Proteomic Methods of Detection and Quantification of Protein Toxins

. 2018 Feb 28 ; 10 (3) : . [epub] 20180228

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29495560

Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.

Zobrazit více v PubMed

Pal M., Tsegaye M., Girzaw F., Bedada H., Godishala V., Kandi V. An Overview on Biological Weapons and Bioterrorism. Am. J. Biomed. Res. 2017;5:24–34. doi: 10.12691/ajbr-5-2-2. DOI

Jansen H.J., Breeveld F.J., Stijnis C., Grobusch M.P. Biological warfare, bioterrorism, and biocrime. Clin. Microbiol. Infect. 2014;20:488–496. doi: 10.1111/1469-0691.12699. PubMed DOI PMC

NIAID Emerging Infectious Diseases/Pathogens | NIH: National Institute of Allergy and Infectious Diseases. [(accessed on 12 June 2017)]; Available online: https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens.

COMMISSION DELEGATED REGULATION (EU) 2016/1969 of 12 September 2016 Amending Council Regulation (EC) No 428/2009 Setting up a Community Regime for the Control of Exports, Transfer, Brokering and Transit of Dual-Use Items. [(accessed on 1 November 2017)]; Available online: https://danishbusinessauthority.dk/sites/default/files/media/reg._2016-1969_new_control_list.pdf.

Lubran M.M. Bacterial toxins. Ann. Clin. Lab. Sci. 1988;18:58–71. PubMed

Sandvig K., Torgersen M.L., Engedal N., Skotland T., Iversen T.-G. Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Lett. 2010;584:2626–2634. doi: 10.1016/j.febslet.2010.04.008. PubMed DOI

Dal Peraro M., van der Goot F.G. Pore-forming toxins: Ancient, but never really out of fashion. Nat. Rev. Microbiol. 2016;14:77–92. doi: 10.1038/nrmicro.2015.3. PubMed DOI

Duriez E., Armengaud J., Fenaille F., Ezan E. Mass spectrometry for the detection of bioterrorism agents: From environmental to clinical applications. J. Mass Spectrom. JMS. 2016;51:183–199. doi: 10.1002/jms.3747. PubMed DOI

Dorner B.G., Zeleny R., Harju K., Hennekinne J.-A., Vanninen P., Schimmel H., Rummel A. Biological toxins of potential bioterrorism risk: Current status of detection and identification technology. TrAC Trends Anal. Chem. 2016;85:89–102. doi: 10.1016/j.trac.2016.05.024. DOI

Demirev P.A., Fenselau C. Mass spectrometry in biodefense. J. Mass Spectrom. JMS. 2008;43:1441–1457. doi: 10.1002/jms.1474. PubMed DOI

OPCW Hosts Series of Science and Technology Meetings. [(accessed on 6 November 2017)]; Available online: https://www.opcw.org/news/article/opcw-hosts-series-of-science-and-technology-meetings/

Wilson I.G., Cooper J.E., Gilmour A. Detection of enterotoxigenic Staphylococcus aureus in dried skimmed milk: Use of the polymerase chain reaction for amplification and detection of staphylococcal enterotoxin genes entB and entC1 and the thermonuclease gene nuc. Appl. Environ. Microbiol. 1991;57:1793–1798. PubMed PMC

Jay M.J., Loessner J.M., Golden A.D. Modern Food Microbiology. Springer; New York, NY, USA: 2005. Bioassay and Related Methods; pp. 285–298. (Food Science Text Series).

Lindström M., Korkeala H. Laboratory diagnostics of botulism. Clin. Microbiol. Rev. 2006;19:298–314. doi: 10.1128/CMR.19.2.298-314.2006. PubMed DOI PMC

Cai S., Singh B.R., Sharma S. Botulism diagnostics: From clinical symptoms to in vitro assays. Crit. Rev. Microbiol. 2007;33:109–125. doi: 10.1080/10408410701364562. PubMed DOI

Sharma S.K., Whiting R.C. Methods for detection of Clostridium botulinum toxin in foods. J. Food Prot. 2005;68:1256–1263. doi: 10.4315/0362-028X-68.6.1256. PubMed DOI

Solberg M., Post L.S., Furgang D., Graham C. Bovine serum eliminates rapid nonspecific toxic reactions during bioassay of stored fish for Clostridium botulinum toxin. Appl. Environ. Microbiol. 1985;49:644–649. PubMed PMC

Dezfulian M., Bartlett J.G. Detection of Clostridium botulinum type B toxin in the presence of a lethal substance interfering with toxin neutralization. Diagn. Microbiol. Infect. Dis. 1985;3:105–112. doi: 10.1016/0732-8893(85)90018-5. PubMed DOI

Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15. doi: 10.1016/j.peptides.2015.04.012. PubMed DOI

Lewis G.E., Kulinski S.S., Reichard D.W., Metzger J.F. Detection of Clostridium botulinum type G toxin by enzyme-linked immunosorbent assay. Appl. Environ. Microbiol. 1981;42:1018–1022. PubMed PMC

Park C.E., Akhtar M., Rayman M.K. Nonspecific reactions of a commercial enzyme-linked immunosorbent assay kit (TECRA) for detection of staphylococcal enterotoxins in foods. Appl. Environ. Microbiol. 1992;58:2509–2512. PubMed PMC

Wieneke A.A. Comparison of four kits for the detection of staphylococcal enterotoxin in foods from outbreaks of food poisoning. Int. J. Food Microbiol. 1991;14:305–312. doi: 10.1016/0168-1605(91)90122-6. PubMed DOI

Yalow R.S., Berson S.A. Immunoassay of endogenous plasma insulin in man. J. Clin. Investig. 1960;39:1157–1175. doi: 10.1172/JCI104130. PubMed DOI PMC

Goldsmith S.J. Radioimmunoassay: Review of basic principles. Semin. Nucl. Med. 1975;5:125–152. doi: 10.1016/S0001-2998(75)80028-6. PubMed DOI

Gan S.D., Patel K.R. Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay. J. Investig. Dermatol. 2013;133:e12. doi: 10.1038/jid.2013.287. PubMed DOI

Zhu K., Dietrich R., Didier A., Doyscher D., Märtlbauer E. Recent Developments in Antibody-Based Assays for the Detection of Bacterial Toxins. Toxins. 2014;6:1325–1348. doi: 10.3390/toxins6041325. PubMed DOI PMC

Hejtmancik K.E., Peterson J.W., Markel D.E., Kurosky A. Radioimmunoassay for the antigenic determinants of cholera toxin and its components. Infect. Immun. 1977;17:621–628. PubMed PMC

Harris C.C., Yolken R.H., Krokan H., Hsu I.C. Ultrasensitive enzymatic radioimmunoassay: Application to detection of cholera toxin and rotavirus. Proc. Natl. Acad. Sci. USA. 1979;76:5336–5339. doi: 10.1073/pnas.76.10.5336. PubMed DOI PMC

Godal A., Olsnes S., Pihl A. Radioimmunoassays of abrin and ricin in blood. J. Toxicol. Environ. Health. 1981;8:409–417. doi: 10.1080/15287398109530079. PubMed DOI

Ramakrishnan S., Eagle M.R., Houston L.L. Radioimmunoassay of ricin A- and B-chains applied to samples of ricin A-chain prepared by chromatofocusing and by DEAE Bio-Gel A chromatography. Biochim. Biophys. Acta. 1982;719:341–348. doi: 10.1016/0304-4165(82)90108-8. PubMed DOI

Kurien B.T., Scofield R.H. Western blotting. Methods. 2006;38:283–293. doi: 10.1016/j.ymeth.2005.11.007. PubMed DOI

Ladhani S., Robbie S., Garratt R.C., Chapple D.S., Joannou C.L., Evans R.W. Development and Evaluation of Detection Systems for Staphylococcal Exfoliative Toxin A Responsible for Scalded-Skin Syndrome. J. Clin. Microbiol. 2001;39:2050–2054. doi: 10.1128/JCM.39.6.2050-2054.2001. PubMed DOI PMC

Lian W., Wu D., Lim D.V., Jin S. Sensitive detection of multiplex toxins using antibody microarray. Anal. Biochem. 2010;401:271–279. doi: 10.1016/j.ab.2010.02.040. PubMed DOI

