Proteomic Methods of Detection and Quantification of Protein Toxins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
29495560
PubMed Central
PMC5869387
DOI
10.3390/toxins10030099
PII: toxins10030099
Knihovny.cz E-zdroje
- Klíčová slova
- analytical methods, bio-terrorism, protein toxins, proteomic,
- MeSH
- bakteriální proteiny analýza toxicita MeSH
- biologické toxiny analýza toxicita MeSH
- lidé MeSH
- proteomika metody MeSH
- rostlinné proteiny analýza toxicita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny MeSH
- biologické toxiny MeSH
- rostlinné proteiny MeSH
Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.
Zobrazit více v PubMed
Pal M., Tsegaye M., Girzaw F., Bedada H., Godishala V., Kandi V. An Overview on Biological Weapons and Bioterrorism. Am. J. Biomed. Res. 2017;5:24–34. doi: 10.12691/ajbr-5-2-2. DOI
Jansen H.J., Breeveld F.J., Stijnis C., Grobusch M.P. Biological warfare, bioterrorism, and biocrime. Clin. Microbiol. Infect. 2014;20:488–496. doi: 10.1111/1469-0691.12699. PubMed DOI PMC
NIAID Emerging Infectious Diseases/Pathogens | NIH: National Institute of Allergy and Infectious Diseases. [(accessed on 12 June 2017)]; Available online: https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens.
COMMISSION DELEGATED REGULATION (EU) 2016/1969 of 12 September 2016 Amending Council Regulation (EC) No 428/2009 Setting up a Community Regime for the Control of Exports, Transfer, Brokering and Transit of Dual-Use Items. [(accessed on 1 November 2017)]; Available online: https://danishbusinessauthority.dk/sites/default/files/media/reg._2016-1969_new_control_list.pdf.
Lubran M.M. Bacterial toxins. Ann. Clin. Lab. Sci. 1988;18:58–71. PubMed
Sandvig K., Torgersen M.L., Engedal N., Skotland T., Iversen T.-G. Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Lett. 2010;584:2626–2634. doi: 10.1016/j.febslet.2010.04.008. PubMed DOI
Dal Peraro M., van der Goot F.G. Pore-forming toxins: Ancient, but never really out of fashion. Nat. Rev. Microbiol. 2016;14:77–92. doi: 10.1038/nrmicro.2015.3. PubMed DOI
Duriez E., Armengaud J., Fenaille F., Ezan E. Mass spectrometry for the detection of bioterrorism agents: From environmental to clinical applications. J. Mass Spectrom. JMS. 2016;51:183–199. doi: 10.1002/jms.3747. PubMed DOI
Dorner B.G., Zeleny R., Harju K., Hennekinne J.-A., Vanninen P., Schimmel H., Rummel A. Biological toxins of potential bioterrorism risk: Current status of detection and identification technology. TrAC Trends Anal. Chem. 2016;85:89–102. doi: 10.1016/j.trac.2016.05.024. DOI
Demirev P.A., Fenselau C. Mass spectrometry in biodefense. J. Mass Spectrom. JMS. 2008;43:1441–1457. doi: 10.1002/jms.1474. PubMed DOI
OPCW Hosts Series of Science and Technology Meetings. [(accessed on 6 November 2017)]; Available online: https://www.opcw.org/news/article/opcw-hosts-series-of-science-and-technology-meetings/
Wilson I.G., Cooper J.E., Gilmour A. Detection of enterotoxigenic Staphylococcus aureus in dried skimmed milk: Use of the polymerase chain reaction for amplification and detection of staphylococcal enterotoxin genes entB and entC1 and the thermonuclease gene nuc. Appl. Environ. Microbiol. 1991;57:1793–1798. PubMed PMC
Jay M.J., Loessner J.M., Golden A.D. Modern Food Microbiology. Springer; New York, NY, USA: 2005. Bioassay and Related Methods; pp. 285–298. (Food Science Text Series).
Lindström M., Korkeala H. Laboratory diagnostics of botulism. Clin. Microbiol. Rev. 2006;19:298–314. doi: 10.1128/CMR.19.2.298-314.2006. PubMed DOI PMC
Cai S., Singh B.R., Sharma S. Botulism diagnostics: From clinical symptoms to in vitro assays. Crit. Rev. Microbiol. 2007;33:109–125. doi: 10.1080/10408410701364562. PubMed DOI
Sharma S.K., Whiting R.C. Methods for detection of Clostridium botulinum toxin in foods. J. Food Prot. 2005;68:1256–1263. doi: 10.4315/0362-028X-68.6.1256. PubMed DOI
Solberg M., Post L.S., Furgang D., Graham C. Bovine serum eliminates rapid nonspecific toxic reactions during bioassay of stored fish for Clostridium botulinum toxin. Appl. Environ. Microbiol. 1985;49:644–649. PubMed PMC
Dezfulian M., Bartlett J.G. Detection of Clostridium botulinum type B toxin in the presence of a lethal substance interfering with toxin neutralization. Diagn. Microbiol. Infect. Dis. 1985;3:105–112. doi: 10.1016/0732-8893(85)90018-5. PubMed DOI
Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15. doi: 10.1016/j.peptides.2015.04.012. PubMed DOI
Lewis G.E., Kulinski S.S., Reichard D.W., Metzger J.F. Detection of Clostridium botulinum type G toxin by enzyme-linked immunosorbent assay. Appl. Environ. Microbiol. 1981;42:1018–1022. PubMed PMC
Park C.E., Akhtar M., Rayman M.K. Nonspecific reactions of a commercial enzyme-linked immunosorbent assay kit (TECRA) for detection of staphylococcal enterotoxins in foods. Appl. Environ. Microbiol. 1992;58:2509–2512. PubMed PMC
Wieneke A.A. Comparison of four kits for the detection of staphylococcal enterotoxin in foods from outbreaks of food poisoning. Int. J. Food Microbiol. 1991;14:305–312. doi: 10.1016/0168-1605(91)90122-6. PubMed DOI
Yalow R.S., Berson S.A. Immunoassay of endogenous plasma insulin in man. J. Clin. Investig. 1960;39:1157–1175. doi: 10.1172/JCI104130. PubMed DOI PMC
Goldsmith S.J. Radioimmunoassay: Review of basic principles. Semin. Nucl. Med. 1975;5:125–152. doi: 10.1016/S0001-2998(75)80028-6. PubMed DOI
Gan S.D., Patel K.R. Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay. J. Investig. Dermatol. 2013;133:e12. doi: 10.1038/jid.2013.287. PubMed DOI
Zhu K., Dietrich R., Didier A., Doyscher D., Märtlbauer E. Recent Developments in Antibody-Based Assays for the Detection of Bacterial Toxins. Toxins. 2014;6:1325–1348. doi: 10.3390/toxins6041325. PubMed DOI PMC
Hejtmancik K.E., Peterson J.W., Markel D.E., Kurosky A. Radioimmunoassay for the antigenic determinants of cholera toxin and its components. Infect. Immun. 1977;17:621–628. PubMed PMC
Harris C.C., Yolken R.H., Krokan H., Hsu I.C. Ultrasensitive enzymatic radioimmunoassay: Application to detection of cholera toxin and rotavirus. Proc. Natl. Acad. Sci. USA. 1979;76:5336–5339. doi: 10.1073/pnas.76.10.5336. PubMed DOI PMC
Godal A., Olsnes S., Pihl A. Radioimmunoassays of abrin and ricin in blood. J. Toxicol. Environ. Health. 1981;8:409–417. doi: 10.1080/15287398109530079. PubMed DOI
Ramakrishnan S., Eagle M.R., Houston L.L. Radioimmunoassay of ricin A- and B-chains applied to samples of ricin A-chain prepared by chromatofocusing and by DEAE Bio-Gel A chromatography. Biochim. Biophys. Acta. 1982;719:341–348. doi: 10.1016/0304-4165(82)90108-8. PubMed DOI
