Unravelling the Features of Success of VIM-Producing ST111 and ST235 Pseudomonas aeruginosa in a Greek Hospital
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000787
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33260774
PubMed Central
PMC7761518
DOI
10.3390/microorganisms8121884
PII: microorganisms8121884
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR/Cas system, Illumina sequencing, ST111, ST235, VIM, class 1 integrons,
- Publikační typ
- časopisecké články MeSH
The objective of this study was to analyze the characteristics that contribute to the successful dissemination of VIM-producing Pseudomonas aeruginosa (P. aeruginosa), belonging to ST111 and ST235, in a Greek hospital. A total of 120 non-repetitive P. aeruginosa, which had meropenem minimal inhibitory concentrations (MICs) greater than 2 mg/L, were studied. VIM-encoding genes were amplified and sequenced within their integrons. Isolates were typed by multilocus sequence typing (MLST). Six VIM-producers, representative of different integron structures and sequence types (STs), were completely sequenced using Illumina platform. Sixty-one P. aeruginosa were confirmed to produce VIM-type carbapenemases. ST111 dominated (n = 34) among VIM-producers, while 15 VIM-producers belonged to ST235. The blaVIM-like genes were located in three integron types, including In59, In595 and In1760, which were integrated into P. aeruginosa chromosomes. Whole genome sequencing (WGS) data demonstrated that ST111 and ST235 MBL producers carried several resistance and virulence genes. Additionally, the presence of type I-C and type I-E clustered regularly interspaced short palindromic repeats (CRISPR)/Cas locus was observed in ST235 and ST395 isolates, respectively. In conclusion, our findings confirmed the clonal spread of ST111 P. aeruginosa, carrying the VIM-2-encoding integron In59, in the University Hospital of Larissa (UHL). In addition, they highlighted the important role of high-risk clones, ST111 and ST235, in the successful dissemination and establishment into hospital settings of clinically important pathogens carrying resistance determinants.
Biomedical Center Faculty of Medicine Charles University 32300 Pilsen Czech Republic
Department of Microbiology University Hospital of Larissa 41110 Larissa Greece
Zobrazit více v PubMed
Nicolle L.E. Complicated urinary tract infection in adults. Can. J. Infect. Dis. Med. 2005;16:349–360. doi: 10.1155/2005/385768. PubMed DOI PMC
WHO Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. [(accessed on 27 February 2020)];2017 Available online: http://www.who.int/medicines/publications/global-prioritylist-antibiotic-resistant-bacteria/en/
Livermore D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis. 2002;34:634–640. doi: 10.1086/338782. PubMed DOI
Tzouvelekis L.S., Markogiannakis A., Psichogiou M., Tassios P.T., Daikos G.L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 2012;25:682–707. doi: 10.1128/CMR.05035-11. PubMed DOI PMC
Tsakris A., Pournaras S., Woodford N., Palepou M.F., Babini G.S., Douboyas J., Livermore D.M. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J. Clin. Microbiol. 2000;38:1290–1292. doi: 10.1128/JCM.38.3.1290-1292.2000. PubMed DOI PMC
Giakkoupi P., Petrikkos G., Tzouvelekis L.S., Tsonas S., Legakis N.J., Vatopoulos A.C., WHONET Greece Study Group Spread of integron-associated VIM-type metallo-beta-lactamase genes among imipenem-nonsusceptible Pseudomonas aeruginosa strains in Greek hospitals. J. Clin. Microbiol. 2003;41:822–825. doi: 10.1128/JCM.41.2.822-825.2003. PubMed DOI PMC
Pournaras S., Tsakris A., Maniati M., Tzouvelekis L.S., Maniatis A.N. Novel variant (bla(VIM-4)) of the metallo-beta-lactamase gene bla(VIM-1) in a clinical strain of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2002;46:4026–4028. doi: 10.1128/AAC.46.12.4026-4028.2002. PubMed DOI PMC
Pournaras S., Maniati M., Petinaki E., Tzouvelekis L.S., Tsakris A., Legakis N.J., Maniatis A.N. Hospital outbreak of multiple clones of Pseudomonas aeruginosa carrying the unrelated metallo-beta-lactamase gene variants blaVIM-2 and blaVIM-4. J. Antimicrob. Chemother. 2003;51:1409–1414. doi: 10.1093/jac/dkg239. PubMed DOI
Liakopoulos A., Mavroidi A., Katsifas E.A., Theodosiou A., Karagouni A.D., Miriagou V., Petinaki E. Carbapenemase-producing Pseudomonas aeruginosa from Central Greece: Molecular epidemiology and genetic analysis of class I integrons. BMC Infect. Dis. 2013;13:505. doi: 10.1186/1471-2334-13-505. PubMed DOI PMC
EUCAST European Committee on Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003;9:ix–xv. doi: 10.1046/j.1469-0691.2003.00790.x. PubMed DOI
Wayne P.A. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2013. CLSI 2013, 23rd International Supplement, CLSI document M100-S23.