Skinner C., Patfield S., Stanker L.H., Fratamico P., He X. New High-Affinity Monoclonal Antibodies against Shiga Toxin 1 Facilitate the Detection of Hybrid Stx1/Stx2 In Vivo. PLoS ONE. 2014;9:e99854. doi: 10.1371/journal.pone.0099854. PubMed DOI PMC

Boyer A.E., Gallegos-Candela M., Lins R.C., Kuklenyik Z., Woolfitt A., Moura H., Kalb S., Quinn C.P., Barr J.R. Quantitative Mass Spectrometry for Bacterial Protein Toxins—A Sensitive, Specific, High-Throughput Tool for Detection and Diagnosis. Molecules. 2011;16:2391–2413. doi: 10.3390/molecules16032391. PubMed DOI PMC

Lange V., Picotti P., Domon B., Aebersold R. Selected reaction monitoring for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2008;4:222. doi: 10.1038/msb.2008.61. PubMed DOI PMC

Bourmaud A., Gallien S., Domon B. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications. Proteomics. 2016;16:2146–2159. doi: 10.1002/pmic.201500543. PubMed DOI

MacLean B., Tomazela D.M., Shulman N., Chambers M., Finney G.L., Frewen B., Kern R., Tabb D.L., Liebler D.C., MacCoss M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinform. Oxf. Engl. 2010;26:966–968. doi: 10.1093/bioinformatics/btq054. PubMed DOI PMC

Desiderio D.M., Kai M. Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomed. Mass Spectrom. 1983;10:471–479. doi: 10.1002/bms.1200100806. PubMed DOI

Gallien S., Duriez E., Crone C., Kellmann M., Moehring T., Domon B. Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer. Mol. Cell. Proteom. MCP. 2012;11:1709–1723. doi: 10.1074/mcp.O112.019802. PubMed DOI PMC

Bereman M.S., MacLean B., Tomazela D.M., Liebler D.C., MacCoss M.J. The development of selected reaction monitoring methods for targeted proteomics via empirical refinement. Proteomics. 2012;12:1134–1141. doi: 10.1002/pmic.201200042. PubMed DOI PMC

Dupuis A., Hennekinne J.-A., Garin J., Brun V. Protein Standard Absolute Quantification (PSAQ) for improved investigation of staphylococcal food poisoning outbreaks. Proteomics. 2008;8:4633–4636. doi: 10.1002/pmic.200800326. PubMed DOI

Adrait A., Lebert D., Trauchessec M., Dupuis A., Louwagie M., Masselon C., Jaquinod M., Chevalier B., Vandenesch F., Garin J., et al. Development of a Protein Standard Absolute Quantification (PSAQ™) assay for the quantification of Staphylococcus aureus enterotoxin A in serum. J. Proteom. 2012;75:3041–3049. doi: 10.1016/j.jprot.2011.11.031. PubMed DOI

Dupré M., Gilquin B., Fenaille F., Feraudet-Tarisse C., Dano J., Ferro M., Simon S., Junot C., Brun V., Becher F. Multiplex quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry. Anal. Chem. 2015;87:8473–8480. doi: 10.1021/acs.analchem.5b01900. PubMed DOI

Kalb S.R., Boyer A.E., Barr J.R. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity. Toxins. 2015;7:3497–3511. doi: 10.3390/toxins7093497. PubMed DOI PMC

Boyer A.E., Moura H., Woolfitt A.R., Kalb S.R., McWilliams L.G., Pavlopoulos A., Schmidt J.G., Ashley D.L., Barr J.R. From the mouse to the mass spectrometer: Detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry. Anal. Chem. 2005;77:3916–3924. doi: 10.1021/ac050485f. PubMed DOI

Otto M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 2014;17:32–37. doi: 10.1016/j.mib.2013.11.004. PubMed DOI PMC

Masalha M., Borovok I., Schreiber R., Aharonowitz Y., Cohen G. Analysis of Transcription of the Staphylococcus aureus Aerobic Class Ib and Anaerobic Class III Ribonucleotide Reductase Genes in Response to Oxygen. J. Bacteriol. 2001;183:7260–7272. doi: 10.1128/JB.183.24.7260-7272.2001. PubMed DOI PMC

Schlievert P.M., Case L.C. Molecular analysis of staphylococcal superantigens. Methods Mol. Biol. 2007;391:113–126. doi: 10.1007/978-1-59745-468-1_9. PubMed DOI

Pinchuk I.V., Beswick E.J., Reyes V.E. Staphylococcal Enterotoxins. Toxins. 2010;2:2177–2197. doi: 10.3390/toxins2082177. PubMed DOI PMC

Fries B.C., Varshney A.K. Bacterial Toxins-Staphylococcal Enterotoxin B. Microbiol. Spectr. 2013;1 doi: 10.1128/microbiolspec.AID-0002-2012. PubMed DOI PMC

Zapor M., Fishbain J.T. Aerosolized biologic toxins as agents of warfare and terrorism. Respir. Care Clin. N. Am. 2004;10:111–122. doi: 10.1016/S1078-5337(03)00054-6. PubMed DOI

Fulton F. Staphylococcal Enterotoxin—With Special Reference to the Kitten Test. Br. J. Exp. Pathol. 1943;24:65–72.

Scheuber P.H., Mossmann H., Beck G., Hammer D.K. Direct skin test in highly sensitized guinea pigs for rapid and sensitive determination of staphylococcal enterotoxin B. Appl. Environ. Microbiol. 1983;46:1351–1356. PubMed PMC

Wu S., Duan N., Gu H., Hao L., Ye H., Gong W., Wang Z. A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins. Toxins. 2016;8:176. doi: 10.3390/toxins8070176. PubMed DOI PMC

Saunders G.C., Bartlett M.L. Double-antibody solid-phase enzyme immunoassay for the detection of staphylococcal enterotoxin A. Appl. Environ. Microbiol. 1977;34:518–522. PubMed PMC

Notermans S., Verjans H.L., Bol J., van Schothorst M. Enzyme linked immunosorbent assay (ELISA) for determination of Staphylococcus aureus enterotoxin type B. Health Lab. Sci. 1978;15:28–31. PubMed

Stiffler-Rosenberg G., Fey H. Simple assay for staphylococcal enterotoxins A, B, and C: Modification of enzyme-linked immunosorbent assay. J. Clin. Microbiol. 1978;8:473–479. PubMed PMC

Fey H., Pfister H., Rüegg O. Comparative evaluation of different enzyme-linked immunosorbent assay systems for the detection of staphylococcal enterotoxins A, B, C, and D. J. Clin. Microbiol. 1984;19:34–38. PubMed PMC

Wieneke A.A., Gilbert R.J. The use of a sandwich ELISA for the detection of staphylococcal enterotoxin A in foods from outbreaks of food poisoning. Epidemiol. Infect. 1985;95:131–138. doi: 10.1017/S0022172400062367. PubMed DOI PMC

Hahn I.F., Pickenhahn P., Lenz W., Brandis H. An avidin-biotin ELISA for the detection of staphylococcal enterotoxins A and B. J. Immunol. Methods. 1986;92:25–29. doi: 10.1016/0022-1759(86)90499-0. PubMed DOI

Nia Y., Rodriguez M., Zeleny R., Herbin S., Auvray F., Fiebig U., Avondet M.-A., Munoz A., Hennekinne J.-A. Organization and ELISA-Based Results of the First Proficiency Testing to Evaluate the Ability of European Union Laboratories to Detect Staphylococcal Enterotoxin Type B (SEB) in Buffer and Milk. Toxins. 2016;8:268. doi: 10.3390/toxins8090268. PubMed DOI PMC

Khan A.S., Cao C.J., Thompson R.G., Valdes J.J. A simple and rapid fluorescence-based immunoassay for the detection of staphylococcal enterotoxin B. Mol. Cell. Probes. 2003;17:125–126. doi: 10.1016/S0890-8508(02)00109-3. PubMed DOI

Hun X., Zhang Z. A novel sensitive staphylococcal enterotoxin C1 fluoroimmunoassay based on functionalized fluorescent core-shell nanoparticle labels. Food Chem. 2007;105:1623–1629. doi: 10.1016/j.foodchem.2007.03.068. DOI