Kurien B.T., Scofield R.H. Western blotting. Methods. 2006;38:283–293. doi: 10.1016/j.ymeth.2005.11.007. PubMed DOI
Ladhani S., Robbie S., Garratt R.C., Chapple D.S., Joannou C.L., Evans R.W. Development and Evaluation of Detection Systems for Staphylococcal Exfoliative Toxin A Responsible for Scalded-Skin Syndrome. J. Clin. Microbiol. 2001;39:2050–2054. doi: 10.1128/JCM.39.6.2050-2054.2001. PubMed DOI PMC
Lian W., Wu D., Lim D.V., Jin S. Sensitive detection of multiplex toxins using antibody microarray. Anal. Biochem. 2010;401:271–279. doi: 10.1016/j.ab.2010.02.040. PubMed DOI
Skinner C., Patfield S., Stanker L.H., Fratamico P., He X. New High-Affinity Monoclonal Antibodies against Shiga Toxin 1 Facilitate the Detection of Hybrid Stx1/Stx2 In Vivo. PLoS ONE. 2014;9:e99854. doi: 10.1371/journal.pone.0099854. PubMed DOI PMC
Boyer A.E., Gallegos-Candela M., Lins R.C., Kuklenyik Z., Woolfitt A., Moura H., Kalb S., Quinn C.P., Barr J.R. Quantitative Mass Spectrometry for Bacterial Protein Toxins—A Sensitive, Specific, High-Throughput Tool for Detection and Diagnosis. Molecules. 2011;16:2391–2413. doi: 10.3390/molecules16032391. PubMed DOI PMC
Lange V., Picotti P., Domon B., Aebersold R. Selected reaction monitoring for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2008;4:222. doi: 10.1038/msb.2008.61. PubMed DOI PMC
Bourmaud A., Gallien S., Domon B. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications. Proteomics. 2016;16:2146–2159. doi: 10.1002/pmic.201500543. PubMed DOI
MacLean B., Tomazela D.M., Shulman N., Chambers M., Finney G.L., Frewen B., Kern R., Tabb D.L., Liebler D.C., MacCoss M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinform. Oxf. Engl. 2010;26:966–968. doi: 10.1093/bioinformatics/btq054. PubMed DOI PMC
Desiderio D.M., Kai M. Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomed. Mass Spectrom. 1983;10:471–479. doi: 10.1002/bms.1200100806. PubMed DOI
Gallien S., Duriez E., Crone C., Kellmann M., Moehring T., Domon B. Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer. Mol. Cell. Proteom. MCP. 2012;11:1709–1723. doi: 10.1074/mcp.O112.019802. PubMed DOI PMC
Bereman M.S., MacLean B., Tomazela D.M., Liebler D.C., MacCoss M.J. The development of selected reaction monitoring methods for targeted proteomics via empirical refinement. Proteomics. 2012;12:1134–1141. doi: 10.1002/pmic.201200042. PubMed DOI PMC
Dupuis A., Hennekinne J.-A., Garin J., Brun V. Protein Standard Absolute Quantification (PSAQ) for improved investigation of staphylococcal food poisoning outbreaks. Proteomics. 2008;8:4633–4636. doi: 10.1002/pmic.200800326. PubMed DOI
Adrait A., Lebert D., Trauchessec M., Dupuis A., Louwagie M., Masselon C., Jaquinod M., Chevalier B., Vandenesch F., Garin J., et al. Development of a Protein Standard Absolute Quantification (PSAQ™) assay for the quantification of Staphylococcus aureus enterotoxin A in serum. J. Proteom. 2012;75:3041–3049. doi: 10.1016/j.jprot.2011.11.031. PubMed DOI
Dupré M., Gilquin B., Fenaille F., Feraudet-Tarisse C., Dano J., Ferro M., Simon S., Junot C., Brun V., Becher F. Multiplex quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry. Anal. Chem. 2015;87:8473–8480. doi: 10.1021/acs.analchem.5b01900. PubMed DOI
Kalb S.R., Boyer A.E., Barr J.R. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity. Toxins. 2015;7:3497–3511. doi: 10.3390/toxins7093497. PubMed DOI PMC
Boyer A.E., Moura H., Woolfitt A.R., Kalb S.R., McWilliams L.G., Pavlopoulos A., Schmidt J.G., Ashley D.L., Barr J.R. From the mouse to the mass spectrometer: Detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry. Anal. Chem. 2005;77:3916–3924. doi: 10.1021/ac050485f. PubMed DOI
Otto M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 2014;17:32–37. doi: 10.1016/j.mib.2013.11.004. PubMed DOI PMC
Masalha M., Borovok I., Schreiber R., Aharonowitz Y., Cohen G. Analysis of Transcription of the Staphylococcus aureus Aerobic Class Ib and Anaerobic Class III Ribonucleotide Reductase Genes in Response to Oxygen. J. Bacteriol. 2001;183:7260–7272. doi: 10.1128/JB.183.24.7260-7272.2001. PubMed DOI PMC
Schlievert P.M., Case L.C. Molecular analysis of staphylococcal superantigens. Methods Mol. Biol. 2007;391:113–126. doi: 10.1007/978-1-59745-468-1_9. PubMed DOI
Pinchuk I.V., Beswick E.J., Reyes V.E. Staphylococcal Enterotoxins. Toxins. 2010;2:2177–2197. doi: 10.3390/toxins2082177. PubMed DOI PMC
Fries B.C., Varshney A.K. Bacterial Toxins-Staphylococcal Enterotoxin B. Microbiol. Spectr. 2013;1 doi: 10.1128/microbiolspec.AID-0002-2012. PubMed DOI PMC
Zapor M., Fishbain J.T. Aerosolized biologic toxins as agents of warfare and terrorism. Respir. Care Clin. N. Am. 2004;10:111–122. doi: 10.1016/S1078-5337(03)00054-6. PubMed DOI
Fulton F. Staphylococcal Enterotoxin—With Special Reference to the Kitten Test. Br. J. Exp. Pathol. 1943;24:65–72.
Scheuber P.H., Mossmann H., Beck G., Hammer D.K. Direct skin test in highly sensitized guinea pigs for rapid and sensitive determination of staphylococcal enterotoxin B. Appl. Environ. Microbiol. 1983;46:1351–1356. PubMed PMC
Wu S., Duan N., Gu H., Hao L., Ye H., Gong W., Wang Z. A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins. Toxins. 2016;8:176. doi: 10.3390/toxins8070176. PubMed DOI PMC
Saunders G.C., Bartlett M.L. Double-antibody solid-phase enzyme immunoassay for the detection of staphylococcal enterotoxin A. Appl. Environ. Microbiol. 1977;34:518–522. PubMed PMC
Notermans S., Verjans H.L., Bol J., van Schothorst M. Enzyme linked immunosorbent assay (ELISA) for determination of Staphylococcus aureus enterotoxin type B. Health Lab. Sci. 1978;15:28–31. PubMed
Stiffler-Rosenberg G., Fey H. Simple assay for staphylococcal enterotoxins A, B, and C: Modification of enzyme-linked immunosorbent assay. J. Clin. Microbiol. 1978;8:473–479. PubMed PMC
Fey H., Pfister H., Rüegg O. Comparative evaluation of different enzyme-linked immunosorbent assay systems for the detection of staphylococcal enterotoxins A, B, C, and D. J. Clin. Microbiol. 1984;19:34–38. PubMed PMC
Wieneke A.A., Gilbert R.J. The use of a sandwich ELISA for the detection of staphylococcal enterotoxin A in foods from outbreaks of food poisoning. Epidemiol. Infect. 1985;95:131–138. doi: 10.1017/S0022172400062367. PubMed DOI PMC
Hahn I.F., Pickenhahn P., Lenz W., Brandis H. An avidin-biotin ELISA for the detection of staphylococcal enterotoxins A and B. J. Immunol. Methods. 1986;92:25–29. doi: 10.1016/0022-1759(86)90499-0. PubMed DOI
Nia Y., Rodriguez M., Zeleny R., Herbin S., Auvray F., Fiebig U., Avondet M.-A., Munoz A., Hennekinne J.-A. Organization and ELISA-Based Results of the First Proficiency Testing to Evaluate the Ability of European Union Laboratories to Detect Staphylococcal Enterotoxin Type B (SEB) in Buffer and Milk. Toxins. 2016;8:268. doi: 10.3390/toxins8090268. PubMed DOI PMC