Lee K., Lim Y.S., Yong D., Yum J.H., Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-b-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2003;41:4623–4629. doi: 10.1128/JCM.41.10.4623-4629.2003. PubMed DOI PMC
Papagiannitsis C.C., Medvecky M., Chudejova K., Skalova A., Rotova V., Spanelova P., Jakubu V., Zemlickova H., Hrabak J. Molecular Characterization of carbapenemase-producing Pseudomonas aeruginosa of Czech origin and evidence for clonal spread of extensively resistant Sequence Type 357 expressing IMP-7 metallo-β-lactamase. Antimicrob. Agents Chemother. 2017;61:e01811-17. doi: 10.1128/AAC.01811-17. PubMed DOI PMC
Curran B., Jonas D., Grundmann H., Pitt T., Dowson C.G. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J. Clin. Microbiol. 2004;42:5644–5649. doi: 10.1128/JCM.42.12.5644-5649.2004. PubMed DOI PMC
Moura A., Soares M., Pereira C., Leitão N., Henriques I., Correia A. INTEGRALL: A database and search engine for integrons, integrases and gene cassettes. Bioinformatics. 2009;25:1096–1098. doi: 10.1093/bioinformatics/btp105. PubMed DOI
Barton B.M., Harding G.P., Zuccarelli A.J. A general method for detecting and sizing large plasmids. Anal. Biochem. 1995;226:235–240. doi: 10.1006/abio.1995.1220. PubMed DOI
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC
Liu B., Zheng D.D., Jin Q., Chen L.H., Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019;47:D687–D692. doi: 10.1093/nar/gky1080. PubMed DOI PMC
Couvin D., Bernheim A., Toffano-Nioche C., Touchon M., Michalik J., Neron B., Rocha E.P.C., Vergnaud G., Gautheret D., Pourcel C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–W251. doi: 10.1093/nar/gky425. PubMed DOI PMC
Woodford N., Turton J.F., Livermore D.M. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 2011;35:736–755. doi: 10.1111/j.1574-6976.2011.00268.x. PubMed DOI
Poirel L., Lambert T., Turkoglu S., Ronco E., Gaillard J.L., Nordmann P. Characterization of class 1 integrons from Pseudomonas aeruginosa that contain the blaVIM-2 carbapenem-hydrolyzing b-lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrob. Agents Chemother. 2001;45:546–552. doi: 10.1128/AAC.45.2.546-552.2001. PubMed DOI PMC
Samuelsen Ø., Toleman M.A., Sundsfjord A., Rydberg J., Leegaard T.M., Walder M., Lia A., Ranheim T.E., Rajendra Y., Hermansen N.O., et al. Molecular epidemiology of metallo-β-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob. Agents Chemother. 2010;54:346–352. doi: 10.1128/AAC.00824-09. PubMed DOI PMC
Yano H., Genka H., Ohtsubo Y., Nagata Y., Top E.M., Tsuda M. Cointegrate-resolution of toluene-catabolic transposon Tn4651: Determination of crossover site and the segment required for full resolution activity. Plasmid. 2013;69:24–35. doi: 10.1016/j.plasmid.2012.07.004. PubMed DOI
Breidenstein E.B.M., de la Fuente-Nunez C., Hancock R.E.W. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 2011;19:419–426. doi: 10.1016/j.tim.2011.04.005. PubMed DOI
Jalal S., Wretlind B. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb. Drug Resist. 1998;4:257–261. doi: 10.1089/mdr.1998.4.257. PubMed DOI
Walsh F., Amyes S.G. Carbapenem resistance in clinical isolates of Pseudomonas aeruginosa. J. Chemother. 2007;19:376–381. doi: 10.1179/joc.2007.19.4.376. PubMed DOI
Lanotte P., Watt S., Mereghetti L., Dartiguelongue N., Rastegar-Lari A., Goudeau A., Quentin R. Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J. Med. Microbiol. 2004;53:73–81. doi: 10.1099/jmm.0.05324-0. PubMed DOI
