Exploring Virulence Characteristics of Clinical Escherichia coli Isolates from Greece

. 2025 Jun 26 ; 13 (7) : . [epub] 20250626

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40731998
Odkazy

PubMed 40731998
PubMed Central PMC12300496
DOI 10.3390/microorganisms13071488
PII: microorganisms13071488
Knihovny.cz E-zdroje

The aim of this study was to examine the genetic characteristics that could be associated with the virulence characteristics of Escherichia coli collected from clinical samples. A collection of 100 non-repetitive E. coli isolates was analyzed. All isolates were typed by MLST. String production, biofilm formation and serum resistance were examined for all isolates. Twenty E. coli isolates were completely sequenced Illumina platform. The results showed that the majority of E. coli isolates (87%) produced significant levels of biofilm, while none of the isolates were positive for string test and resistance to serum. Additionally, the presence of CRISPR/Cas systems (type I-E or I-F) was found in 18% of the isolates. Analysis of WGS data found that all sequenced isolates harbored a variety of virulence genes that could be implicated in adherence, invasion, iron uptake. Also, WGS data confirmed the presence of a wide variety of resistance genes, including ESBL- and carbapenemase-encoding genes. In conclusion, an important percentage (87%) of the E. coli isolates had a significant ability to form biofilm. Biofilms, due to their heterogeneous nature and ability to make microorganisms tolerant to multiple antimicrobials, complicate treatment strategies. Thus, in combination with the presence of multidrug resistance, expression of virulence factors could challenge antimicrobial therapy of infections caused by such bacteria.

Zobrazit více v PubMed

Da Silva G.J., Mendonça N. Association between antimicrobial resistance and virulence in Escherichia coli. Virulence. 2012;3:18–28. doi: 10.4161/viru.3.1.18382. PubMed DOI

Jang J., Hur H.G., Sadowsky M.J., Byappanahalli M., Yan T., Ishii S. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 2017;123:570–581. doi: 10.1111/jam.13468. PubMed DOI

Florez-Cuadrado D., Moreno M.A., Ugarte-Ruíz M., Domínguez L. Antimicrobial resistance in the food chain in the European union. Adv. Food Nutr. Res. 2018;86:115–136. doi: 10.1016/bs.afnr.2018.04.004. PubMed DOI

Toval F., Köhler C.-D., Vogel U., Wagenlehner F., Mellmann A., Fruth A., Schmidt M.A., Karch H., Bielaszewska M., Dobrindt U. Characterization of Escherichia coli isolates from hospital inpatients or outpatients with urinary tract infection. J. Clin. Microbiol. 2014;52:407–418. doi: 10.1128/JCM.02069-13. PubMed DOI PMC

Subedi M., Luitel H., Devkota B., Bhattarai R.K., Phuyal S., Panthi P., Shrestha A., Chaudhary D.K. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res. 2018;14:1–6. doi: 10.1186/s12917-018-1442-z. PubMed DOI PMC

Sanchez F., Fuenzalida V., Ramos R., Escobar B., Neira V., Borie C., Lapierre L., Lopez P., Venegas L., Dettleff P. Genomic features and antimicrobial resistance patterns of shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses Public Health. 2021;68:226–238. doi: 10.1111/zph.12818. PubMed DOI

Shen J., Zhi S., Guo D., Jiang Y., Xu X., Zhao L., Lv J. Prevalence, antimicrobial resistance, and whole genome sequencing analysis of shiga toxinproducing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from imported foods in China during 2015–2021. Toxins. 2022;14:68. doi: 10.3390/toxins14020068. PubMed DOI PMC

Hazen T.H., Michalski J., Luo Q., Shetty A.C., Daugherty S.C., Fleckenstein J.M., Rasko D.A. Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic Escherichia coli. Sci. Rep. 2017;7:3513. doi: 10.1038/s41598-017-03489-z. PubMed DOI PMC

Dadi B.R., Abebe T., Zhang L., Mihret A., Abebe W., Amogne W. Distribution of virulence genes and phylogenetics of uropathogenic Escherichia coli among urinary tract infection patients in Addis Ababa, Ethiopia. BMC Infect. Dis. 2020;20:108. doi: 10.1186/s12879-020-4844-z. PubMed DOI PMC

Tabasi M., Asadi Karam M.R., Habibi M., Yekaninejad M.S., Bouzari S. Phenotypic assays to determine virulence factors of uropathogenic Escherichia coli (UPEC) isolates and their correlation with antibiotic resistance pattern. Osong Public Health Res Perspect. 2015;6:261–268. doi: 10.1016/j.phrp.2015.08.002. PubMed DOI PMC