Khan A.S., Cao C.J., Thompson R.G., Valdes J.J. A simple and rapid fluorescence-based immunoassay for the detection of staphylococcal enterotoxin B. Mol. Cell. Probes. 2003;17:125–126. doi: 10.1016/S0890-8508(02)00109-3. PubMed DOI
Hun X., Zhang Z. A novel sensitive staphylococcal enterotoxin C1 fluoroimmunoassay based on functionalized fluorescent core-shell nanoparticle labels. Food Chem. 2007;105:1623–1629. doi: 10.1016/j.foodchem.2007.03.068. DOI
Vinayaka A.C., Thakur M.S. An immunoreactor-based competitive fluoroimmunoassay for monitoring staphylococcal enterotoxin B using bioconjugated quantum dots. Analyst. 2012;137:4343–4348. doi: 10.1039/c2an35760g. PubMed DOI
Szkola A., Linares E.M., Worbs S., Dorner B.G., Dietrich R., Märtlbauer E., Niessner R., Seidel M. Rapid and simultaneous detection of ricin, staphylococcal enterotoxin B and saxitoxin by chemiluminescence-based microarray immunoassay. Analyst. 2014;139:5885–5892. doi: 10.1039/C4AN00345D. PubMed DOI
Sun S., Yang M., Kostov Y., Rasooly A. ELISA-LOC: Lab-on-a-chip for enzyme-linked immunodetection. Lab Chip. 2010;10:2093–2100. doi: 10.1039/c003994b. PubMed DOI
Sd S., Rc S., Ap L., Ce F. Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification., Surface Plasmon Resonance (SPR) Detection Using Antibody-Linked Magnetic Nanoparticles for Analyte Capture, Purification, Concentration and Signal Amplification. Anal. Chem. 2009;81:2357–2363. doi: 10.1021/ac900007c. PubMed DOI PMC
Tang D., Tang J., Su B., Chen G. Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification. J. Agric. Food Chem. 2010;58:10824–10830. doi: 10.1021/jf102326m. PubMed DOI
Park C.E., Szabo R. Evaluation of the reversed passive latex agglutination (RPLA) test kits for detection of staphylococcal enterotoxins A, B, C, and D in foods. Can. J. Microbiol. 1986;32:723–727. doi: 10.1139/m86-131. PubMed DOI
Fujikawa H., Igarashi H. Rapid latex agglutination test for detection of staphylococcal enterotoxins A to E that uses high-density latex particles. Appl. Environ. Microbiol. 1988;54:2345–2348. PubMed PMC
Rose S.A., Bankes P., Stringer M.F. Detection of staphylococcal enterotoxins in dairy products by the reversed passive latex agglutination (SET-RPLA) kit. Int. J. Food Microbiol. 1989;8:65–72. doi: 10.1016/0168-1605(89)90081-0. PubMed DOI
Pereira M.L., Heneine L.G., Santos E.J., Carmo L.S., Pereira J.L., Bergdoll M.S. Prevention of nonspecific reactions on reversed passive latex agglutination assay (RPLA) for detecting low amounts of staphylococcal enterotoxins. Rev. Latinoam. Microbiol. 1997;39:57–63. PubMed
Hall H.E., Angelotti R., Lewis K.H. Quantitative detection of staphylococcal Enterotoxin B in food by gel-diffusion methods. Public Health Rep. 1963;78:1089–1098. doi: 10.2307/4592031. PubMed DOI PMC
Salomon L.L., Tew R.W. Assay of staphylococcal enterotoxin B by latex agglutination. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. 1968;129:539–542. doi: 10.3181/00379727-129-33364. PubMed DOI
Lee C.L., Lin C.C. Detection of staphylococcal enterotoxin by latex agglutination inhibition test. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1984;17:77–80. PubMed
Read R.B., Bradshaw J., Pritchard W.L., Black L.A. Assay of Staphylococcal Enterotoxin from Cheese. J. Dairy Sci. 1965;48:420–424. doi: 10.3168/jds.S0022-0302(65)88246-7. PubMed DOI
Kientz C.E., Hulst A.G., Wils E.R. Determination of staphylococcal enterotoxin B by on-line (micro) liquid chromatography-electrospray mass spectrometry. J. Chromatogr. A. 1997;757:51–64. doi: 10.1016/S0021-9673(96)00661-9. PubMed DOI
Kawano Y., Ito Y., Yamakawa Y., Yamashino T., Horii T., Hasegawa T., Ohta M. Rapid isolation and identification of staphylococcal exoproteins by reverse phase capillary high performance liquid chromatography-electrospray ionization mass spectrometry. FEMS Microbiol. Lett. 2000;189:103–108. doi: 10.1016/S0378-1097(00)00261-5. PubMed DOI
Nedelkov D., Rasooly A., Nelson R.W. Multitoxin biosensor-mass spectrometry analysis: A new approach for rapid, real-time, sensitive analysis of staphylococcal toxins in food. Int. J. Food Microbiol. 2000;60:1–13. doi: 10.1016/S0168-1605(00)00328-7. PubMed DOI
Callahan J.H., Shefcheck K.J., Williams T.L., Musser S.M. Detection, confirmation, and quantification of staphylococcal enterotoxin B in food matrixes using liquid chromatography–mass spectrometry. Anal. Chem. 2006;78:1789–1800. doi: 10.1021/ac051292v. PubMed DOI
Bao K.D., Letellier A., Beaudry F. Analysis of Staphylococcus enterotoxin B using differential isotopic tags and liquid chromatography quadrupole ion trap mass spectrometry. Biomed. Chromatogr. BMC. 2012;26:1049–1057. doi: 10.1002/bmc.1742. PubMed DOI
Zuberovic Muratovic A., Hagström T., Rosén J., Granelli K., Hellenäs K.-E. Quantitative Analysis of Staphylococcal Enterotoxins A and B in Food Matrices Using Ultra High-Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) Toxins. 2015;7:3637–3656. doi: 10.3390/toxins7093637. PubMed DOI PMC
Andjelkovic M., Tsilia V., Rajkovic A., De Cremer K., Van Loco J. Application of LC-MS/MS MRM to Determine Staphylococcal Enterotoxins (SEB and SEA) in Milk. Toxins. 2016;8:118. doi: 10.3390/toxins8040118. PubMed DOI PMC
Gilquin B., Jaquinod M., Louwagie M., Kieffer-Jaquinod S., Kraut A., Ferro M., Becher F., Brun V. A proteomics assay to detect eight CBRN-relevant toxins in food. Proteomics. 2017;17:1600357. doi: 10.1002/pmic.201600357. PubMed DOI
Edwards K.A., Clancy H.A., Baeumner A.J. Bacillus anthracis: Toxicology, epidemiology and current rapid-detection methods. Anal. Bioanal. Chem. 2006;384:73–84. doi: 10.1007/s00216-005-0090-x. PubMed DOI
CDC—Biosafety Home. [(accessed on 4 July 2017)]; Available online: https://www.cdc.gov/biosafety/
Collier R.J. Membrane translocation by anthrax toxin. Mol. Asp. Med. 2009;30:413–422. doi: 10.1016/j.mam.2009.06.003. PubMed DOI PMC
Panchal R.G., Halverson K.M., Ribot W., Lane D., Kenny T., Abshire T.G., Ezzell J.W., Hoover T.A., Powell B., Little S., et al. Purified Bacillus anthracis lethal toxin complex formed in vitro and during infection exhibits functional and biological activity. J. Biol. Chem. 2005;280:10834–10839. doi: 10.1074/jbc.M412210200. PubMed DOI
Zheng J., Peng D., Song X., Ruan L., Mahillon J., Sun M. Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis on the Basis of the csaB Gene Reflects Host Source. Appl. Environ. Microbiol. 2013;79:3860–3863. doi: 10.1128/AEM.00591-13. PubMed DOI PMC
