Targeted Mass Spectrometry Analysis of Clostridium perfringens Toxins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30909561
PubMed Central
PMC6468457
DOI
10.3390/toxins11030177
PII: toxins11030177
Knihovny.cz E-zdroje
- Klíčová slova
- Clostridium perfringens, PRM, epsilon toxin, mass spectrometry, protein toxin,
- MeSH
- bakteriální proteiny analýza genetika MeSH
- bakteriální toxiny analýza genetika MeSH
- chromatografie kapalinová MeSH
- Clostridium perfringens * genetika růst a vývoj metabolismus MeSH
- Escherichia coli genetika MeSH
- peptidy analýza genetika MeSH
- proteomika MeSH
- rekombinantní proteiny analýza MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- bakteriální toxiny MeSH
- peptidy MeSH
- rekombinantní proteiny MeSH
Targeted proteomics recently proved to be a technique for the detection and absolute quantification of proteins not easily accessible to classical bottom-up approaches. Due to this, it has been considered as a high fidelity tool to detect potential warfare agents in wide spread kinds of biological and environmental matrices. Clostridium perfringens toxins are considered to be potential biological weapons, especially the epsilon toxin which belongs to a group of the most powerful bacterial toxins. Here, the development of a target mass spectrometry method for the detection of C. perfringens protein toxins (alpha, beta, beta2, epsilon, iota) is described. A high-resolution mass spectrometer with a quadrupole-Orbitrap system operating in target acquisition mode (parallel reaction monitoring) was utilized. Because of the lack of commercial protein toxin standards recombinant toxins were prepared within Escherichia coli. The analysis was performed using proteotypic peptides as the target compounds together with their isotopically labeled synthetic analogues as internal standards. Calibration curves were calculated for each peptide in concentrations ranging from 0.635 to 1101 fmol/μL. Limits of detection and quantification were determined for each peptide in blank matrices.
Zobrazit více v PubMed
Songer J.G. Clostridial enteric diseases of domestic animals. Clin. Microbiol. Rev. 1996;9:216–234. doi: 10.1128/CMR.9.2.216. PubMed DOI PMC
Rood J.I., Adams V., Lacey J., Lyras D., McClane B.A., Melville S.B., Moore R.J., Popoff M.R., Sarker M.R., Songer J.G., et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. 2018;53:5–10. doi: 10.1016/j.anaerobe.2018.04.011. PubMed DOI PMC
Ferreira M.R.A., Moreira G.M.S.G., da Cunha C.E.P., Mendonça M., Salvarani F.M., Moreira Â.N., Conceição F.R. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines. Toxins. 2016;8:340. doi: 10.3390/toxins8110340. PubMed DOI PMC
Revitt-Mills S.A., Rood J.I., Adams V. Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiol. Aust. 2015;36:114–117. doi: 10.1071/MA15039. DOI
Alves G.G., Machado de Ávila R.A., Chávez-Olórtegui C.D., Lobato F.C.F. Clostridium perfringens epsilon toxin: The third most potent bacterial toxin known. Anaerobe. 2014;30:102–107. doi: 10.1016/j.anaerobe.2014.08.016. PubMed DOI
Federal Select Agent Program—Select Agents and Toxins List. [(accessed on 7 May 2018)]; Available online: https://www.selectagents.gov/selectagentsandtoxinslist.html.
ANSM: Agence nationale de sécurité du médicament et des produits de santé. [(accessed on 7 May 2018)]; Available online: http://ansm.sante.fr/searchengine/general_search/(offset)/40?SearchText=SYSTEM+12&rubrique=+-+Information+in+English.