Vinayaka A.C., Thakur M.S. An immunoreactor-based competitive fluoroimmunoassay for monitoring staphylococcal enterotoxin B using bioconjugated quantum dots. Analyst. 2012;137:4343–4348. doi: 10.1039/c2an35760g. PubMed DOI

Szkola A., Linares E.M., Worbs S., Dorner B.G., Dietrich R., Märtlbauer E., Niessner R., Seidel M. Rapid and simultaneous detection of ricin, staphylococcal enterotoxin B and saxitoxin by chemiluminescence-based microarray immunoassay. Analyst. 2014;139:5885–5892. doi: 10.1039/C4AN00345D. PubMed DOI

Sun S., Yang M., Kostov Y., Rasooly A. ELISA-LOC: Lab-on-a-chip for enzyme-linked immunodetection. Lab Chip. 2010;10:2093–2100. doi: 10.1039/c003994b. PubMed DOI

Sd S., Rc S., Ap L., Ce F. Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification., Surface Plasmon Resonance (SPR) Detection Using Antibody-Linked Magnetic Nanoparticles for Analyte Capture, Purification, Concentration and Signal Amplification. Anal. Chem. 2009;81:2357–2363. doi: 10.1021/ac900007c. PubMed DOI PMC

Tang D., Tang J., Su B., Chen G. Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification. J. Agric. Food Chem. 2010;58:10824–10830. doi: 10.1021/jf102326m. PubMed DOI

Park C.E., Szabo R. Evaluation of the reversed passive latex agglutination (RPLA) test kits for detection of staphylococcal enterotoxins A, B, C, and D in foods. Can. J. Microbiol. 1986;32:723–727. doi: 10.1139/m86-131. PubMed DOI

Fujikawa H., Igarashi H. Rapid latex agglutination test for detection of staphylococcal enterotoxins A to E that uses high-density latex particles. Appl. Environ. Microbiol. 1988;54:2345–2348. PubMed PMC

Rose S.A., Bankes P., Stringer M.F. Detection of staphylococcal enterotoxins in dairy products by the reversed passive latex agglutination (SET-RPLA) kit. Int. J. Food Microbiol. 1989;8:65–72. doi: 10.1016/0168-1605(89)90081-0. PubMed DOI

Pereira M.L., Heneine L.G., Santos E.J., Carmo L.S., Pereira J.L., Bergdoll M.S. Prevention of nonspecific reactions on reversed passive latex agglutination assay (RPLA) for detecting low amounts of staphylococcal enterotoxins. Rev. Latinoam. Microbiol. 1997;39:57–63. PubMed

Hall H.E., Angelotti R., Lewis K.H. Quantitative detection of staphylococcal Enterotoxin B in food by gel-diffusion methods. Public Health Rep. 1963;78:1089–1098. doi: 10.2307/4592031. PubMed DOI PMC

Salomon L.L., Tew R.W. Assay of staphylococcal enterotoxin B by latex agglutination. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. 1968;129:539–542. doi: 10.3181/00379727-129-33364. PubMed DOI

Lee C.L., Lin C.C. Detection of staphylococcal enterotoxin by latex agglutination inhibition test. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1984;17:77–80. PubMed

Read R.B., Bradshaw J., Pritchard W.L., Black L.A. Assay of Staphylococcal Enterotoxin from Cheese. J. Dairy Sci. 1965;48:420–424. doi: 10.3168/jds.S0022-0302(65)88246-7. PubMed DOI

Kientz C.E., Hulst A.G., Wils E.R. Determination of staphylococcal enterotoxin B by on-line (micro) liquid chromatography-electrospray mass spectrometry. J. Chromatogr. A. 1997;757:51–64. doi: 10.1016/S0021-9673(96)00661-9. PubMed DOI

Kawano Y., Ito Y., Yamakawa Y., Yamashino T., Horii T., Hasegawa T., Ohta M. Rapid isolation and identification of staphylococcal exoproteins by reverse phase capillary high performance liquid chromatography-electrospray ionization mass spectrometry. FEMS Microbiol. Lett. 2000;189:103–108. doi: 10.1016/S0378-1097(00)00261-5. PubMed DOI

Nedelkov D., Rasooly A., Nelson R.W. Multitoxin biosensor-mass spectrometry analysis: A new approach for rapid, real-time, sensitive analysis of staphylococcal toxins in food. Int. J. Food Microbiol. 2000;60:1–13. doi: 10.1016/S0168-1605(00)00328-7. PubMed DOI

Callahan J.H., Shefcheck K.J., Williams T.L., Musser S.M. Detection, confirmation, and quantification of staphylococcal enterotoxin B in food matrixes using liquid chromatography–mass spectrometry. Anal. Chem. 2006;78:1789–1800. doi: 10.1021/ac051292v. PubMed DOI

Bao K.D., Letellier A., Beaudry F. Analysis of Staphylococcus enterotoxin B using differential isotopic tags and liquid chromatography quadrupole ion trap mass spectrometry. Biomed. Chromatogr. BMC. 2012;26:1049–1057. doi: 10.1002/bmc.1742. PubMed DOI

Zuberovic Muratovic A., Hagström T., Rosén J., Granelli K., Hellenäs K.-E. Quantitative Analysis of Staphylococcal Enterotoxins A and B in Food Matrices Using Ultra High-Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) Toxins. 2015;7:3637–3656. doi: 10.3390/toxins7093637. PubMed DOI PMC

Andjelkovic M., Tsilia V., Rajkovic A., De Cremer K., Van Loco J. Application of LC-MS/MS MRM to Determine Staphylococcal Enterotoxins (SEB and SEA) in Milk. Toxins. 2016;8:118. doi: 10.3390/toxins8040118. PubMed DOI PMC

Gilquin B., Jaquinod M., Louwagie M., Kieffer-Jaquinod S., Kraut A., Ferro M., Becher F., Brun V. A proteomics assay to detect eight CBRN-relevant toxins in food. Proteomics. 2017;17:1600357. doi: 10.1002/pmic.201600357. PubMed DOI

Edwards K.A., Clancy H.A., Baeumner A.J. Bacillus anthracis: Toxicology, epidemiology and current rapid-detection methods. Anal. Bioanal. Chem. 2006;384:73–84. doi: 10.1007/s00216-005-0090-x. PubMed DOI

CDC—Biosafety Home. [(accessed on 4 July 2017)]; Available online: https://www.cdc.gov/biosafety/

Collier R.J. Membrane translocation by anthrax toxin. Mol. Asp. Med. 2009;30:413–422. doi: 10.1016/j.mam.2009.06.003. PubMed DOI PMC

Panchal R.G., Halverson K.M., Ribot W., Lane D., Kenny T., Abshire T.G., Ezzell J.W., Hoover T.A., Powell B., Little S., et al. Purified Bacillus anthracis lethal toxin complex formed in vitro and during infection exhibits functional and biological activity. J. Biol. Chem. 2005;280:10834–10839. doi: 10.1074/jbc.M412210200. PubMed DOI

Zheng J., Peng D., Song X., Ruan L., Mahillon J., Sun M. Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis on the Basis of the csaB Gene Reflects Host Source. Appl. Environ. Microbiol. 2013;79:3860–3863. doi: 10.1128/AEM.00591-13. PubMed DOI PMC

Hurtle W., Bode E., Kulesh D.A., Kaplan R.S., Garrison J., Bridge D., House M., Frye M.S., Loveless B., Norwood D. Detection of the Bacillus anthracis gyrA gene by using a minor groove binder probe. J. Clin. Microbiol. 2004;42:179–185. doi: 10.1128/JCM.42.1.179-185.2004. PubMed DOI PMC

Acharya G., Doorneweerd D.D., Chang C.-L., Henne W.A., Low P.S., Savran C.A. Label-free optical detection of anthrax-causing spores. J. Am. Chem. Soc. 2007;129:732–733. doi: 10.1021/ja0656649. PubMed DOI