Hurtle W., Bode E., Kulesh D.A., Kaplan R.S., Garrison J., Bridge D., House M., Frye M.S., Loveless B., Norwood D. Detection of the Bacillus anthracis gyrA gene by using a minor groove binder probe. J. Clin. Microbiol. 2004;42:179–185. doi: 10.1128/JCM.42.1.179-185.2004. PubMed DOI PMC
Acharya G., Doorneweerd D.D., Chang C.-L., Henne W.A., Low P.S., Savran C.A. Label-free optical detection of anthrax-causing spores. J. Am. Chem. Soc. 2007;129:732–733. doi: 10.1021/ja0656649. PubMed DOI
Zahavy E., Heleg-Shabtai V., Zafrani Y., Marciano D., Yitzhaki S. Application of fluorescent nanocrystals (q-dots) for the detection of pathogenic bacteria by flow-cytometry. J. Fluoresc. 2010;20:389–399. doi: 10.1007/s10895-009-0546-z. PubMed DOI
Krebs M.D., Mansfield B., Yip P., Cohen S.J., Sonenshein A.L., Hitt B.A., Davis C.E. Novel technology for rapid species-specific detection of Bacillus spores. Biomol. Eng. 2006;23:119–127. doi: 10.1016/j.bioeng.2005.12.003. PubMed DOI
Zhang X., Young M.A., Lyandres O., Van Duyne R.P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2005;127:4484–4489. doi: 10.1021/ja043623b. PubMed DOI
Farrell S., Halsall H.B., Heineman W.R. Immunoassay for B. globigii spores as a model for detecting B. anthracis spores in finished water. Analyst. 2005;130:489–497. doi: 10.1039/b413652g. PubMed DOI
Zahavy E., Fisher M., Bromberg A., Olshevsky U. Detection of frequency resonance energy transfer pair on double-labeled microsphere and Bacillus anthracis spores by flow cytometry. Appl. Environ. Microbiol. 2003;69:2330–2339. doi: 10.1128/AEM.69.4.2330-2339.2003. PubMed DOI PMC
Makino S.I., Cheun H.I., Watarai M., Uchida I., Takeshi K. Detection of anthrax spores from the air by real-time PCR. Lett. Appl. Microbiol. 2001;33:237–240. doi: 10.1046/j.1472-765x.2001.00989.x. PubMed DOI
Dang J.L., Heroux K., Kearney J., Arasteh A., Gostomski M., Emanuel P.A. Bacillus Spore Inactivation Methods Affect Detection Assays. Appl. Environ. Microbiol. 2001;67:3665–3670. doi: 10.1128/AEM.67.8.3665-3670.2001. PubMed DOI PMC
Stopa P.J. The flow cytometry of Bacillus anthracis spores revisited. Cytometry. 2000;41:237–244. doi: 10.1002/1097-0320(20001201)41:4%3C237::AID-CYTO1%3E3.0.CO;2-3. PubMed DOI
Gatto-Menking D.L., Yu H., Bruno J.G., Goode M.T., Miller M., Zulich A.W. Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrochemiluminescence sensor. Biosens. Bioelectron. 1995;10:501–507. doi: 10.1016/0956-5663(95)96925-O. PubMed DOI
Phillips A.P., Martin K.L. Comparison of direct and indirect immunoradiometric assays (IRMA) for Bacillus anthracis spores immobilised on multispot microscope slides. J. Appl. Bacteriol. 1983;55:315–324. doi: 10.1111/j.1365-2672.1983.tb01328.x. PubMed DOI
Tang S., Moayeri M., Chen Z., Harma H., Zhao J., Hu H., Purcell R.H., Leppla S.H., Hewlett I.K. Detection of Anthrax Toxin by an Ultrasensitive Immunoassay Using Europium Nanoparticles. Clin. Vaccine Immunol. CVI. 2009;16:408–413. doi: 10.1128/CVI.00412-08. PubMed DOI PMC
Aguilar Z.P., Sirisena M. Development of automated amperometric detection of antibodies against Bacillus anthracis protective antigen. Anal. Bioanal. Chem. 2007;389:507–515. doi: 10.1007/s00216-007-1448-z. PubMed DOI
Wang S.-H., Zhang J.-B., Zhang Z.-P., Zhou Y.-F., Yang R.-F., Chen J., Guo Y.-C., You F., Zhang X.-E. Construction of single chain variable fragment (ScFv) and BiscFv-alkaline phosphatase fusion protein for detection of Bacillus anthracis. Anal. Chem. 2006;78:997–1004. doi: 10.1021/ac0512352. PubMed DOI
Rucker V.C., Havenstrite K.L., Herr A.E. Antibody microarrays for native toxin detection. Anal. Biochem. 2005;339:262–270. doi: 10.1016/j.ab.2005.01.030. PubMed DOI
Sastry K.S.R., Tuteja U., Batra H.V. Generation and characterization of monoclonal antibodies to protective antigen of Bacillus anthracis. Indian J. Exp. Biol. 2003;41:123–128. PubMed
Bell C.A., Uhl J.R., Hadfield T.L., David J.C., Meyer R.F., Smith T.F., Cockerill F.R. Detection of Bacillus anthracis DNA by LightCycler PCR. J. Clin. Microbiol. 2002;40:2897–2902. doi: 10.1128/JCM.40.8.2897-2902.2002. PubMed DOI PMC
Wilson W.J., Erler A.M., Nasarabadi S.L., Skowronski E.W., Imbro P.M. A multiplexed PCR-coupled liquid bead array for the simultaneous detection of four biothreat agents. Mol. Cell. Probes. 2005;19:137–144. doi: 10.1016/j.mcp.2004.10.005. PubMed DOI
Castro A., Okinaka R.T. Ultrasensitive, direct detection of a specific DNAsequence of Bacillus anthracis in solution. Analyst. 2000;125:9–11. doi: 10.1039/a908067h. PubMed DOI
Boyer A.E., Quinn C.P., Woolfitt A.R., Pirkle J.L., McWilliams L.G., Stamey K.L., Bagarozzi D.A., Hart J.C., Barr J.R. Detection and quantification of anthrax lethal factor in serum by mass spectrometry. Anal. Chem. 2007;79:8463–8470. doi: 10.1021/ac701741s. PubMed DOI
Harrison L.H., Ezzell J.W., Abshire T.G., Kidd S., Kaufmann A.F. Evaluation of serologic tests for diagnosis of anthrax after an outbreak of cutaneous anthrax in Paraguay. J. Infect. Dis. 1989;160:706–710. doi: 10.1093/infdis/160.4.706. PubMed DOI
Quinn C.P., Semenova V.A., Elie C.M., Romero-Steiner S., Greene C., Li H., Stamey K., Steward-Clark E., Schmidt D.S., Mothershed E., et al. Specific, sensitive, and quantitative enzyme-linked immunosorbent assay for human immunoglobulin G antibodies to anthrax toxin protective antigen. Emerg. Infect. Dis. 2002;8:1103–1110. doi: 10.3201/eid0810.020380. PubMed DOI PMC
Kuklenyik Z., Boyer A.E., Lins R., Quinn C.P., Gallegos-Candela M., Woolfitt A., Pirkle J.L., Barr J.R. Comparison of MALDI-TOF-MS and HPLC-ESI-MS/MS for endopeptidase activity-based quantification of Anthrax lethal factor in serum. Anal. Chem. 2011;83:1760–1765. doi: 10.1021/ac1030144. PubMed DOI
Boyer A.E., Gallegos-Candela M., Quinn C.P., Woolfitt A.R., Brumlow J.O., Isbell K., Hoffmaster A.R., Lins R.C., Barr J.R. High-sensitivity MALDI-TOF MS quantification of anthrax lethal toxin for diagnostics and evaluation of medical countermeasures. Anal. Bioanal. Chem. 2015;407:2847–2858. doi: 10.1007/s00216-015-8509-5. PubMed DOI PMC
Klaubert B., Vujtovic-Ockenga N., Wermter R., Schad K., von Meyer L. Determination of botulinum toxins after peptic sample pre-treatment by multidimensional nanoscale liquid chromatography and nano-electrospray ion-trap mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009;877:1084–1092. doi: 10.1016/j.jchromb.2009.02.053. PubMed DOI
Pellizzari R., Rossetto O., Schiavo G., Montecucco C. Tetanus and botulinum neurotoxins: Mechanism of action and therapeutic uses. Philos. Trans. R. Soc. B Biol. Sci. 1999;354:259–268. doi: 10.1098/rstb.1999.0377. PubMed DOI PMC
