Combination of mass spectrometry and DNA sequencing for detection of antibiotic resistance in diagnostic laboratories
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31713118
DOI
10.1007/s12223-019-00757-5
PII: 10.1007/s12223-019-00757-5
Knihovny.cz E-zdroje
- Klíčová slova
- MLST, NGS, beta-lactamase, carbapenemase, susceptibility testing,
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria klasifikace účinky léků genetika izolace a purifikace MeSH
- bakteriální infekce diagnóza mikrobiologie MeSH
- bakteriální léková rezistence * MeSH
- hmotnostní spektrometrie metody MeSH
- laboratoře nemocniční MeSH
- lidé MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
In the last two decades, microbiology laboratories have radically changed by the introduction of novel technologies, like Next-Generation Sequencing (NGS) and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Nevertheless, emergence of antibiotic-resistant microorganisms represents a global threat of current medicine, being responsible for increasing mortality and health-care direct and indirect costs. In addition, the identification of antibiotic-resistant microorganisms, like OXA-48 carbapenemase-producing Enterobacteriaceae, has been changeling for clinical microbiology laboratories. Even the cost of NGS technology and MALDI-TOF MS equipment is relatively high, both technologies are increasingly used in diagnostic and research protocols. Therefore, the aim of this review is to present applications of these technologies used in clinical microbiology, especially in detection of antibiotic resistance and its surveillance, and to propose a combinatory approach of MALDI-TOF MS and NGS for the investigation of microbial associated infections.
Zobrazit více v PubMed
Anal Chem. 2002 Nov 1;74(21):5487-91 PubMed
J Antimicrob Chemother. 2017 May 1;72(5):1350-1354 PubMed
Eur J Clin Microbiol Infect Dis. 2014 Jun;33(6):949-55 PubMed
PLoS One. 2014 Aug 11;9(8):e104984 PubMed
Bioinformatics. 2010 Mar 15;26(6):841-2 PubMed
J Clin Microbiol. 2016 Jan;54(1):35-42 PubMed
Bioinformatics. 2009 Jul 15;25(14):1754-60 PubMed
Nat Rev Microbiol. 2013 Oct;11(10):728-36 PubMed
Clin Microbiol Rev. 2013 Jan;26(1):103-14 PubMed
J Microbiol Methods. 2005 Dec;63(3):219-28 PubMed
J Antimicrob Chemother. 1997 Aug;40(2):306-7 PubMed
Clin Microbiol Infect. 2000 Sep;6(9):503-8 PubMed
Antimicrob Agents Chemother. 2014 Oct;58(10):5696-703 PubMed
PeerJ. 2016 Mar 28;4:e1869 PubMed
mBio. 2013 Dec 17;4(6):e00377-13 PubMed
Toxins (Basel). 2018 Feb 28;10(3): PubMed
J Microbiol Methods. 2018 Mar;146:37-39 PubMed
J Clin Microbiol. 2015 May;53(5):1731-5 PubMed
Clin Infect Dis. 2014 Mar;58(5):697-703 PubMed
Front Microbiol. 2016 Jun 30;7:985 PubMed
Genome Biol. 2004;5(2):R12 PubMed
Nat Rev Genet. 2010 Jan;11(1):31-46 PubMed
Clin Microbiol Infect. 2013 Feb;19(2):141-60 PubMed
J Antimicrob Chemother. 1998 Apr;41(4):493-4 PubMed
Proteomics. 2002 Jun;2(6):747-53 PubMed
Clin Microbiol Infect. 2017 Jan;23(1):2-22 PubMed
J Clin Microbiol. 2011 Sep;49(9):3222-7 PubMed
Clin Infect Dis. 2010 Aug 1;51(3):286-94 PubMed
Clin Microbiol Infect. 2018 Jul;24(7):738-743 PubMed
J Clin Microbiol. 2012 Mar;50(3):927-37 PubMed
J Clin Microbiol. 2014 Dec;52(12):4155-62 PubMed
J Antimicrob Chemother. 2012 Nov;67(11):2640-4 PubMed
J Antimicrob Chemother. 2013 Apr;68(4):771-7 PubMed
Anal Bioanal Chem. 2007 Nov;389(5):1633-8 PubMed
Int J Antimicrob Agents. 2016 Dec;48(6):655-660 PubMed
Clin Chem. 2016 Jan;62(1):270-8 PubMed
BMC Microbiol. 2017 Mar 8;17(1):54 PubMed
Nat Rev Microbiol. 2017 Oct 12;15(11):697-703 PubMed
J Antimicrob Chemother. 2011 Jan;66(1):1-14 PubMed
Antimicrob Agents Chemother. 2014 May;58(5):2952-7 PubMed
Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12115-20 PubMed
J Am Soc Mass Spectrom. 2013 Aug;24(8):1194-201 PubMed
Clin Microbiol Infect. 2016 Feb;22(2):161.e1-161.e7 PubMed
Bioinformatics. 2011 Nov 1;27(21):2987-93 PubMed
Microb Drug Resist. 2017 Oct;23(7):871-878 PubMed
Clin Microbiol Rev. 2018 Aug 1;31(4): PubMed
Virulence. 2017 May 19;8(4):460-469 PubMed
PLoS One. 2012;7(8):e41606 PubMed
Antimicrob Agents Chemother. 2015 Mar;59(3):1656-63 PubMed
J Clin Microbiol. 2014 Dec;52(12):4448-9 PubMed
J Antimicrob Chemother. 2008 Dec;62(6):1241-4 PubMed
Antimicrob Agents Chemother. 2014 Jul;58(7):3895-903 PubMed
Bioinformatics. 2003 Aug 12;19(12):1572-4 PubMed
mBio. 2018 Feb 6;9(1): PubMed
Bioinformatics. 2013 Jul 15;29(14):1718-25 PubMed
J Clin Microbiol. 2014 May;52(5):1529-39 PubMed
J Clin Microbiol. 2013 Jun;51(6):1809-17 PubMed
J Clin Microbiol. 2011 Sep;49(9):3321-4 PubMed
Clin Microbiol Rev. 2015 Jul;28(3):541-63 PubMed
J Microbiol Methods. 2017 Jun;137:30-33 PubMed
Bioinformatics. 2009 Aug 15;25(16):2078-9 PubMed
Int J Mycobacteriol. 2016 Dec;5(4):384-391 PubMed
Antimicrob Agents Chemother. 1996 Feb;40(2):342-8 PubMed
J Clin Microbiol. 2014 Aug;52(8):2804-12 PubMed
J Clin Microbiol. 2012 Jun;50(6):2179-82 PubMed
J Clin Microbiol. 2014 May;52(5):1501-10 PubMed
Expert Rev Proteomics. 2018 Mar;15(3):193-202 PubMed
Antimicrob Agents Chemother. 2017 Jan 24;61(2): PubMed
Mol Biol Evol. 2009 Jul;26(7):1641-50 PubMed
J Microbiol Methods. 2015 Oct;117:122-7 PubMed
J Clin Microbiol. 2012 Apr;50(4):1355-61 PubMed
PLoS One. 2010 Oct 26;5(10):e15406 PubMed
Nat Rev Microbiol. 2013 Aug;11(8):574-85 PubMed
J Med Microbiol. 2000 Mar;49(3):295-300 PubMed