Zahavy E., Heleg-Shabtai V., Zafrani Y., Marciano D., Yitzhaki S. Application of fluorescent nanocrystals (q-dots) for the detection of pathogenic bacteria by flow-cytometry. J. Fluoresc. 2010;20:389–399. doi: 10.1007/s10895-009-0546-z. PubMed DOI

Krebs M.D., Mansfield B., Yip P., Cohen S.J., Sonenshein A.L., Hitt B.A., Davis C.E. Novel technology for rapid species-specific detection of Bacillus spores. Biomol. Eng. 2006;23:119–127. doi: 10.1016/j.bioeng.2005.12.003. PubMed DOI

Zhang X., Young M.A., Lyandres O., Van Duyne R.P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2005;127:4484–4489. doi: 10.1021/ja043623b. PubMed DOI

Farrell S., Halsall H.B., Heineman W.R. Immunoassay for B. globigii spores as a model for detecting B. anthracis spores in finished water. Analyst. 2005;130:489–497. doi: 10.1039/b413652g. PubMed DOI

Zahavy E., Fisher M., Bromberg A., Olshevsky U. Detection of frequency resonance energy transfer pair on double-labeled microsphere and Bacillus anthracis spores by flow cytometry. Appl. Environ. Microbiol. 2003;69:2330–2339. doi: 10.1128/AEM.69.4.2330-2339.2003. PubMed DOI PMC

Makino S.I., Cheun H.I., Watarai M., Uchida I., Takeshi K. Detection of anthrax spores from the air by real-time PCR. Lett. Appl. Microbiol. 2001;33:237–240. doi: 10.1046/j.1472-765x.2001.00989.x. PubMed DOI

Dang J.L., Heroux K., Kearney J., Arasteh A., Gostomski M., Emanuel P.A. Bacillus Spore Inactivation Methods Affect Detection Assays. Appl. Environ. Microbiol. 2001;67:3665–3670. doi: 10.1128/AEM.67.8.3665-3670.2001. PubMed DOI PMC

Stopa P.J. The flow cytometry of Bacillus anthracis spores revisited. Cytometry. 2000;41:237–244. doi: 10.1002/1097-0320(20001201)41:4%3C237::AID-CYTO1%3E3.0.CO;2-3. PubMed DOI

Gatto-Menking D.L., Yu H., Bruno J.G., Goode M.T., Miller M., Zulich A.W. Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrochemiluminescence sensor. Biosens. Bioelectron. 1995;10:501–507. doi: 10.1016/0956-5663(95)96925-O. PubMed DOI

Phillips A.P., Martin K.L. Comparison of direct and indirect immunoradiometric assays (IRMA) for Bacillus anthracis spores immobilised on multispot microscope slides. J. Appl. Bacteriol. 1983;55:315–324. doi: 10.1111/j.1365-2672.1983.tb01328.x. PubMed DOI

Tang S., Moayeri M., Chen Z., Harma H., Zhao J., Hu H., Purcell R.H., Leppla S.H., Hewlett I.K. Detection of Anthrax Toxin by an Ultrasensitive Immunoassay Using Europium Nanoparticles. Clin. Vaccine Immunol. CVI. 2009;16:408–413. doi: 10.1128/CVI.00412-08. PubMed DOI PMC

Aguilar Z.P., Sirisena M. Development of automated amperometric detection of antibodies against Bacillus anthracis protective antigen. Anal. Bioanal. Chem. 2007;389:507–515. doi: 10.1007/s00216-007-1448-z. PubMed DOI

Wang S.-H., Zhang J.-B., Zhang Z.-P., Zhou Y.-F., Yang R.-F., Chen J., Guo Y.-C., You F., Zhang X.-E. Construction of single chain variable fragment (ScFv) and BiscFv-alkaline phosphatase fusion protein for detection of Bacillus anthracis. Anal. Chem. 2006;78:997–1004. doi: 10.1021/ac0512352. PubMed DOI

Rucker V.C., Havenstrite K.L., Herr A.E. Antibody microarrays for native toxin detection. Anal. Biochem. 2005;339:262–270. doi: 10.1016/j.ab.2005.01.030. PubMed DOI

Sastry K.S.R., Tuteja U., Batra H.V. Generation and characterization of monoclonal antibodies to protective antigen of Bacillus anthracis. Indian J. Exp. Biol. 2003;41:123–128. PubMed

Bell C.A., Uhl J.R., Hadfield T.L., David J.C., Meyer R.F., Smith T.F., Cockerill F.R. Detection of Bacillus anthracis DNA by LightCycler PCR. J. Clin. Microbiol. 2002;40:2897–2902. doi: 10.1128/JCM.40.8.2897-2902.2002. PubMed DOI PMC

Wilson W.J., Erler A.M., Nasarabadi S.L., Skowronski E.W., Imbro P.M. A multiplexed PCR-coupled liquid bead array for the simultaneous detection of four biothreat agents. Mol. Cell. Probes. 2005;19:137–144. doi: 10.1016/j.mcp.2004.10.005. PubMed DOI

Castro A., Okinaka R.T. Ultrasensitive, direct detection of a specific DNAsequence of Bacillus anthracis in solution. Analyst. 2000;125:9–11. doi: 10.1039/a908067h. PubMed DOI

Boyer A.E., Quinn C.P., Woolfitt A.R., Pirkle J.L., McWilliams L.G., Stamey K.L., Bagarozzi D.A., Hart J.C., Barr J.R. Detection and quantification of anthrax lethal factor in serum by mass spectrometry. Anal. Chem. 2007;79:8463–8470. doi: 10.1021/ac701741s. PubMed DOI

Harrison L.H., Ezzell J.W., Abshire T.G., Kidd S., Kaufmann A.F. Evaluation of serologic tests for diagnosis of anthrax after an outbreak of cutaneous anthrax in Paraguay. J. Infect. Dis. 1989;160:706–710. doi: 10.1093/infdis/160.4.706. PubMed DOI

Quinn C.P., Semenova V.A., Elie C.M., Romero-Steiner S., Greene C., Li H., Stamey K., Steward-Clark E., Schmidt D.S., Mothershed E., et al. Specific, sensitive, and quantitative enzyme-linked immunosorbent assay for human immunoglobulin G antibodies to anthrax toxin protective antigen. Emerg. Infect. Dis. 2002;8:1103–1110. doi: 10.3201/eid0810.020380. PubMed DOI PMC

Kuklenyik Z., Boyer A.E., Lins R., Quinn C.P., Gallegos-Candela M., Woolfitt A., Pirkle J.L., Barr J.R. Comparison of MALDI-TOF-MS and HPLC-ESI-MS/MS for endopeptidase activity-based quantification of Anthrax lethal factor in serum. Anal. Chem. 2011;83:1760–1765. doi: 10.1021/ac1030144. PubMed DOI

Boyer A.E., Gallegos-Candela M., Quinn C.P., Woolfitt A.R., Brumlow J.O., Isbell K., Hoffmaster A.R., Lins R.C., Barr J.R. High-sensitivity MALDI-TOF MS quantification of anthrax lethal toxin for diagnostics and evaluation of medical countermeasures. Anal. Bioanal. Chem. 2015;407:2847–2858. doi: 10.1007/s00216-015-8509-5. PubMed DOI PMC

Klaubert B., Vujtovic-Ockenga N., Wermter R., Schad K., von Meyer L. Determination of botulinum toxins after peptic sample pre-treatment by multidimensional nanoscale liquid chromatography and nano-electrospray ion-trap mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009;877:1084–1092. doi: 10.1016/j.jchromb.2009.02.053. PubMed DOI

Pellizzari R., Rossetto O., Schiavo G., Montecucco C. Tetanus and botulinum neurotoxins: Mechanism of action and therapeutic uses. Philos. Trans. R. Soc. B Biol. Sci. 1999;354:259–268. doi: 10.1098/rstb.1999.0377. PubMed DOI PMC

Hill K.K., Smith T.J., Helma C.H., Ticknor L.O., Foley B.T., Svensson R.T., Brown J.L., Johnson E.A., Smith L.A., Okinaka R.T., et al. Genetic Diversity among Botulinum Neurotoxin-Producing Clostridial Strains. J. Bacteriol. 2007;189:818–832. doi: 10.1128/JB.01180-06. PubMed DOI PMC