Hill K.K., Smith T.J., Helma C.H., Ticknor L.O., Foley B.T., Svensson R.T., Brown J.L., Johnson E.A., Smith L.A., Okinaka R.T., et al. Genetic Diversity among Botulinum Neurotoxin-Producing Clostridial Strains. J. Bacteriol. 2007;189:818–832. doi: 10.1128/JB.01180-06. PubMed DOI PMC
Pearce L.B., Borodic G.E., First E.R., Maccallum R.D. Measurement of Botulinum Toxin Activity: Evaluation of the Lethality Assay. Toxicol. Appl. Pharmacol. 1994;128:69–77. doi: 10.1006/taap.1994.1181. PubMed DOI
Takahashi M., Kameyama S., Sakaguchi G. Assay in mice for low levels of Clostridium botulinum toxin. Int. J. Food Microbiol. 1990;11:271–277. doi: 10.1016/0168-1605(90)90020-6. PubMed DOI
Adler M., Scovill J., Parker G., Lebeda F.J., Piotrowski J., Deshpande S.S. Antagonism of botulinum toxin-induced muscle weakness by 3,4-diaminopyridine in rat phrenic nerve-hemidiaphragm preparations. Toxicon. 1995;33:527–537. doi: 10.1016/0041-0101(94)00183-9. PubMed DOI
Deshpande S.S., Sheridan R.E., Adler M. A study of zinc-dependent metalloendopeptidase inhibitors as pharmacological antagonists in botulinum neurotoxin poisoning. Toxicon. 1995;33:551–557. doi: 10.1016/0041-0101(94)00188-E. PubMed DOI
Torii Y., Goto Y., Takahashi M., Ishida S., Harakawa T., Sakamoto T., Kaji R., Kozaki S., Ginnaga A. Quantitative determination of biological activity of botulinum toxins utilizing compound muscle action potentials (CMAP), and comparison of neuromuscular transmission blockage and muscle flaccidity among toxins. Toxicon. 2010;55:407–414. doi: 10.1016/j.toxicon.2009.09.005. PubMed DOI
Lindström M., Keto R., Markkula A., Nevas M., Hielm S., Korkeala H. Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material. Appl. Environ. Microbiol. 2001;67:5694–5699. doi: 10.1128/AEM.67.12.5694-5699.2001. PubMed DOI PMC
Fach P., Gibert M., Griffais R., Guillou J.P., Popoff M.R. PCR and gene probe identification of botulinum neurotoxin A-, B-, E-, F-, and G-producing Clostridium spp. and evaluation in food samples. Appl. Environ. Microbiol. 1995;61:389–392. PubMed PMC
Takeshi K., Fujinaga Y., Inoue K., Nakajima H., Oguma K., Ueno T., Sunagawa H., Ohyama T. Simple method for detection of Clostridium botulinum type A to F neurotoxin genes by ploymerase chain reaction. Microbiol. Immunol. 1996;40:5–11. doi: 10.1111/j.1348-0421.1996.tb03310.x. PubMed DOI
Fach P., Micheau P., Mazuet C., Perelle S., Popoff M. Development of real-time PCR tests for detecting botulinum neurotoxins A, B, E, F producing Clostridium botulinum, Clostridium baratii and Clostridium butyricum. J. Appl. Microbiol. 2009;107:465–473. doi: 10.1111/j.1365-2672.2009.04215.x. PubMed DOI
Kirchner S., Krämer K.M., Schulze M., Pauly D., Jacob D., Gessler F., Nitsche A., Dorner B.G., Dorner M.B. Pentaplexed quantitative real-time PCR assay for the simultaneous detection and quantification of botulinum neurotoxin-producing clostridia in food and clinical samples. Appl. Environ. Microbiol. 2010;76:4387–4395. doi: 10.1128/AEM.02490-09. PubMed DOI PMC
Boroff D.A., Shu-Chen G. Radioimmunoassay for Type A Toxin of Clostridium botulinum. Appl. Microbiol. 1973;25:545–549. PubMed PMC
Ashton A.C., Crowther J.S., Dolly J.O. A sensitive and useful radioimmunoassay for neurotoxin and its haemagglutinin complex from Clostridium botulinum. Toxicon. 1985;23:235–246. doi: 10.1016/0041-0101(85)90146-1. PubMed DOI
Sonnenschein B. Use of the reversed passive hemagglutination in detection of Clostridium botulinum type A, B, and E toxin (author’s transl) Zentralbl. Bakteriol. Orig. A. 1978;240:221–234. PubMed
Johnson H.M., Brenner K., Angelotti R., Hall H.E. Serological Studies of Types A, B, and E Botulinal Toxins by Passive Hemagglutination and Bentonite Flocculation. J. Bacteriol. 1966;91:967–974. PubMed PMC
Mestrandrea L.W. Rapid Detection of Clostridium botulinum Toxin by Capillary Tube Diffusion. Appl. Microbiol. 1974;27:1017–1022. PubMed PMC
Kozaki S., Dufrenne J., Hagenaars A.M., Notermans S. Enzyme linked immunosorbent assay (ELISA) for detection of Clostridium botulinum type B toxin. Jpn. J. Med. Sci. Biol. 1979;32:199–205. doi: 10.7883/yoken1952.32.199. PubMed DOI
Notermans S., Dufrenne J., Kozaki S. Enzyme-linked immunosorbent assay for detection of Clostridium botulinum type E toxin. Appl. Environ. Microbiol. 1979;37:1173–1175. doi: 10.7883/yoken1952.31.81. PubMed DOI PMC
Ferreira J.L. Comparison of amplified ELISA and mouse bioassay procedures for determination of botulinal toxins A, B, E, and F. J. AOAC Int. 2001;84:85–88. PubMed
Ferreira J.L., Eliasberg S.J., Harrison M.A., Edmonds P. Detection of preformed type A botulinal toxin in hash brown potatoes by using the mouse bioasssay and a modified ELISA test. J. AOAC Int. 2001;84:1460–1464. PubMed
Ferreira J.L., Maslanka S., Johnson E., Goodnough M. Detection of botulinal neurotoxins A, B, E, and F by amplified enzyme-linked immunosorbent assay: Collaborative study. J. AOAC Int. 2003;86:314–331. PubMed
Ferreira J.L., Eliasberg S.J., Edmonds P., Harrison M.A. Comparison of the mouse bioassay and enzyme-linked immunosorbent assay procedures for the detection of type A botulinal toxin in food. J. Food Prot. 2004;67:203–206. doi: 10.4315/0362-028X-67.1.203. PubMed DOI
Dezfulian M., Bartlett J.G. Selective isolation and rapid identification of Clostridium botulinum types A and B by toxin detection. J. Clin. Microbiol. 1985;21:231–233. PubMed PMC
Sharma S.K., Ferreira J.L., Eblen B.S., Whiting R.C. Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl. Environ. Microbiol. 2006;72:1231–1238. doi: 10.1128/AEM.72.2.1231-1238.2006. PubMed DOI PMC
Poli M.A., Rivera V.R., Neal D. Development of sensitive colorimetric capture ELISAs for Clostridium botulinum neurotoxin serotypes E and F. Toxicon. 2002;40:797–802. doi: 10.1016/S0041-0101(01)00288-4. PubMed DOI
Dezfulian M., Hatheway C.L., Yolken R.H., Bartlett J.G. Enzyme-linked immunosorbent assay for detection of Clostridium botulinum type A and type B toxins in stool samples of infants with botulism. J. Clin. Microbiol. 1984;20:379–383. PubMed PMC
Smith T.J., Lou J., Geren I.N., Forsyth C.M., Tsai R., LaPorte S.L., Tepp W.H., Bradshaw M., Johnson E.A., Smith L.A., et al. Sequence Variation within Botulinum Neurotoxin Serotypes Impacts Antibody Binding and Neutralization. Infect. Immun. 2005;73:5450–5457. doi: 10.1128/IAI.73.9.5450-5457.2005. PubMed DOI PMC
Stanker L.H., Merrill P., Scotcher M.C., Cheng L.W. Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich ELISA. J. Immunol. Methods. 2008;336:1–8. doi: 10.1016/j.jim.2008.03.003. PubMed DOI
Guo J., Xu C., Li X., Chen S. A Simple, Rapid and Sensitive FRET Assay for Botulinum Neurotoxin Serotype B Detection. PLoS ONE. 2014;9:e114124. doi: 10.1371/journal.pone.0114124. PubMed DOI PMC