Farajzadah Sheikh A., Goodarzi H., Yadyad M.J., Aslani S., Amin M., Jomehzadeh N., Ranjbar R., Moradzadeh M., Azarpira S., Akhond M.R., et al. Virulence-associated genes and drug susceptibility patterns of uropathogenic Escherichia coli isolated from patients with urinary tract infection. Infect. Drug Resist. 2019;12:2039–2047. doi: 10.2147/IDR.S199764. PubMed DOI PMC

Papagiannitsis C.C., Študentová V., Jakubů V., Španělová P., Urbášková P., Žemličková H., Hrabák J. High prevalence of ST131 among CTX-M-producing Escherichia coli from community-acquired infections, in the Czech Republic. Microb. Drug Resist. 2015;21:74–84. doi: 10.1089/mdr.2014.0070. PubMed DOI

Chudejova K., Sourenian T., Palkovicova J., Stredanska K., Nechutna L., Vlkova K., Studentova V., Working Group for Monitoring of Antibiotic Resistance. Hrabak J., Papagiannitsis C.C., et al. Genomic characterization of ST38 NDM-5-producing Escherichia coli isolates from an outbreak in the Czech Republic. Antimicrob. Agents Chemother. 2024;68:e0013324. doi: 10.1128/aac.00133-24. PubMed DOI PMC

Zelendova M., Papagiannitsis C.C., Valcek A., Medvecky M., Bitar I., Hrabak J., Gelbicova T., Barakova A., Kutilova I., Karpiskova R., et al. Characterization of the Complete Nucleotide Sequences of mcr-1-Encoding Plasmids from Enterobacterales Isolates in Retailed Raw Meat Products from the Czech Republic. Front. Microbiol. 2021;11:604067. doi: 10.3389/fmicb.2020.604067. PubMed DOI PMC

Colinon C., Miriagou V., Carattoli A., Luzzaro F., Rossolini G.M. Characterization of the IncA/C plasmid pCC416 encoding VIM-4 and CMY-4 beta-lactamases. J. Antimicrob. Chemother. 2007;60:258–262. doi: 10.1093/jac/dkm171. PubMed DOI

Patel G., Huprikar S., Factor S.H., Jenkins S.G., Calfee D.P. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect. Control Hosp. Epidemiol. 2008;29:1099–1106. doi: 10.1086/592412. PubMed DOI

Louwen R., Staals R.H., Endtz H.P., van Baarlen P., van der Oost J. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol. Mol. Biol. Rev. 2014;78:74–88. doi: 10.1128/MMBR.00039-13. PubMed DOI PMC

Choi K.R., Lee S.Y. CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnol. Adv. 2016;34:1180–1209. doi: 10.1016/j.biotechadv.2016.08.002. PubMed DOI

Gunderson F.F., Cianciotto N.P. The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio. 2013;4:e00074-13. doi: 10.1128/mBio.00074-13. PubMed DOI PMC

Louwen R., Horst-Kreft D., de Boer A.G., van der Graaf L., de Knegt G., Hamersma M., Heikema A.P., Timms A.R., Jacobs B.C., Wagenaar J.A., et al. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 2013;32:207–226. doi: 10.1007/s10096-012-1733-4. PubMed DOI

Babu M., Beloglazova N., Flick R., Graham C., Skarina T., Nocek B., Gagarinova A., Pogoutse O., Brown G., Binkowski A., et al. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol. Microbiol. 2011;79:484–502. doi: 10.1111/j.1365-2958.2010.07465.x. PubMed DOI PMC

Makarova K.S., Anantharaman V., Aravind L., Koonin E.V. Live virus-free or die: Coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol. Direct. 2012;7:40. doi: 10.1186/1745-6150-7-40. PubMed DOI PMC

Zegans M.E., Wagner J.C., Cady K.C., Murphy D.M., Hammond J.H., O’Toole G.A. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J. Bacteriol. 2009;191:210–219. doi: 10.1128/JB.00797-08. PubMed DOI PMC

Hatoum-Aslan A., Marraffini L.A. Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens. Curr. Opin. Microbiol. 2014;17:82–90. doi: 10.1016/j.mib.2013.12.001. PubMed DOI PMC

Wayne P.A. CLSI 2013, 23rd International Supplement, CLSI document M100-S23. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2013. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing.