Pearce L.B., Borodic G.E., First E.R., Maccallum R.D. Measurement of Botulinum Toxin Activity: Evaluation of the Lethality Assay. Toxicol. Appl. Pharmacol. 1994;128:69–77. doi: 10.1006/taap.1994.1181. PubMed DOI

Takahashi M., Kameyama S., Sakaguchi G. Assay in mice for low levels of Clostridium botulinum toxin. Int. J. Food Microbiol. 1990;11:271–277. doi: 10.1016/0168-1605(90)90020-6. PubMed DOI

Adler M., Scovill J., Parker G., Lebeda F.J., Piotrowski J., Deshpande S.S. Antagonism of botulinum toxin-induced muscle weakness by 3,4-diaminopyridine in rat phrenic nerve-hemidiaphragm preparations. Toxicon. 1995;33:527–537. doi: 10.1016/0041-0101(94)00183-9. PubMed DOI

Deshpande S.S., Sheridan R.E., Adler M. A study of zinc-dependent metalloendopeptidase inhibitors as pharmacological antagonists in botulinum neurotoxin poisoning. Toxicon. 1995;33:551–557. doi: 10.1016/0041-0101(94)00188-E. PubMed DOI

Torii Y., Goto Y., Takahashi M., Ishida S., Harakawa T., Sakamoto T., Kaji R., Kozaki S., Ginnaga A. Quantitative determination of biological activity of botulinum toxins utilizing compound muscle action potentials (CMAP), and comparison of neuromuscular transmission blockage and muscle flaccidity among toxins. Toxicon. 2010;55:407–414. doi: 10.1016/j.toxicon.2009.09.005. PubMed DOI

Lindström M., Keto R., Markkula A., Nevas M., Hielm S., Korkeala H. Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material. Appl. Environ. Microbiol. 2001;67:5694–5699. doi: 10.1128/AEM.67.12.5694-5699.2001. PubMed DOI PMC

Fach P., Gibert M., Griffais R., Guillou J.P., Popoff M.R. PCR and gene probe identification of botulinum neurotoxin A-, B-, E-, F-, and G-producing Clostridium spp. and evaluation in food samples. Appl. Environ. Microbiol. 1995;61:389–392. PubMed PMC

Takeshi K., Fujinaga Y., Inoue K., Nakajima H., Oguma K., Ueno T., Sunagawa H., Ohyama T. Simple method for detection of Clostridium botulinum type A to F neurotoxin genes by ploymerase chain reaction. Microbiol. Immunol. 1996;40:5–11. doi: 10.1111/j.1348-0421.1996.tb03310.x. PubMed DOI

Fach P., Micheau P., Mazuet C., Perelle S., Popoff M. Development of real-time PCR tests for detecting botulinum neurotoxins A, B, E, F producing Clostridium botulinum, Clostridium baratii and Clostridium butyricum. J. Appl. Microbiol. 2009;107:465–473. doi: 10.1111/j.1365-2672.2009.04215.x. PubMed DOI

Kirchner S., Krämer K.M., Schulze M., Pauly D., Jacob D., Gessler F., Nitsche A., Dorner B.G., Dorner M.B. Pentaplexed quantitative real-time PCR assay for the simultaneous detection and quantification of botulinum neurotoxin-producing clostridia in food and clinical samples. Appl. Environ. Microbiol. 2010;76:4387–4395. doi: 10.1128/AEM.02490-09. PubMed DOI PMC

Boroff D.A., Shu-Chen G. Radioimmunoassay for Type A Toxin of Clostridium botulinum. Appl. Microbiol. 1973;25:545–549. PubMed PMC

Ashton A.C., Crowther J.S., Dolly J.O. A sensitive and useful radioimmunoassay for neurotoxin and its haemagglutinin complex from Clostridium botulinum. Toxicon. 1985;23:235–246. doi: 10.1016/0041-0101(85)90146-1. PubMed DOI

Sonnenschein B. Use of the reversed passive hemagglutination in detection of Clostridium botulinum type A, B, and E toxin (author’s transl) Zentralbl. Bakteriol. Orig. A. 1978;240:221–234. PubMed

Johnson H.M., Brenner K., Angelotti R., Hall H.E. Serological Studies of Types A, B, and E Botulinal Toxins by Passive Hemagglutination and Bentonite Flocculation. J. Bacteriol. 1966;91:967–974. PubMed PMC

Mestrandrea L.W. Rapid Detection of Clostridium botulinum Toxin by Capillary Tube Diffusion. Appl. Microbiol. 1974;27:1017–1022. PubMed PMC

Kozaki S., Dufrenne J., Hagenaars A.M., Notermans S. Enzyme linked immunosorbent assay (ELISA) for detection of Clostridium botulinum type B toxin. Jpn. J. Med. Sci. Biol. 1979;32:199–205. doi: 10.7883/yoken1952.32.199. PubMed DOI

Notermans S., Dufrenne J., Kozaki S. Enzyme-linked immunosorbent assay for detection of Clostridium botulinum type E toxin. Appl. Environ. Microbiol. 1979;37:1173–1175. doi: 10.7883/yoken1952.31.81. PubMed DOI PMC

Ferreira J.L. Comparison of amplified ELISA and mouse bioassay procedures for determination of botulinal toxins A, B, E, and F. J. AOAC Int. 2001;84:85–88. PubMed

Ferreira J.L., Eliasberg S.J., Harrison M.A., Edmonds P. Detection of preformed type A botulinal toxin in hash brown potatoes by using the mouse bioasssay and a modified ELISA test. J. AOAC Int. 2001;84:1460–1464. PubMed

Ferreira J.L., Maslanka S., Johnson E., Goodnough M. Detection of botulinal neurotoxins A, B, E, and F by amplified enzyme-linked immunosorbent assay: Collaborative study. J. AOAC Int. 2003;86:314–331. PubMed

Ferreira J.L., Eliasberg S.J., Edmonds P., Harrison M.A. Comparison of the mouse bioassay and enzyme-linked immunosorbent assay procedures for the detection of type A botulinal toxin in food. J. Food Prot. 2004;67:203–206. doi: 10.4315/0362-028X-67.1.203. PubMed DOI

Dezfulian M., Bartlett J.G. Selective isolation and rapid identification of Clostridium botulinum types A and B by toxin detection. J. Clin. Microbiol. 1985;21:231–233. PubMed PMC

Sharma S.K., Ferreira J.L., Eblen B.S., Whiting R.C. Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl. Environ. Microbiol. 2006;72:1231–1238. doi: 10.1128/AEM.72.2.1231-1238.2006. PubMed DOI PMC

Poli M.A., Rivera V.R., Neal D. Development of sensitive colorimetric capture ELISAs for Clostridium botulinum neurotoxin serotypes E and F. Toxicon. 2002;40:797–802. doi: 10.1016/S0041-0101(01)00288-4. PubMed DOI

Dezfulian M., Hatheway C.L., Yolken R.H., Bartlett J.G. Enzyme-linked immunosorbent assay for detection of Clostridium botulinum type A and type B toxins in stool samples of infants with botulism. J. Clin. Microbiol. 1984;20:379–383. PubMed PMC

Smith T.J., Lou J., Geren I.N., Forsyth C.M., Tsai R., LaPorte S.L., Tepp W.H., Bradshaw M., Johnson E.A., Smith L.A., et al. Sequence Variation within Botulinum Neurotoxin Serotypes Impacts Antibody Binding and Neutralization. Infect. Immun. 2005;73:5450–5457. doi: 10.1128/IAI.73.9.5450-5457.2005. PubMed DOI PMC

Stanker L.H., Merrill P., Scotcher M.C., Cheng L.W. Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich ELISA. J. Immunol. Methods. 2008;336:1–8. doi: 10.1016/j.jim.2008.03.003. PubMed DOI

Guo J., Xu C., Li X., Chen S. A Simple, Rapid and Sensitive FRET Assay for Botulinum Neurotoxin Serotype B Detection. PLoS ONE. 2014;9:e114124. doi: 10.1371/journal.pone.0114124. PubMed DOI PMC