Poras H., Ouimet T., Orng S.-V., Fournié-Zaluski M.-C., Popoff M.R., Roques B.P. Detection and Quantification of Botulinum Neurotoxin Type A by a Novel Rapid In Vitro Fluorimetric Assay. Appl. Environ. Microbiol. 2009;75:4382–4390. doi: 10.1128/AEM.00091-09. PubMed DOI PMC
Rasooly R., Stanker L.H., Carter J.M., Do P.M., Cheng L.W., He X., Brandon D.L. Detection of botulinum neurotoxin-A activity in food by peptide cleavage assay. Int. J. Food Microbiol. 2008;126:135–139. doi: 10.1016/j.ijfoodmicro.2008.05.012. PubMed DOI
Hallis B., James B.A., Shone C.C. Development of novel assays for botulinum type A and B neurotoxins based on their endopeptidase activities. J. Clin. Microbiol. 1996;34:1934–1938. PubMed PMC
Barr J.R., Moura H., Boyer A.E., Woolfitt A.R., Kalb S.R., Pavlopoulos A., McWilliams L.G., Schmidt J.G., Martinez R.A., Ashley D.L. Botulinum Neurotoxin Detection and Differentiation by Mass Spectrometry. Emerg. Infect. Dis. 2005;11:1578–1583. doi: 10.3201/eid1110.041279. PubMed DOI PMC
Kalb S.R., Krilich J.C., Dykes J.K., Lúquez C., Maslanka S.E., Barr J.R. Detection of Botulinum Toxins A, B, E, and F in Foods by Endopep-MS. J. Agric. Food Chem. 2015;63:1133–1141. doi: 10.1021/jf505482b. PubMed DOI PMC
Rosen O., Feldberg L., Gura S., Brosh-Nissimov T., Guri A., Zimhony O., Shapiro E., Beth-Din A., Stein D., Ozeri E., et al. Early, Real-Time Medical Diagnosis of Botulism by Endopeptidase-Mass Spectrometry. Clin. Infect. Dis. 2015;61:e58–e61. doi: 10.1093/cid/civ861. PubMed DOI
Van Baar B.L.M., Hulst A.G., de Jong A.L., Wils E.R.J. Characterisation of botulinum toxins type A and B, by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. J. Chromatogr. A. 2002;970:95–115. doi: 10.1016/S0021-9673(02)00508-3. PubMed DOI
Van Baar B.L.M., Hulst A.G., de Jong A.L., Wils E.R.J. Characterisation of botulinum toxins type C, D, E, and F by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. J. Chromatogr. A. 2004;1035:97–114. doi: 10.1016/j.chroma.2004.02.047. PubMed DOI
Hines H.B., Lebeda F., Hale M., Brueggemann E.E. Characterization of Botulinum Progenitor Toxins by Mass Spectrometry. Appl. Environ. Microbiol. 2005;71:4478–4486. doi: 10.1128/AEM.71.8.4478-4486.2005. PubMed DOI PMC
Rasetti-Escargueil C., Liu Y., Rigsby P., Jones R.G.A., Sesardic D. Phrenic nerve-hemidiaphragm as a highly sensitive replacement assay for determination of functional botulinum toxin antibodies. Toxicon. 2011;57:1008–1016. doi: 10.1016/j.toxicon.2011.04.003. PubMed DOI
Bigalke H., Rummel A. Botulinum Neurotoxins: Qualitative and Quantitative Analysis Using the Mouse Phrenic Nerve Hemidiaphragm Assay (MPN) Toxins. 2015;7:4895–4905. doi: 10.3390/toxins7124855. PubMed DOI PMC
Ferreira M.R.A., Moreira G.M.S.G., da Cunha C.E.P., Mendonça M., Salvarani F.M., Moreira Â.N., Conceição F.R. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines. Toxins. 2016;8:340. doi: 10.3390/toxins8110340. PubMed DOI PMC
Petit L., Gibert M., Popoff M.R. Clostridium perfringens: Toxinotype and genotype. Trends Microbiol. 1999;7:104–110. doi: 10.1016/S0966-842X(98)01430-9. PubMed DOI
Sakurai J., Nagahama M., Oda M. Clostridium perfringens alpha-toxin: Characterization and mode of action. J. Biochem. 2004;136:569–574. doi: 10.1093/jb/mvh161. PubMed DOI
Steinthorsdottir V., Halldórsson H., Andrésson O.S. Clostridium perfringens beta-toxin forms multimeric transmembrane pores in human endothelial cells. Microb. Pathog. 2000;28:45–50. doi: 10.1006/mpat.1999.0323. PubMed DOI
Stiles B.G., Barth G., Barth H., Popoff M.R. Clostridium perfringens Epsilon Toxin: A Malevolent Molecule for Animals and Man? Toxins. 2013;5:2138–2160. doi: 10.3390/toxins5112138. PubMed DOI PMC
Sakurai J., Nagahama M., Oda M., Tsuge H., Kobayashi K. Clostridium perfringens Iota-Toxin: Structure and Function. Toxins. 2009;1:208–228. doi: 10.3390/toxins1020208. PubMed DOI PMC
Farzan A., Kircanski J., DeLay J., Soltes G., Songer J.G., Friendship R., Prescott J.F. An investigation into the association between cpb2-encoding Clostridium perfringens type A and diarrhea in neonatal piglets. Can. J. Vet. Res. 2013;77:45–53. PubMed PMC
Hamad M.A., Habra N., Allouz A.K. Biotyping of Clostridium perfringens strains isolated from enterotoxemia cases in sheep using ELISA technique. Iraqi J. Vet. Sci. 2010;24:17–22.
Tansuphasiri U. Development of duplex PCR assay for rapid detection of enterotoxigenic isolates of Clostridium perfringens. Southeast Asian J. Trop. Med. Public Health. 2001;32:105–113. PubMed
Kull S., Pauly D., Störmann B., Kirchner S., Stämmler M., Dorner M.B., Lasch P., Naumann D., Dorner B.G. Multiplex detection of microbial and plant toxins by immunoaffinity enrichment and matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2010;82:2916–2924. doi: 10.1021/ac902909r. PubMed DOI
Alam S.I., Kumar B., Kamboj D.V. Multiplex detection of protein toxins using MALDI-TOF-TOF tandem mass spectrometry: Application in unambiguous toxin detection from bioaerosol. Anal. Chem. 2012;84:10500–10507. doi: 10.1021/ac3028678. PubMed DOI
Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015;6:791. doi: 10.3389/fmicb.2015.00791. PubMed DOI PMC
Brodzik C., Augustynowicz E., Korzeniowska-Kowal A., Lutyhska A. Application of the MALDI-TOF for identification of Clostridium perfringens strains. Medycyna Doswiadczalna I Mikrobiologia. 2016;68:13–21. PubMed
Krt B. Development and evaluation of various enzyme-linked immunosorbent assays for the detection of Clostridium perfringens beta anti-toxins. FEMS Immunol. Med. Microbiol. 1999;24:293–297. PubMed
Baums C.G., Schotte U., Amtsberg G., Goethe R. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet. Microbiol. 2004;100:11–16. doi: 10.1016/S0378-1135(03)00126-3. PubMed DOI
Albini S., Brodard I., Jaussi A., Wollschlaeger N., Frey J., Miserez R., Abril C. Real-time multiplex PCR assays for reliable detection of Clostridium perfringens toxin genes in animal isolates. Vet. Microbiol. 2008;127:179–185. doi: 10.1016/j.vetmic.2007.07.024. PubMed DOI
Hernández M., López-Enríquez L., Rodríguez-Lázaro D. Quantitative Detection of Clostridium perfringens by Real-Time PCR in Raw Milk. Food Anal. Methods. 2017;10:1139–1147. doi: 10.1007/s12161-017-0821-6. DOI
McClane B.A., Strouse R.J. Rapid detection of Clostridium perfringens type A enterotoxin by enzyme-linked immunosorbent assay. J. Clin. Microbiol. 1984;19:112–115. PubMed PMC
Nagahama M., Kobayashi K., Ochi S., Sakurai J. Enzyme-linked immunosorbent assay for rapid detection of toxins from Clostridium perfringens. FEMS Microbiol. Lett. 1991;84:41–44. doi: 10.1111/j.1574-6968.1991.tb04566.x. PubMed DOI