Wirth T., Falush R.D., Lan F., Colles P., Mensa L.H., Wieler H., Karch P.R., Reeves M.C., Maiden H., Ochman H., et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006;60:1136–1151. doi: 10.1111/j.1365-2958.2006.05172.x. PubMed DOI PMC

Stepanović S., Vuković D., Hola V., Di Bonaventura G., Djukić S., Cirković I., Ruzicka F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115:891–899. doi: 10.1111/j.1600-0463.2007.apm_630.x. PubMed DOI

Hamad P.A. Phenotypic and Molecular Detection of Biofilm Formation in Methicillin-Resistant Staphylococcus Aureus Isolated from Different Clinical Sources in Erbil City. Mediterr. J. Hematol. Infect. Dis. 2023;15:e2023016. doi: 10.4084/MJHID.2023.016. PubMed DOI PMC

Moghaddam M., Goldsmith K.L., Kerwick R.A. The preparation of blood grouping serum from human citrated plasma. Vox Sang. 1971;20:277–280. doi: 10.1111/j.1423-0410.1971.tb00442.x. PubMed DOI

Rakovitsky N., Lurie-Weinberger M.N., Hameir A., Wulffhart L., Keren Paz A., Schwartz D., Carmeli Y. Phenotypic and Genomic Characterization of Nine String-Positive Carbapenem-Resistant Acinetobacter baumannii Isolates from Israel. Microbiol Spectr. 2023;11:e0300222. doi: 10.1128/spectrum.03002-22. PubMed DOI PMC

Touchon M., Charpentier S., Clermont O., Rocha E.P., Denamur E., Branger C. CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection. J. Bacteriol. 2011;193:2460–2467. doi: 10.1128/JB.01307-10. PubMed DOI PMC

Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC

Carattoli A., Zankari E., Garcia-Fernandez A., Voldby Larsen M., Lund O., Villa L., Aarestrup F.M., Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2024;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC

Malberg Tetzschner A.M., Johnson J.R., Johnston B.D., Lund O., Scheutz F. In Silico Genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of Whole-Genome Sequencing data. J. Clin. Microbiol. 2020;58:e01269-20. doi: 10.1128/JCM.01269-20. PubMed DOI PMC

Joensen K.G., Tetzschner A.M., Iguchi A., Aarestrup F.M., Scheutz F. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2015;53:2410–2426. doi: 10.1128/JCM.00008-15. PubMed DOI PMC

Feil E.J., Li B.C., Aanensen D.M., Hanage W.P., Spratt B.G. eBURST: Inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 2004;186:1518–1530. doi: 10.1128/JB.186.5.1518-1530.2004. PubMed DOI PMC

Abo-Kamar A.M., Mustafa A.A., Al-Madboly L.A. Purified α-Amylase from Bacillus cereus exhibits antibiofilm and antiquorum sensing activities against uropathogenic Escherichia coli, Downregulating fimH, and papC virulence genes: Implications for urinary tract infections. BMC Microbiol. 2024;24:502. doi: 10.1186/s12866-024-03542-8. PubMed DOI PMC

Xu W.Y., Li Y.J., Fan C. Different loci and mRNA copy number of the increased serum survival gene of Escherichia coli. Can. J. Microbiol. 2018;64:147–154. doi: 10.1139/cjm-2017-0363. PubMed DOI

Vallejos-Vidal E., Fierro-Castro C., Santillán-Araneda M.J., Goldstein M., Reyes-Cerpa S., Balasch J.C., Khansari A.R., Dierckens K., Bossier P., Tort L., et al. The Administration of Heat Shock Protein-70 Bacterial Homolog (DnaK) Improves the Cumulative Survival and the Expression of Immune-Related Genes in Gnotobiotic Full-Sibling Sea Bass Larvae Challenged with Vibrio anguillarum. Animals. 2025;15:1655. doi: 10.3390/ani15111655. PubMed DOI PMC

Spurbeck R.R., Dinh P.C., Jr., Walk S.T., Stapleton A.E., Hooton T.M., Nolan L.K., Kim K.S., Johnson J.R., Mobley H.L. Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infect. Immun. 2012;80:4115–4122. doi: 10.1128/IAI.00752-12. PubMed DOI PMC

Bondì R., Chiani P., Michelacci V., Minelli F., Caprioli A., Morabito S. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells. Infect. Immun. 2017;85:e00613-17. doi: 10.1128/IAI.00613-17. PubMed DOI PMC