Poras H., Ouimet T., Orng S.-V., Fournié-Zaluski M.-C., Popoff M.R., Roques B.P. Detection and Quantification of Botulinum Neurotoxin Type A by a Novel Rapid In Vitro Fluorimetric Assay. Appl. Environ. Microbiol. 2009;75:4382–4390. doi: 10.1128/AEM.00091-09. PubMed DOI PMC

Rasooly R., Stanker L.H., Carter J.M., Do P.M., Cheng L.W., He X., Brandon D.L. Detection of botulinum neurotoxin-A activity in food by peptide cleavage assay. Int. J. Food Microbiol. 2008;126:135–139. doi: 10.1016/j.ijfoodmicro.2008.05.012. PubMed DOI

Hallis B., James B.A., Shone C.C. Development of novel assays for botulinum type A and B neurotoxins based on their endopeptidase activities. J. Clin. Microbiol. 1996;34:1934–1938. PubMed PMC

Barr J.R., Moura H., Boyer A.E., Woolfitt A.R., Kalb S.R., Pavlopoulos A., McWilliams L.G., Schmidt J.G., Martinez R.A., Ashley D.L. Botulinum Neurotoxin Detection and Differentiation by Mass Spectrometry. Emerg. Infect. Dis. 2005;11:1578–1583. doi: 10.3201/eid1110.041279. PubMed DOI PMC

Kalb S.R., Krilich J.C., Dykes J.K., Lúquez C., Maslanka S.E., Barr J.R. Detection of Botulinum Toxins A, B, E, and F in Foods by Endopep-MS. J. Agric. Food Chem. 2015;63:1133–1141. doi: 10.1021/jf505482b. PubMed DOI PMC

Rosen O., Feldberg L., Gura S., Brosh-Nissimov T., Guri A., Zimhony O., Shapiro E., Beth-Din A., Stein D., Ozeri E., et al. Early, Real-Time Medical Diagnosis of Botulism by Endopeptidase-Mass Spectrometry. Clin. Infect. Dis. 2015;61:e58–e61. doi: 10.1093/cid/civ861. PubMed DOI

Van Baar B.L.M., Hulst A.G., de Jong A.L., Wils E.R.J. Characterisation of botulinum toxins type A and B, by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. J. Chromatogr. A. 2002;970:95–115. doi: 10.1016/S0021-9673(02)00508-3. PubMed DOI

Van Baar B.L.M., Hulst A.G., de Jong A.L., Wils E.R.J. Characterisation of botulinum toxins type C, D, E, and F by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. J. Chromatogr. A. 2004;1035:97–114. doi: 10.1016/j.chroma.2004.02.047. PubMed DOI

Hines H.B., Lebeda F., Hale M., Brueggemann E.E. Characterization of Botulinum Progenitor Toxins by Mass Spectrometry. Appl. Environ. Microbiol. 2005;71:4478–4486. doi: 10.1128/AEM.71.8.4478-4486.2005. PubMed DOI PMC

Rasetti-Escargueil C., Liu Y., Rigsby P., Jones R.G.A., Sesardic D. Phrenic nerve-hemidiaphragm as a highly sensitive replacement assay for determination of functional botulinum toxin antibodies. Toxicon. 2011;57:1008–1016. doi: 10.1016/j.toxicon.2011.04.003. PubMed DOI

Bigalke H., Rummel A. Botulinum Neurotoxins: Qualitative and Quantitative Analysis Using the Mouse Phrenic Nerve Hemidiaphragm Assay (MPN) Toxins. 2015;7:4895–4905. doi: 10.3390/toxins7124855. PubMed DOI PMC

Ferreira M.R.A., Moreira G.M.S.G., da Cunha C.E.P., Mendonça M., Salvarani F.M., Moreira Â.N., Conceição F.R. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines. Toxins. 2016;8:340. doi: 10.3390/toxins8110340. PubMed DOI PMC

Petit L., Gibert M., Popoff M.R. Clostridium perfringens: Toxinotype and genotype. Trends Microbiol. 1999;7:104–110. doi: 10.1016/S0966-842X(98)01430-9. PubMed DOI

Sakurai J., Nagahama M., Oda M. Clostridium perfringens alpha-toxin: Characterization and mode of action. J. Biochem. 2004;136:569–574. doi: 10.1093/jb/mvh161. PubMed DOI

Steinthorsdottir V., Halldórsson H., Andrésson O.S. Clostridium perfringens beta-toxin forms multimeric transmembrane pores in human endothelial cells. Microb. Pathog. 2000;28:45–50. doi: 10.1006/mpat.1999.0323. PubMed DOI

Stiles B.G., Barth G., Barth H., Popoff M.R. Clostridium perfringens Epsilon Toxin: A Malevolent Molecule for Animals and Man? Toxins. 2013;5:2138–2160. doi: 10.3390/toxins5112138. PubMed DOI PMC

Sakurai J., Nagahama M., Oda M., Tsuge H., Kobayashi K. Clostridium perfringens Iota-Toxin: Structure and Function. Toxins. 2009;1:208–228. doi: 10.3390/toxins1020208. PubMed DOI PMC

Farzan A., Kircanski J., DeLay J., Soltes G., Songer J.G., Friendship R., Prescott J.F. An investigation into the association between cpb2-encoding Clostridium perfringens type A and diarrhea in neonatal piglets. Can. J. Vet. Res. 2013;77:45–53. PubMed PMC

Hamad M.A., Habra N., Allouz A.K. Biotyping of Clostridium perfringens strains isolated from enterotoxemia cases in sheep using ELISA technique. Iraqi J. Vet. Sci. 2010;24:17–22.

Tansuphasiri U. Development of duplex PCR assay for rapid detection of enterotoxigenic isolates of Clostridium perfringens. Southeast Asian J. Trop. Med. Public Health. 2001;32:105–113. PubMed

Kull S., Pauly D., Störmann B., Kirchner S., Stämmler M., Dorner M.B., Lasch P., Naumann D., Dorner B.G. Multiplex detection of microbial and plant toxins by immunoaffinity enrichment and matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2010;82:2916–2924. doi: 10.1021/ac902909r. PubMed DOI

Alam S.I., Kumar B., Kamboj D.V. Multiplex detection of protein toxins using MALDI-TOF-TOF tandem mass spectrometry: Application in unambiguous toxin detection from bioaerosol. Anal. Chem. 2012;84:10500–10507. doi: 10.1021/ac3028678. PubMed DOI

Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015;6:791. doi: 10.3389/fmicb.2015.00791. PubMed DOI PMC

Brodzik C., Augustynowicz E., Korzeniowska-Kowal A., Lutyhska A. Application of the MALDI-TOF for identification of Clostridium perfringens strains. Medycyna Doswiadczalna I Mikrobiologia. 2016;68:13–21. PubMed

Krt B. Development and evaluation of various enzyme-linked immunosorbent assays for the detection of Clostridium perfringens beta anti-toxins. FEMS Immunol. Med. Microbiol. 1999;24:293–297. PubMed

Baums C.G., Schotte U., Amtsberg G., Goethe R. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet. Microbiol. 2004;100:11–16. doi: 10.1016/S0378-1135(03)00126-3. PubMed DOI

Albini S., Brodard I., Jaussi A., Wollschlaeger N., Frey J., Miserez R., Abril C. Real-time multiplex PCR assays for reliable detection of Clostridium perfringens toxin genes in animal isolates. Vet. Microbiol. 2008;127:179–185. doi: 10.1016/j.vetmic.2007.07.024. PubMed DOI

Hernández M., López-Enríquez L., Rodríguez-Lázaro D. Quantitative Detection of Clostridium perfringens by Real-Time PCR in Raw Milk. Food Anal. Methods. 2017;10:1139–1147. doi: 10.1007/s12161-017-0821-6. DOI

McClane B.A., Strouse R.J. Rapid detection of Clostridium perfringens type A enterotoxin by enzyme-linked immunosorbent assay. J. Clin. Microbiol. 1984;19:112–115. PubMed PMC

Nagahama M., Kobayashi K., Ochi S., Sakurai J. Enzyme-linked immunosorbent assay for rapid detection of toxins from Clostridium perfringens. FEMS Microbiol. Lett. 1991;84:41–44. doi: 10.1111/j.1574-6968.1991.tb04566.x. PubMed DOI

