johnston B.D., Lund O., Scheutz F. In Silico Genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of Whole-Genome Sequencing data. J. Clin. Microbiol. 2020;58:e01269-20. doi: 10.1128/JCM.01269-20. PubMed DOI PMC
Joensen K.G., Tetzschner A.M., Iguchi A., Aarestrup F.M., Scheutz F. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2015;53:2410–2426. doi: 10.1128/JCM.00008-15. PubMed DOI PMC
Feil E.J., Li B.C., Aanensen D.M., Hanage W.P., Spratt B.G. eBURST: Inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 2004;186:1518–1530. doi: 10.1128/JB.186.5.1518-1530.2004. PubMed DOI PMC
Abo-Kamar A.M., Mustafa A.A., Al-Madboly L.A. Purified α-Amylase from Bacillus cereus exhibits antibiofilm and antiquorum sensing activities against uropathogenic Escherichia coli, Downregulating fimH, and papC virulence genes: Implications for urinary tract infections. BMC Microbiol. 2024;24:502. doi: 10.1186/s12866-024-03542-8. PubMed DOI PMC
Xu W.Y., Li Y.J., Fan C. Different loci and mRNA copy number of the increased serum survival gene of Escherichia coli. Can. J. Microbiol. 2018;64:147–154. doi: 10.1139/cjm-2017-0363. PubMed DOI
Vallejos-Vidal E., Fierro-Castro C., Santillán-Araneda M.J., Goldstein M., Reyes-Cerpa S., Balasch J.C., Khansari A.R., Dierckens K., Bossier P., Tort L., et al. The Administration of Heat Shock Protein-70 Bacterial Homolog (DnaK) Improves the Cumulative Survival and the Expression of Immune-Related Genes in Gnotobiotic Full-Sibling Sea Bass Larvae Challenged with Vibrio anguillarum. Animals. 2025;15:1655. doi: 10.3390/ani15111655. PubMed DOI PMC
Spurbeck R.R., Dinh P.C., Jr., Walk S.T., Stapleton A.E., Hooton T.M., Nolan L.K., Kim K.S., Johnson J.R., Mobley H.L. Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infect. Immun. 2012;80:4115–4122. doi: 10.1128/IAI.00752-12. PubMed DOI PMC
Bondì R., Chiani P., Michelacci V., Minelli F., Caprioli A., Morabito S. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells. Infect. Immun. 2017;85:e00613-17. doi: 10.1128/IAI.00613-17. PubMed DOI PMC
Warner A.J., Tokach M.D., Carrender B., Amachawadi R.G., Labbé A., Heuser W., Coble K., DeRouchey J.M., Woodworth J.C., Goodband R.D., et al. Evaluation of a Lactococcus lactis-based dried fermentation product administered through drinking water on nursery pig growth performance, fecal Escherichia coli virulence genes and pathotypes, antibiotic usage, and mortality. Transl. Anim. Sci. 2023;7:txad093. doi: 10.1093/tas/txad093. PubMed DOI PMC
Freire C.A., Rodrigues B.O., Elias W.P., Abe C.M. Adhesin related genes as potential markers for the enteroaggregative Escherichia coli category. Front. Cell. Infect. Microbiol. 2022;12:997208. doi: 10.3389/fcimb.2022.997208. PubMed DOI PMC
Zhang M., Han W., Gu J., Qiu C., Jiang Q., Dong J., Lei L., Li F. Recent advances on the regulation of bacterial biofilm formation by herbal medicines. Front. Microbiol. 2022;13:1039297. doi: 10.3389/fmicb.2022.1039297. PubMed DOI PMC
Mendhe S., Badge A., Ugemuge S., Chandi D. Impact of Biofilms on Chronic Infections and Medical Challenges. Cureus. 2023;15:e48204. doi: 10.7759/cureus.48204. PubMed DOI PMC
Ali A., Zahra A., Kamthan M., Husain F.M., Albalawi T., Zubair M., Alatawy R., Abid M., Noorani M.S. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms. 2023;11:1934. doi: 10.3390/microorganisms11081934. PubMed DOI PMC
Ong C.L., Ulett G.C., Mabbett A.N., Beatson S.A., Webb R.I., Monaghan W., Nimmo G.R., Looke D.F., McEwan A.G., Schembri M.A. Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J. Bacteriol. 2008;190:1054–1063. doi: 10.1128/JB.01523-07. PubMed DOI PMC
Anderson G.G., Palermo J.J., Schilling J.D., Roth R., Heuser J., Hultgren S.J. Intracellular bacterial biofilm-like pods in urinary tract infections. Science. 2003;301:105–107. doi: 10.1126/science.1084550. PubMed DOI
Eto D.S., Sundsbak J.L., Mulvey M.A. Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cell Microbiol. 2006;8:704–717. doi: 10.1111/j.1462-5822.2006.00691.x. PubMed DOI
Gagaletsios L.A., Tagkalegkas A., Bitar I., Papagiannitsis C.C. Exploring virulence characteristics of Klebsiella pneumoniae isolates recovered from a Greek hospital. Mol. Genet. Genomics. 2025;300:52. doi: 10.1007/s00438-025-02258-2. PubMed DOI
Gagaletsios L.A., Papagiannitsis C.C., Petinaki E. Prevalence and analysis of CRISPR/Cas systems in Pseudomonas aeruginosa isolates from Greece. Mol. Genet. Genom. 2022;297:1767–1776. doi: 10.1007/s00438-022-01957-4. PubMed DOI
Koonin E.V., Makarova K.S., Wolf Y.I. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annu. Rev. Microbiol. 2017;71:233–261. doi: 10.1146/annurev-micro-090816-093830. PubMed DOI PMC
Goman A., Ize B., Jeannot K., Pin C., Payros D., Goursat C., Ravon-Katossky L., Murase K., Chagneau C.V., Revillet H., et al. Uncovering a new family of conserved virulence factors that promote the production of host-damaging outer membrane vesicles in gram-negative bacteria. J. Extracell. Vesicles. 2025;14:e270032. doi: 10.1002/jev2.70032. PubMed DOI PMC
Chen M., Li Y., Zhang J., Chen S., Zhang Y. Molecular and genetic characteristics of highly virulent Klebsiella pneumoniae in respiratory infection. Chin. J. Hosp. Infect. Dis. 2020;30:6–9.
Pradal I., Weckx S., De Vuyst L. The production of esters by specific sourdough lactic acid bacteria species is limited by the precursor concentrations. Appl. Environ. Microbiol. 2025;91:e0221624. doi: 10.1128/aem.02216-24. PubMed DOI PMC
Al-Shayeb B., Sachdeva R., Chen L.X., Ward F., Munk P., Devoto A., Castelle C.J., Olm M.R., Bouma-Gregson K., Amano Y., et al. Clades of huge phages from across earth’s ecosystems. Nature. 2020;578:425–431. doi: 10.1038/s41586-020-2007-4. PubMed DOI PMC