Everley R.A., Mott T.M., Toney D.M., Croley T.R. Characterization of Clostridium species utilizing liquid chromatography/mass spectrometry of intact proteins. J. Microbiol. Methods. 2009;77:152–158. doi: 10.1016/j.mimet.2009.01.013. PubMed DOI
Naylor R.D., Martin P.K., Sharpe R.T. Detection of Clostridium perfringens epsilon toxin by ELISA. Res. Vet. Sci. 1987;42:255–256. PubMed
Layana J.E., Fernandez Miyakawa M.E., Uzal F.A. Evaluation of different fluids for detection of Clostridium perfringens type D epsilon toxin in sheep with experimental enterotoxemia. Anaerobe. 2006;12:204–206. doi: 10.1016/j.anaerobe.2006.05.001. PubMed DOI
Uzal F.A., Plumb J.J., Blackall L.L., Kelly W.R. PCR detection of Clostridium perfringens producing different toxins in faeces of goats. Lett. Appl. Microbiol. 1997;25:339–344. doi: 10.1046/j.1472-765X.1997.00247.x. PubMed DOI
Seyer A., Fenaille F., Féraudet-Tarisse C., Volland H., Popoff M.R., Tabet J.-C., Junot C., Becher F. Rapid quantification of clostridial epsilon toxin in complex food and biological matrixes by immunopurification and ultraperformance liquid chromatography-tandem mass spectrometry. Anal. Chem. 2012;84:5103–5109. doi: 10.1021/ac300880x. PubMed DOI
Payne D.W., Williamson E.D., Havard H., Modi N., Brown J. Evaluation of a new cytotoxicity assay for Clostridium perfringens type D epsilon toxin. FEMS Microbiol. Lett. 1994;116:161–167. doi: 10.1111/j.1574-6968.1994.tb06695.x. PubMed DOI
Fredriksson S.-Å., Artursson E., Bergström T., Östin A., Nilsson C., Åstot C. Identification of RIP-II toxins by affinity enrichment, enzymatic digestion and LC-MS. Anal. Chem. 2015;87:967–974. doi: 10.1021/ac5032918. PubMed DOI
Hale M.L. Microtiter-based assay for evaluating the biological activity of ribosome-inactivating proteins. Pharmacol. Toxicol. 2001;88:255–260. doi: 10.1111/j.1600-0773.2001.880506.x. PubMed DOI
Becher F., Duriez E., Volland H., Tabet J.C., Ezan E. Detection of Functional Ricin by Immunoaffinity and Liquid Chromatography–Tandem Mass Spectrometry. Anal. Chem. 2007;79:659–665. doi: 10.1021/ac061498b. PubMed DOI
Pauly D., Worbs S., Kirchner S., Shatohina O., Dorner M.B., Dorner B.G. Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices. PLoS ONE. 2012;7:e35360. doi: 10.1371/journal.pone.0035360. PubMed DOI PMC
Poli M.A., Rivera V.R., Hewetson J.F., Merrill G.A. Detection of ricin by colorimetric and chemiluminescence ELISA. Toxicon. 1994;32:1371–1377. doi: 10.1016/0041-0101(94)90409-X. PubMed DOI
Cook D.L., David J., Griffiths G.D. Retrospective identification of ricin in animal tissues following administration by pulmonary and oral routes. Toxicology. 2006;223:61–70. doi: 10.1016/j.tox.2006.03.010. PubMed DOI
Worbs S., Köhler K., Pauly D., Avondet M.-A., Schaer M., Dorner M.B., Dorner B.G. Ricinus communis Intoxications in Human and Veterinary Medicine-A Summary of Real Cases. Toxins. 2011;3:1332–1372. doi: 10.3390/toxins3101332. PubMed DOI PMC
Bozza W.P., Tolleson W.H., Rivera Rosado L.A., Zhang B. Ricin detection: Tracking active toxin. Biotechnol. Adv. 2015;33:117–123. doi: 10.1016/j.biotechadv.2014.11.012. PubMed DOI
Assiri A.S. Ricin poisoning causing death after ingestion of herbal medicine. Ann. Saudi Med. 2012;32:315–317. doi: 10.5144/0256-4947.2012.315. PubMed DOI PMC
Beyer N.H., Kogutowska E., Hansen J.J., Engelhart Illigen K.E., Heegaard N.H.H. A mouse model for ricin poisoning and for evaluating protective effects of antiricin antibodies. Clin. Toxicol. 2009;47:219–225. doi: 10.1080/15563650802716521. PubMed DOI
Wang D., Baudys J., Barr J.R., Kalb S.R. Improved Sensitivity for the Qualitative and Quantitative Analysis of Active Ricin by MALDI-TOF Mass Spectrometry. Anal. Chem. 2016;88:6867–6872. doi: 10.1021/acs.analchem.6b01486. PubMed DOI PMC
Sturm M.B., Schramm V.L. Detecting Ricin: Sensitive Luminescent Assay for Ricin A-Chain Ribosome Depurination Kinetics. Anal. Chem. 2009;81:2847–2853. doi: 10.1021/ac8026433. PubMed DOI PMC
Kalb S.R., Barr J.R. Mass spectrometric detection of ricin and its activity in food and clinical samples. Anal. Chem. 2009;81:2037–2042. doi: 10.1021/ac802769s. PubMed DOI
Griffiths G.D. Understanding Ricin from a Defensive Viewpoint. Toxins. 2011;3:1373–1392. doi: 10.3390/toxins3111373. PubMed DOI PMC
Roberts L.M., Lamb F.I., Pappin D.J., Lord J.M. The primary sequence of Ricinus communis agglutinin. Comparison with ricin. J. Biol. Chem. 1985;260:15682–15686. PubMed
Kumar O., Pradhan S., Sehgal P., Singh Y., Vijayaraghavan R. Denatured ricin can be detected as native ricin by immunological methods, but nontoxic in vivo. J. Forensic Sci. 2010;55:801–807. doi: 10.1111/j.1556-4029.2009.01290.x. PubMed DOI
Mouser P., Filigenzi M.S., Puschner B., Johnson V., Miller M.A., Hooser S.B. Fatal ricin toxicosis in a puppy confirmed by liquid chromatography/mass spectrometry when using ricinine as a marker. J. Vet. Diagn. Investig. 2007;19:216–220. doi: 10.1177/104063870701900217. PubMed DOI
Hines H.B., Brueggemann E.E., Hale M.L. High-performance liquid chromatography-mass selective detection assay for adenine released from a synthetic RNA substrate by ricin A chain. Anal. Biochem. 2004;330:119–122. doi: 10.1016/j.ab.2004.03.046. PubMed DOI
Bevilacqua V.L.H., Nilles J.M., Rice J.S., Connell T.R., Schenning A.M., Reilly L.M., Durst H.D. Ricin activity assay by direct analysis in real time mass spectrometry detection of adenine release. Anal. Chem. 2010;82:798–800. doi: 10.1021/ac9025972. PubMed DOI
McGrath S.C., Schieltz D.M., McWilliams L.G., Pirkle J.L., Barr J.R. Detection and Quantification of Ricin in Beverages Using Isotope Dilution Tandem Mass Spectrometry. Anal. Chem. 2011;83:2897–2905. doi: 10.1021/ac102571f. PubMed DOI
Schieltz D.M., McGrath S.C., McWilliams L.G., Rees J., Bowen M.D., Kools J.J., Dauphin L.A., Gomez-Saladin E., Newton B.N., Stang H.L., et al. Analysis of active ricin and castor bean proteins in a ricin preparation, castor bean extract, and surface swabs from a public health investigation. Forensic Sci. Int. 2011;209:70–79. doi: 10.1016/j.forsciint.2010.12.013. PubMed DOI
Felder E., Mossbrugger I., Lange M., Wölfel R. Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR) Toxins. 2012;4:633–642. doi: 10.3390/toxins4090633. PubMed DOI PMC
Pauly D., Kirchner S., Stoermann B., Schreiber T., Kaulfuss S., Schade R., Zbinden R., Avondet M.-A., Dorner M.B., Dorner B.G. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst. 2009;134:2028–2039. doi: 10.1039/b911525k. PubMed DOI