Everley R.A., Mott T.M., Toney D.M., Croley T.R. Characterization of Clostridium species utilizing liquid chromatography/mass spectrometry of intact proteins. J. Microbiol. Methods. 2009;77:152–158. doi: 10.1016/j.mimet.2009.01.013. PubMed DOI

Naylor R.D., Martin P.K., Sharpe R.T. Detection of Clostridium perfringens epsilon toxin by ELISA. Res. Vet. Sci. 1987;42:255–256. PubMed

Layana J.E., Fernandez Miyakawa M.E., Uzal F.A. Evaluation of different fluids for detection of Clostridium perfringens type D epsilon toxin in sheep with experimental enterotoxemia. Anaerobe. 2006;12:204–206. doi: 10.1016/j.anaerobe.2006.05.001. PubMed DOI

Uzal F.A., Plumb J.J., Blackall L.L., Kelly W.R. PCR detection of Clostridium perfringens producing different toxins in faeces of goats. Lett. Appl. Microbiol. 1997;25:339–344. doi: 10.1046/j.1472-765X.1997.00247.x. PubMed DOI

Seyer A., Fenaille F., Féraudet-Tarisse C., Volland H., Popoff M.R., Tabet J.-C., Junot C., Becher F. Rapid quantification of clostridial epsilon toxin in complex food and biological matrixes by immunopurification and ultraperformance liquid chromatography-tandem mass spectrometry. Anal. Chem. 2012;84:5103–5109. doi: 10.1021/ac300880x. PubMed DOI

Payne D.W., Williamson E.D., Havard H., Modi N., Brown J. Evaluation of a new cytotoxicity assay for Clostridium perfringens type D epsilon toxin. FEMS Microbiol. Lett. 1994;116:161–167. doi: 10.1111/j.1574-6968.1994.tb06695.x. PubMed DOI

Fredriksson S.-Å., Artursson E., Bergström T., Östin A., Nilsson C., Åstot C. Identification of RIP-II toxins by affinity enrichment, enzymatic digestion and LC-MS. Anal. Chem. 2015;87:967–974. doi: 10.1021/ac5032918. PubMed DOI

Hale M.L. Microtiter-based assay for evaluating the biological activity of ribosome-inactivating proteins. Pharmacol. Toxicol. 2001;88:255–260. doi: 10.1111/j.1600-0773.2001.880506.x. PubMed DOI

Becher F., Duriez E., Volland H., Tabet J.C., Ezan E. Detection of Functional Ricin by Immunoaffinity and Liquid Chromatography–Tandem Mass Spectrometry. Anal. Chem. 2007;79:659–665. doi: 10.1021/ac061498b. PubMed DOI

Pauly D., Worbs S., Kirchner S., Shatohina O., Dorner M.B., Dorner B.G. Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices. PLoS ONE. 2012;7:e35360. doi: 10.1371/journal.pone.0035360. PubMed DOI PMC

Poli M.A., Rivera V.R., Hewetson J.F., Merrill G.A. Detection of ricin by colorimetric and chemiluminescence ELISA. Toxicon. 1994;32:1371–1377. doi: 10.1016/0041-0101(94)90409-X. PubMed DOI

Cook D.L., David J., Griffiths G.D. Retrospective identification of ricin in animal tissues following administration by pulmonary and oral routes. Toxicology. 2006;223:61–70. doi: 10.1016/j.tox.2006.03.010. PubMed DOI

Worbs S., Köhler K., Pauly D., Avondet M.-A., Schaer M., Dorner M.B., Dorner B.G. Ricinus communis Intoxications in Human and Veterinary Medicine-A Summary of Real Cases. Toxins. 2011;3:1332–1372. doi: 10.3390/toxins3101332. PubMed DOI PMC

Bozza W.P., Tolleson W.H., Rivera Rosado L.A., Zhang B. Ricin detection: Tracking active toxin. Biotechnol. Adv. 2015;33:117–123. doi: 10.1016/j.biotechadv.2014.11.012. PubMed DOI

Assiri A.S. Ricin poisoning causing death after ingestion of herbal medicine. Ann. Saudi Med. 2012;32:315–317. doi: 10.5144/0256-4947.2012.315. PubMed DOI PMC

Beyer N.H., Kogutowska E., Hansen J.J., Engelhart Illigen K.E., Heegaard N.H.H. A mouse model for ricin poisoning and for evaluating protective effects of antiricin antibodies. Clin. Toxicol. 2009;47:219–225. doi: 10.1080/15563650802716521. PubMed DOI

Wang D., Baudys J., Barr J.R., Kalb S.R. Improved Sensitivity for the Qualitative and Quantitative Analysis of Active Ricin by MALDI-TOF Mass Spectrometry. Anal. Chem. 2016;88:6867–6872. doi: 10.1021/acs.analchem.6b01486. PubMed DOI PMC

Sturm M.B., Schramm V.L. Detecting Ricin: Sensitive Luminescent Assay for Ricin A-Chain Ribosome Depurination Kinetics. Anal. Chem. 2009;81:2847–2853. doi: 10.1021/ac8026433. PubMed DOI PMC

Kalb S.R., Barr J.R. Mass spectrometric detection of ricin and its activity in food and clinical samples. Anal. Chem. 2009;81:2037–2042. doi: 10.1021/ac802769s. PubMed DOI

Griffiths G.D. Understanding Ricin from a Defensive Viewpoint. Toxins. 2011;3:1373–1392. doi: 10.3390/toxins3111373. PubMed DOI PMC

Roberts L.M., Lamb F.I., Pappin D.J., Lord J.M. The primary sequence of Ricinus communis agglutinin. Comparison with ricin. J. Biol. Chem. 1985;260:15682–15686. PubMed

Kumar O., Pradhan S., Sehgal P., Singh Y., Vijayaraghavan R. Denatured ricin can be detected as native ricin by immunological methods, but nontoxic in vivo. J. Forensic Sci. 2010;55:801–807. doi: 10.1111/j.1556-4029.2009.01290.x. PubMed DOI

Mouser P., Filigenzi M.S., Puschner B., Johnson V., Miller M.A., Hooser S.B. Fatal ricin toxicosis in a puppy confirmed by liquid chromatography/mass spectrometry when using ricinine as a marker. J. Vet. Diagn. Investig. 2007;19:216–220. doi: 10.1177/104063870701900217. PubMed DOI

Hines H.B., Brueggemann E.E., Hale M.L. High-performance liquid chromatography-mass selective detection assay for adenine released from a synthetic RNA substrate by ricin A chain. Anal. Biochem. 2004;330:119–122. doi: 10.1016/j.ab.2004.03.046. PubMed DOI

Bevilacqua V.L.H., Nilles J.M., Rice J.S., Connell T.R., Schenning A.M., Reilly L.M., Durst H.D. Ricin activity assay by direct analysis in real time mass spectrometry detection of adenine release. Anal. Chem. 2010;82:798–800. doi: 10.1021/ac9025972. PubMed DOI

McGrath S.C., Schieltz D.M., McWilliams L.G., Pirkle J.L., Barr J.R. Detection and Quantification of Ricin in Beverages Using Isotope Dilution Tandem Mass Spectrometry. Anal. Chem. 2011;83:2897–2905. doi: 10.1021/ac102571f. PubMed DOI

Schieltz D.M., McGrath S.C., McWilliams L.G., Rees J., Bowen M.D., Kools J.J., Dauphin L.A., Gomez-Saladin E., Newton B.N., Stang H.L., et al. Analysis of active ricin and castor bean proteins in a ricin preparation, castor bean extract, and surface swabs from a public health investigation. Forensic Sci. Int. 2011;209:70–79. doi: 10.1016/j.forsciint.2010.12.013. PubMed DOI

Felder E., Mossbrugger I., Lange M., Wölfel R. Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR) Toxins. 2012;4:633–642. doi: 10.3390/toxins4090633. PubMed DOI PMC

Pauly D., Kirchner S., Stoermann B., Schreiber T., Kaulfuss S., Schade R., Zbinden R., Avondet M.-A., Dorner M.B., Dorner B.G. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst. 2009;134:2028–2039. doi: 10.1039/b911525k. PubMed DOI