Warner A.J., Tokach M.D., Carrender B., Amachawadi R.G., Labbé A., Heuser W., Coble K., DeRouchey J.M., Woodworth J.C., Goodband R.D., et al. Evaluation of a Lactococcus lactis-based dried fermentation product administered through drinking water on nursery pig growth performance, fecal Escherichia coli virulence genes and pathotypes, antibiotic usage, and mortality. Transl. Anim. Sci. 2023;7:txad093. doi: 10.1093/tas/txad093. PubMed DOI PMC

Freire C.A., Rodrigues B.O., Elias W.P., Abe C.M. Adhesin related genes as potential markers for the enteroaggregative Escherichia coli category. Front. Cell. Infect. Microbiol. 2022;12:997208. doi: 10.3389/fcimb.2022.997208. PubMed DOI PMC

Zhang M., Han W., Gu J., Qiu C., Jiang Q., Dong J., Lei L., Li F. Recent advances on the regulation of bacterial biofilm formation by herbal medicines. Front. Microbiol. 2022;13:1039297. doi: 10.3389/fmicb.2022.1039297. PubMed DOI PMC

Mendhe S., Badge A., Ugemuge S., Chandi D. Impact of Biofilms on Chronic Infections and Medical Challenges. Cureus. 2023;15:e48204. doi: 10.7759/cureus.48204. PubMed DOI PMC

Ali A., Zahra A., Kamthan M., Husain F.M., Albalawi T., Zubair M., Alatawy R., Abid M., Noorani M.S. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms. 2023;11:1934. doi: 10.3390/microorganisms11081934. PubMed DOI PMC

Ong C.L., Ulett G.C., Mabbett A.N., Beatson S.A., Webb R.I., Monaghan W., Nimmo G.R., Looke D.F., McEwan A.G., Schembri M.A. Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J. Bacteriol. 2008;190:1054–1063. doi: 10.1128/JB.01523-07. PubMed DOI PMC

Anderson G.G., Palermo J.J., Schilling J.D., Roth R., Heuser J., Hultgren S.J. Intracellular bacterial biofilm-like pods in urinary tract infections. Science. 2003;301:105–107. doi: 10.1126/science.1084550. PubMed DOI

Eto D.S., Sundsbak J.L., Mulvey M.A. Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cell Microbiol. 2006;8:704–717. doi: 10.1111/j.1462-5822.2006.00691.x. PubMed DOI

Gagaletsios L.A., Tagkalegkas A., Bitar I., Papagiannitsis C.C. Exploring virulence characteristics of Klebsiella pneumoniae isolates recovered from a Greek hospital. Mol. Genet. Genomics. 2025;300:52. doi: 10.1007/s00438-025-02258-2. PubMed DOI

Gagaletsios L.A., Papagiannitsis C.C., Petinaki E. Prevalence and analysis of CRISPR/Cas systems in Pseudomonas aeruginosa isolates from Greece. Mol. Genet. Genom. 2022;297:1767–1776. doi: 10.1007/s00438-022-01957-4. PubMed DOI

Koonin E.V., Makarova K.S., Wolf Y.I. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annu. Rev. Microbiol. 2017;71:233–261. doi: 10.1146/annurev-micro-090816-093830. PubMed DOI PMC

Goman A., Ize B., Jeannot K., Pin C., Payros D., Goursat C., Ravon-Katossky L., Murase K., Chagneau C.V., Revillet H., et al. Uncovering a new family of conserved virulence factors that promote the production of host-damaging outer membrane vesicles in gram-negative bacteria. J. Extracell. Vesicles. 2025;14:e270032. doi: 10.1002/jev2.70032. PubMed DOI PMC

Chen M., Li Y., Zhang J., Chen S., Zhang Y. Molecular and genetic characteristics of highly virulent Klebsiella pneumoniae in respiratory infection. Chin. J. Hosp. Infect. Dis. 2020;30:6–9.

Pradal I., Weckx S., De Vuyst L. The production of esters by specific sourdough lactic acid bacteria species is limited by the precursor concentrations. Appl. Environ. Microbiol. 2025;91:e0221624. doi: 10.1128/aem.02216-24. PubMed DOI PMC

Al-Shayeb B., Sachdeva R., Chen L.X., Ward F., Munk P., Devoto A., Castelle C.J., Olm M.R., Bouma-Gregson K., Amano Y., et al. Clades of huge phages from across earth’s ecosystems. Nature. 2020;578:425–431. doi: 10.1038/s41586-020-2007-4. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...