Azimi S., Kafil H.S., Baghi H.B., Shokrian S., Najaf K., Asgharzadeh M., Yousefi M., Shahrivar F., Aghazadeh M. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS Hyg. Infect. Control. 2016;11:Doc04. doi: 10.3205/dgkh000264. PubMed DOI PMC
Roy-Burman A., Savel R.H., Racine S., Revadigar N.S., Fujimoto J., Sawa T., Frank D.W., Wiener-Kronish J.P. Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J. Infect. Dis. 2001;183:1767–1774. doi: 10.1086/320737. PubMed DOI
Finck-Barbancon V., Goranson J., Zhu L., Wiener-Kronish J.P., Fleiszig S.M., Wu C., Mende-Mueller L., Frank D.W. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol. Microbiol. 1997;25:547–557. doi: 10.1046/j.1365-2958.1997.4891851.x. PubMed DOI
Van’t Wout E.F., Van Schadewijk A., Van Boxtel R., Dalton L.E., Clarke H.J., Tommassen J., Marciniak S.J., Hiemstra P.S. Virulence factors of Pseudomonas aeruginosa induce both the unfolded protein and integrated stress responses in airway epithelial cells. PLoS Pathog. 2015;11:e1004946. doi: 10.1371/journal.ppat.1004946. PubMed DOI PMC
Jamunadevi S., Balashanmugam P., Muralitharan G., Kalaichelvan P.T. Molecular characterization of pathogenic and non-pathogenic Pseudomonas aeruginosa with special reference to phenazine gene. J. Mod. Biotechnol. 2012;1:70–74.
Karah N., Samuelsen O., Zarrilli R., Sahl J.W., Wai S.N., Uhlin B.E. CRISPR-cas subtype I-Fb in Acinetobacter baumannii: Evolution and utilization for strain subtyping. PLoS ONE. 2015;10:e0118205. doi: 10.1371/journal.pone.0118205. PubMed DOI PMC
van Belkum A., Soriaga L.B., LaFave M.C., Akella S., Veyrieras J.B., Barbu E.M., Shortridge D., Blanc B., Hannum G., Zambardi G., et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. mBio. 2015;6:e01796-15. doi: 10.1128/mBio.01796-15. PubMed DOI PMC
de Oliveira Luz A.C., da Silva J.M.A., Rezende A.M., de Barros M.P.S., Leal-Balbino T.C. Analysis of direct repeats and spacers of CRISPR/Cas systems type I-F in Brazilian clinical strains of Pseudomonas Aeruginosa. Mol. Genet. Genom. 2019;294:1095–1105. doi: 10.1007/s00438-019-01575-7. PubMed DOI
Wright L.L., Turton J.F., Hopkins K.L., Livermore D.M., Woodford N. Genetic environment of metallo-β-lactamase genes in Pseudomonas aeruginosa isolates from the UK. J. Antimicrob. Chemother. 2015;70:3250–3258. doi: 10.1093/jac/dkv263. PubMed DOI
Ostria-Hernandez M.L., Sánchez-Vallejo C.J., Ibarra J.A., Castro-Escarpulli G. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae. BMC Res. Notes. 2015;8:332. doi: 10.1186/s13104-015-1285-7. PubMed DOI PMC
Hatoum-Aslan A., Marraffini L.A. Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens. Curr. Opin. Microbiol. 2014;17:82–90. doi: 10.1016/j.mib.2013.12.001. PubMed DOI PMC
Edelstein M.V., Skleenova E.N., Shevchenko O.V., D’souza J.W., Tapalski D.V., Azizov I.S., Sukhorukova M.V., Pavlukov R.A., Kozlov R.S., Toleman M.A., et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: A longitudinal epidemiological and clinical study. Lancet Infect. Dis. 2013;13:867–876. doi: 10.1016/S1473-3099(13)70168-3. PubMed DOI
Hrabak J., Bitar I., Papagiannitsis C.C. Combination of mass spectrometry and DNA sequencing for detection of antibiotic resistance in diagnostic laboratories. Folia Microbiol. 2020;65:233–243. doi: 10.1007/s12223-019-00757-5. PubMed DOI