Garber E.A.E., Venkateswaran K.V., O’Brien T.W. Simultaneous multiplex detection and confirmation of the proteinaceous toxins abrin, ricin, botulinum toxins, and Staphylococcus enterotoxins A, B, and C in food. J. Agric. Food Chem. 2010;58:6600–6607. doi: 10.1021/jf100789n. PubMed DOI
Hegde R., Maiti T.K., Podder S.K. Purification and characterization of three toxins and two agglutinins from Abrus precatorius seed by using lactamyl-Sepharose affinity chromatography. Anal. Biochem. 1991;194:101–109. doi: 10.1016/0003-2697(91)90156-N. PubMed DOI
Hung C.H., Lee M.C., Lee T.C., Lin J.Y. Primary structure of three distinct isoabrins determined by cDNA sequencing. Conservation and significance. J. Mol. Biol. 1993;229:263–267. doi: 10.1006/jmbi.1993.1029. PubMed DOI
Hegde R., Podder S.K. A- and B-subunit variant distribution in the holoprotein variants of protein toxin abrin: Variants of abrins I and III have constant toxic A subunits and variant lectin B subunits. Arch. Biochem. Biophys. 1997;344:75–84. doi: 10.1006/abbi.1997.0177. PubMed DOI
Liu C.L., Tsai C.C., Lin S.C., Wang L.I., Hsu C.I., Hwang M.J., Lin J.Y. Primary structure and function analysis of the Abrus precatorius agglutinin A chain by site-directed mutagenesis. Pro(199) of amphiphilic alpha-helix H impairs protein synthesis inhibitory activity. J. Biol. Chem. 2000;275:1897–1901. doi: 10.1074/jbc.275.3.1897. PubMed DOI
Bagaria A., Surendranath K., Ramagopal U.A., Ramakumar S., Karande A.A. Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin I in relation to abrin. J. Biol. Chem. 2006;281:34465–34474. doi: 10.1074/jbc.M601777200. PubMed DOI
Garber E.A.E. Toxicity and detection of ricin and abrin in beverages. J. Food Prot. 2008;71:1875–1883. doi: 10.4315/0362-028X-71.9.1875. PubMed DOI
Garber E.A.E., Walker J.L., O’Brien T.W. Detection of abrin in food using enzyme-linked immunosorbent assay and electrochemiluminescence technologies. J. Food Prot. 2008;71:1868–1874. doi: 10.4315/0362-028X-71.9.1868. PubMed DOI
Zhou Y., Tian X.-L., Li Y.-S., Pan F.-G., Zhang Y.-Y., Zhang J.-H., Wang X.-R., Ren H.-L., Lu S.-Y., Li Z.-H., et al. Development of a monoclonal antibody-based sandwich-type enzyme-linked immunosorbent assay (ELISA) for detection of abrin in food samples. Food Chem. 2012;135:2661–2665. doi: 10.1016/j.foodchem.2012.07.047. PubMed DOI
Gao S., Nie C., Wang J., Wang J., Kang L., Zhou Y., Wang J.-L. Colloidal gold-based immunochromatographic test strip for rapid detection of abrin in food samples. J. Food Prot. 2012;75:112–117. doi: 10.4315/0362-028X.JFP-11-252. PubMed DOI
Yang W., Li X., Liu G., Zhang B., Zhang Y., Kong T., Tang J., Li D., Wang Z. A colloidal gold probe-based silver enhancement immunochromatographic assay for the rapid detection of abrin-a. Biosens. Bioelectron. 2011;26:3710–3713. doi: 10.1016/j.bios.2011.02.016. PubMed DOI
Ramage J.G., Prentice K.W., Morse S.A., Carter A.J., Datta S., Drumgoole R., Gargis S.R., Griffin-Thomas L., Hastings R., Masri H.P., et al. Comprehensive laboratory evaluation of a specific lateral flow assay for the presumptive identification of abrin in suspicious white powders and environmental samples. Biosecur. Bioterror. Biodef. Strategy Pract. Sci. 2014;12:49–62. doi: 10.1089/bsp.2013.0080. PubMed DOI
Owens J., Koester C. Quantitation of Abrine, an Indole Alkaloid Marker of the Toxic Glycoproteins Abrin, by Liquid Chromatography/Tandem Mass Spectrometry When Spiked into Various Beverages. J. Agric. Food Chem. 2008;56:11139–11143. doi: 10.1021/jf802471y. PubMed DOI
Olsnes S., Stirpe F., Sandvig K., Pihl A. Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe) J. Biol. Chem. 1982;257:13263–13270. PubMed
Rubina A.Y., Dyukova V.I., Dementieva E.I., Stomakhin A.A., Nesmeyanov V.A., Grishin E.V., Zasedatelev A.S. Quantitative immunoassay of biotoxins on hydrogel-based protein microchips. Anal. Biochem. 2005;340:317–329. doi: 10.1016/j.ab.2005.01.042. PubMed DOI
Jäggy C., Musielski H., Urech K., Schaller G. Quantitative determination of lectins in mistletoe preparations. Arzneimittel-Forschung. 1995;45:905–909. PubMed
Layer R.T., McIntosh J.M. Conotoxins: Therapeutic Potential and Application. Mar. Drugs. 2006;4:119–142. doi: 10.3390/md403119. DOI
Cestèle S., Catterall W.A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie. 2000;82:883–892. doi: 10.1016/S0300-9084(00)01174-3. PubMed DOI
Clark R.J., Jensen J., Nevin S.T., Callaghan B.P., Adams D.J., Craik D.J. The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew. Chem. Int. Ed. Engl. 2010;49:6545–6548. doi: 10.1002/anie.201000620. PubMed DOI
Olivera B.M., Imperial J.S., Concepcion G.P. Snail Peptides. In: Kastin A.J., editor. Handbook of Biologically Active Peptides. 2nd ed. Academic Press; Boston, MA, USA: 2013. pp. 437–450. Chapter 61.
Ashcom J.D., Stiles B.G. Characterization of alpha-conotoxin interactions with the nicotinic acetylcholine receptor and monoclonal antibodies. Pt 1Biochem. J. 1997;328:245–250. doi: 10.1042/bj3280245. PubMed DOI PMC
Loughnan M.L., Nicke A., Jones A., Adams D.J., Alewood P.F., Lewis R.J. Chemical and functional identification and characterization of novel sulfated alpha-conotoxins from the cone snail Conus anemone. J. Med. Chem. 2004;47:1234–1241. doi: 10.1021/jm031010o. PubMed DOI
Prasarnpun S., Walsh J., Awad S.S., Harris J.B. Envenoming bites by kraits: The biological basis of treatment-resistant neuromuscular paralysis. Brain. 2005;128:2987–2996. doi: 10.1093/brain/awh642. PubMed DOI
Shan L.-L., Gao J.-F., Zhang Y.-X., Shen S.-S., He Y., Wang J., Ma X.-M., Ji X. Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J. Proteom. 2016;138:83–94. doi: 10.1016/j.jprot.2016.02.028. PubMed DOI
Chang L.S., Yang C.C. Separation and Characterization of the A Chain and B Chain in β1-Bungarotoxin from Bungarus Multicinctus (Taiwan Banded Krait) Venom. J. Protein Chem. 1993;12:469–475. doi: 10.1007/BF01025047. PubMed DOI
Selvanayagam Z.E., Gopalakrishnakone P. Tests for detection of snake venoms, toxins and venom antibodies: Review on recent trends (1987–1997) Toxicon. 1999;37:565–586. doi: 10.1016/S0041-0101(98)00203-7. PubMed DOI
Dong L.V., Selvanayagam Z.E., Gopalakrishnakone P., Eng K.H. A new avidin–biotin optical immunoassay for the detection of beta-bungarotoxin and application in diagnosis of experimental snake envenomation. J. Immunol. Methods. 2002;260:125–136. doi: 10.1016/S0022-1759(01)00527-0. PubMed DOI
Selvanayagam Z.E., Neuzil P., Gopalakrishnakone P., Sridhar U., Singh M., Ho L.C. An ISFET-based immunosensor for the detection of β-Bungarotoxin. Biosens. Bioelectron. 2002;17:821–826. doi: 10.1016/S0956-5663(02)00075-1. PubMed DOI
Targeted Mass Spectrometry Analysis of Clostridium perfringens Toxins