Garber E.A.E., Venkateswaran K.V., O’Brien T.W. Simultaneous multiplex detection and confirmation of the proteinaceous toxins abrin, ricin, botulinum toxins, and Staphylococcus enterotoxins A, B, and C in food. J. Agric. Food Chem. 2010;58:6600–6607. doi: 10.1021/jf100789n. PubMed DOI

Hegde R., Maiti T.K., Podder S.K. Purification and characterization of three toxins and two agglutinins from Abrus precatorius seed by using lactamyl-Sepharose affinity chromatography. Anal. Biochem. 1991;194:101–109. doi: 10.1016/0003-2697(91)90156-N. PubMed DOI

Hung C.H., Lee M.C., Lee T.C., Lin J.Y. Primary structure of three distinct isoabrins determined by cDNA sequencing. Conservation and significance. J. Mol. Biol. 1993;229:263–267. doi: 10.1006/jmbi.1993.1029. PubMed DOI

Hegde R., Podder S.K. A- and B-subunit variant distribution in the holoprotein variants of protein toxin abrin: Variants of abrins I and III have constant toxic A subunits and variant lectin B subunits. Arch. Biochem. Biophys. 1997;344:75–84. doi: 10.1006/abbi.1997.0177. PubMed DOI

Liu C.L., Tsai C.C., Lin S.C., Wang L.I., Hsu C.I., Hwang M.J., Lin J.Y. Primary structure and function analysis of the Abrus precatorius agglutinin A chain by site-directed mutagenesis. Pro(199) of amphiphilic alpha-helix H impairs protein synthesis inhibitory activity. J. Biol. Chem. 2000;275:1897–1901. doi: 10.1074/jbc.275.3.1897. PubMed DOI

Bagaria A., Surendranath K., Ramagopal U.A., Ramakumar S., Karande A.A. Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin I in relation to abrin. J. Biol. Chem. 2006;281:34465–34474. doi: 10.1074/jbc.M601777200. PubMed DOI

Garber E.A.E. Toxicity and detection of ricin and abrin in beverages. J. Food Prot. 2008;71:1875–1883. doi: 10.4315/0362-028X-71.9.1875. PubMed DOI

Garber E.A.E., Walker J.L., O’Brien T.W. Detection of abrin in food using enzyme-linked immunosorbent assay and electrochemiluminescence technologies. J. Food Prot. 2008;71:1868–1874. doi: 10.4315/0362-028X-71.9.1868. PubMed DOI

Zhou Y., Tian X.-L., Li Y.-S., Pan F.-G., Zhang Y.-Y., Zhang J.-H., Wang X.-R., Ren H.-L., Lu S.-Y., Li Z.-H., et al. Development of a monoclonal antibody-based sandwich-type enzyme-linked immunosorbent assay (ELISA) for detection of abrin in food samples. Food Chem. 2012;135:2661–2665. doi: 10.1016/j.foodchem.2012.07.047. PubMed DOI

Gao S., Nie C., Wang J., Wang J., Kang L., Zhou Y., Wang J.-L. Colloidal gold-based immunochromatographic test strip for rapid detection of abrin in food samples. J. Food Prot. 2012;75:112–117. doi: 10.4315/0362-028X.JFP-11-252. PubMed DOI

Yang W., Li X., Liu G., Zhang B., Zhang Y., Kong T., Tang J., Li D., Wang Z. A colloidal gold probe-based silver enhancement immunochromatographic assay for the rapid detection of abrin-a. Biosens. Bioelectron. 2011;26:3710–3713. doi: 10.1016/j.bios.2011.02.016. PubMed DOI

Ramage J.G., Prentice K.W., Morse S.A., Carter A.J., Datta S., Drumgoole R., Gargis S.R., Griffin-Thomas L., Hastings R., Masri H.P., et al. Comprehensive laboratory evaluation of a specific lateral flow assay for the presumptive identification of abrin in suspicious white powders and environmental samples. Biosecur. Bioterror. Biodef. Strategy Pract. Sci. 2014;12:49–62. doi: 10.1089/bsp.2013.0080. PubMed DOI

Owens J., Koester C. Quantitation of Abrine, an Indole Alkaloid Marker of the Toxic Glycoproteins Abrin, by Liquid Chromatography/Tandem Mass Spectrometry When Spiked into Various Beverages. J. Agric. Food Chem. 2008;56:11139–11143. doi: 10.1021/jf802471y. PubMed DOI

Olsnes S., Stirpe F., Sandvig K., Pihl A. Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe) J. Biol. Chem. 1982;257:13263–13270. PubMed

Rubina A.Y., Dyukova V.I., Dementieva E.I., Stomakhin A.A., Nesmeyanov V.A., Grishin E.V., Zasedatelev A.S. Quantitative immunoassay of biotoxins on hydrogel-based protein microchips. Anal. Biochem. 2005;340:317–329. doi: 10.1016/j.ab.2005.01.042. PubMed DOI

Jäggy C., Musielski H., Urech K., Schaller G. Quantitative determination of lectins in mistletoe preparations. Arzneimittel-Forschung. 1995;45:905–909. PubMed

Layer R.T., McIntosh J.M. Conotoxins: Therapeutic Potential and Application. Mar. Drugs. 2006;4:119–142. doi: 10.3390/md403119. DOI

Cestèle S., Catterall W.A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie. 2000;82:883–892. doi: 10.1016/S0300-9084(00)01174-3. PubMed DOI

Clark R.J., Jensen J., Nevin S.T., Callaghan B.P., Adams D.J., Craik D.J. The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew. Chem. Int. Ed. Engl. 2010;49:6545–6548. doi: 10.1002/anie.201000620. PubMed DOI

Olivera B.M., Imperial J.S., Concepcion G.P. Snail Peptides. In: Kastin A.J., editor. Handbook of Biologically Active Peptides. 2nd ed. Academic Press; Boston, MA, USA: 2013. pp. 437–450. Chapter 61.

Ashcom J.D., Stiles B.G. Characterization of alpha-conotoxin interactions with the nicotinic acetylcholine receptor and monoclonal antibodies. Pt 1Biochem. J. 1997;328:245–250. doi: 10.1042/bj3280245. PubMed DOI PMC

Loughnan M.L., Nicke A., Jones A., Adams D.J., Alewood P.F., Lewis R.J. Chemical and functional identification and characterization of novel sulfated alpha-conotoxins from the cone snail Conus anemone. J. Med. Chem. 2004;47:1234–1241. doi: 10.1021/jm031010o. PubMed DOI

Prasarnpun S., Walsh J., Awad S.S., Harris J.B. Envenoming bites by kraits: The biological basis of treatment-resistant neuromuscular paralysis. Brain. 2005;128:2987–2996. doi: 10.1093/brain/awh642. PubMed DOI

Shan L.-L., Gao J.-F., Zhang Y.-X., Shen S.-S., He Y., Wang J., Ma X.-M., Ji X. Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J. Proteom. 2016;138:83–94. doi: 10.1016/j.jprot.2016.02.028. PubMed DOI

Chang L.S., Yang C.C. Separation and Characterization of the A Chain and B Chain in β1-Bungarotoxin from Bungarus Multicinctus (Taiwan Banded Krait) Venom. J. Protein Chem. 1993;12:469–475. doi: 10.1007/BF01025047. PubMed DOI

Selvanayagam Z.E., Gopalakrishnakone P. Tests for detection of snake venoms, toxins and venom antibodies: Review on recent trends (1987–1997) Toxicon. 1999;37:565–586. doi: 10.1016/S0041-0101(98)00203-7. PubMed DOI

Dong L.V., Selvanayagam Z.E., Gopalakrishnakone P., Eng K.H. A new avidin–biotin optical immunoassay for the detection of beta-bungarotoxin and application in diagnosis of experimental snake envenomation. J. Immunol. Methods. 2002;260:125–136. doi: 10.1016/S0022-1759(01)00527-0. PubMed DOI

Selvanayagam Z.E., Neuzil P., Gopalakrishnakone P., Sridhar U., Singh M., Ho L.C. An ISFET-based immunosensor for the detection of β-Bungarotoxin. Biosens. Bioelectron. 2002;17:821–826. doi: 10.1016/S0956-5663(02)00075-1. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...