Duracova M., Klimentova J., Fucikova A., Dresler J. Proteomic Methods of Detection and Quantification of Protein Toxins. Toxins. 2018;10:99. doi: 10.3390/toxins10030099. PubMed DOI PMC
McClane B.A., Strouse R.J. Rapid detection of Clostridium perfringens type A enterotoxin by enzyme-linked immunosorbent assay. J. Clin. Microbiol. 1984;19:112–115. PubMed PMC
Nagahama M., Kobayashi K., Ochi S., Sakurai J. Enzyme-linked immunosorbent assay for rapid detection of toxins from Clostridium perfringens. FEMS Microbiol. Lett. 1991;68:41–44. doi: 10.1111/j.1574-6968.1991.tb04566.x. PubMed DOI
Baums C.G., Schotte U., Amtsberg G., Goethe R. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet. Microbiol. 2004;100:11–16. doi: 10.1016/S0378-1135(03)00126-3. PubMed DOI
Albini S., Brodard I., Jaussi A., Wollschlaeger N., Frey J., Miserez R., Abril C. Real-time multiplex PCR assays for reliable detection of Clostridium perfringens toxin genes in animal isolates. Vet. Microbiol. 2008;127:179–185. doi: 10.1016/j.vetmic.2007.07.024. PubMed DOI
Hernández M., López-Enríquez L., Rodríguez-Lázaro D. Quantitative Detection of Clostridium perfringens by Real-Time PCR in Raw Milk. Food Anal. Methods. 2017;10:1139–1147. doi: 10.1007/s12161-017-0821-6. DOI
Alam S.I., Uppal A., Gupta P., Kamboj D.V. Multiple-reaction monitoring for multiplex detection of three bacterial toxins using liquid chromatography-tandem mass spectrometry. Lett. Appl. Microbiol. 2017;64:217–224. doi: 10.1111/lam.12706. PubMed DOI
Gilquin B., Jaquinod M., Louwagie M., Kieffer-Jaquinod S., Kraut A., Ferro M., Becher F., Brun V. A proteomics assay to detect eight CBRN-relevant toxins in food. Proteomics. 2017;17:1600357. doi: 10.1002/pmic.201600357. PubMed DOI
Rajoria S., Kumar R.B., Gupta P., Alam S.I. Postexposure Recovery and Analysis of Biological Agent in a Simulated Biothreat Scenario Using Tandem Mass Spectrometry. Anal. Chem. 2017;89:4062–4070. doi: 10.1021/acs.analchem.6b04862. PubMed DOI
Marx V. Targeted proteomics. [(accessed on 16 July 2018)]; Available online: https://www.nature.com/articles/nmeth.2285.
Saleh M.A., Ordal Z.J. Studies on Growth and Toxin Production of Clostridium botulinum in a Precooked Frozen Food. II. Inhibition by Lactic Acid Bacteria. Food Res. 1955;20:340–350. doi: 10.1111/j.1365-2621.1955.tb16847.x. DOI
Starr S.E., Killgore G.E., Dowell V.R. Comparison of Schaedler agar and trypticase soy-yeast extract agar for the cultivation of anaerobic bacteria. Appl. Microbiol. 1971;22:655–658. PubMed PMC
Park Y., Mikolajcik E.M. Effect of Temperature on Growth and Alpha Toxin Production by Clostridium perfringens. J. Food Prot. 1979;42:848–851. doi: 10.4315/0362-028X-42.11.848. PubMed DOI
Gibert M., Jolivet-Renaud C., Popoff M.R. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene. 1997;203:65–73. doi: 10.1016/S0378-1119(97)00493-9. PubMed DOI
Fisher D.J., Miyamoto K., Harrison B., Akimoto S., Sarker M.R., McClane B.A. Association of beta2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Mol. Microbiol. 2005;56:747–762. doi: 10.1111/j.1365-2958.2005.04573.x. PubMed DOI
Mani D.R., Abbatiello S.E., Carr S.A. Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics. BMC Bioinformatics. 2012;13(Suppl. 16):S9. doi: 10.1186/1471-2105-13-S16-S9. PubMed DOI PMC
Currie L.A. Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal. Chem. 1968;40:586–593. doi: 10.1021/ac60259a007. DOI
Schwarz K., Fiedler T., Fischer R.-J., Bahl H. A Standard Operating Procedure (SOP) for the preparation of intra- and extracellular proteins of Clostridium acetobutylicum for proteome analysis. J. Microbiol. Methods. 2007;68:396–402. doi: 10.1016/j.mimet.2006.09.018. PubMed DOI
Zhao Y., Kang L., Gao S., Zhou Y., Su L., Xin W., Su Y., Wang J. Expression and purification of functional Clostridium perfringens alpha and epsilon toxins in Escherichia coli. Protein Expr. Purif. 2011;77:207–213. doi: 10.1016/j.pep.2011.02.001. PubMed DOI
Maniatis T., Fritsch E.F., Sambrook J. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA: 1982.
Perelle S., Gibert M., Boquet P., Popoff M.R. Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect. Immun. 1993;61:5147–5156. PubMed PMC
Lebrun M., Filée P., Galleni M., Mainil J.G., Linden A., Taminiau B. Purification of the recombinant beta2 toxin (CPB2) from an enterotoxaemic bovine Clostridium perfringens strain and production of a specific immune serum. Protein Expr. Purif. 2007;55:119–131. doi: 10.1016/j.pep.2007.04.021. PubMed DOI
Milach A., de los Santos J.R.G., Turnes C.G., Moreira A.N., de Assis R.A., Salvarani F.M., Lobato F.C.F., Conceição F.R. Production and characterization of Clostridium perfringens recombinant β toxoid. Anaerobe. 2012;18:363–365. doi: 10.1016/j.anaerobe.2012.01.004. PubMed DOI
Gopal G.J., Kumar A. Strategies for the production of recombinant protein in Escherichia coli. Protein J. 2013;32:419–425. doi: 10.1007/s10930-013-9502-5. PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Recent Advances in the Detection of Food Toxins Using Mass Spectrometry