Targeted Mass Spectrometry Analysis of Clostridium perfringens Toxins

. 2019 Mar 23 ; 11 (3) : . [epub] 20190323

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30909561

Targeted proteomics recently proved to be a technique for the detection and absolute quantification of proteins not easily accessible to classical bottom-up approaches. Due to this, it has been considered as a high fidelity tool to detect potential warfare agents in wide spread kinds of biological and environmental matrices. Clostridium perfringens toxins are considered to be potential biological weapons, especially the epsilon toxin which belongs to a group of the most powerful bacterial toxins. Here, the development of a target mass spectrometry method for the detection of C. perfringens protein toxins (alpha, beta, beta2, epsilon, iota) is described. A high-resolution mass spectrometer with a quadrupole-Orbitrap system operating in target acquisition mode (parallel reaction monitoring) was utilized. Because of the lack of commercial protein toxin standards recombinant toxins were prepared within Escherichia coli. The analysis was performed using proteotypic peptides as the target compounds together with their isotopically labeled synthetic analogues as internal standards. Calibration curves were calculated for each peptide in concentrations ranging from 0.635 to 1101 fmol/μL. Limits of detection and quantification were determined for each peptide in blank matrices.

Zobrazit více v PubMed

Songer J.G. Clostridial enteric diseases of domestic animals. Clin. Microbiol. Rev. 1996;9:216–234. doi: 10.1128/CMR.9.2.216. PubMed DOI PMC

Rood J.I., Adams V., Lacey J., Lyras D., McClane B.A., Melville S.B., Moore R.J., Popoff M.R., Sarker M.R., Songer J.G., et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. 2018;53:5–10. doi: 10.1016/j.anaerobe.2018.04.011. PubMed DOI PMC

Ferreira M.R.A., Moreira G.M.S.G., da Cunha C.E.P., Mendonça M., Salvarani F.M., Moreira Â.N., Conceição F.R. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines. Toxins. 2016;8:340. doi: 10.3390/toxins8110340. PubMed DOI PMC

Revitt-Mills S.A., Rood J.I., Adams V. Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiol. Aust. 2015;36:114–117. doi: 10.1071/MA15039. DOI

Alves G.G., Machado de Ávila R.A., Chávez-Olórtegui C.D., Lobato F.C.F. Clostridium perfringens epsilon toxin: The third most potent bacterial toxin known. Anaerobe. 2014;30:102–107. doi: 10.1016/j.anaerobe.2014.08.016. PubMed DOI

Federal Select Agent Program—Select Agents and Toxins List. [(accessed on 7 May 2018)]; Available online: https://www.selectagents.gov/selectagentsandtoxinslist.html.

ANSM: Agence nationale de sécurité du médicament et des produits de santé. [(accessed on 7 May 2018)]; Available online: http://ansm.sante.fr/searchengine/general_search/(offset)/40?SearchText=SYSTEM+12&rubrique=+-+Information+in+English.

Duracova M., Klimentova J., Fucikova A., Dresler J. Proteomic Methods of Detection and Quantification of Protein Toxins. Toxins. 2018;10:99. doi: 10.3390/toxins10030099. PubMed DOI PMC

McClane B.A., Strouse R.J. Rapid detection of Clostridium perfringens type A enterotoxin by enzyme-linked immunosorbent assay. J. Clin. Microbiol. 1984;19:112–115. PubMed PMC

Nagahama M., Kobayashi K., Ochi S., Sakurai J. Enzyme-linked immunosorbent assay for rapid detection of toxins from Clostridium perfringens. FEMS Microbiol. Lett. 1991;68:41–44. doi: 10.1111/j.1574-6968.1991.tb04566.x. PubMed DOI

Baums C.G., Schotte U., Amtsberg G., Goethe R. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet. Microbiol. 2004;100:11–16. doi: 10.1016/S0378-1135(03)00126-3. PubMed DOI

Albini S., Brodard I., Jaussi A., Wollschlaeger N., Frey J., Miserez R., Abril C. Real-time multiplex PCR assays for reliable detection of Clostridium perfringens toxin genes in animal isolates. Vet. Microbiol. 2008;127:179–185. doi: 10.1016/j.vetmic.2007.07.024. PubMed DOI

Hernández M., López-Enríquez L., Rodríguez-Lázaro D. Quantitative Detection of Clostridium perfringens by Real-Time PCR in Raw Milk. Food Anal. Methods. 2017;10:1139–1147. doi: 10.1007/s12161-017-0821-6. DOI

Alam S.I., Uppal A., Gupta P., Kamboj D.V. Multiple-reaction monitoring for multiplex detection of three bacterial toxins using liquid chromatography-tandem mass spectrometry. Lett. Appl. Microbiol. 2017;64:217–224. doi: 10.1111/lam.12706. PubMed DOI

Gilquin B., Jaquinod M., Louwagie M., Kieffer-Jaquinod S., Kraut A., Ferro M., Becher F., Brun V. A proteomics assay to detect eight CBRN-relevant toxins in food. Proteomics. 2017;17:1600357. doi: 10.1002/pmic.201600357. PubMed DOI

Rajoria S., Kumar R.B., Gupta P., Alam S.I. Postexposure Recovery and Analysis of Biological Agent in a Simulated Biothreat Scenario Using Tandem Mass Spectrometry. Anal. Chem. 2017;89:4062–4070. doi: 10.1021/acs.analchem.6b04862. PubMed DOI

Marx V. Targeted proteomics. [(accessed on 16 July 2018)]; Available online: https://www.nature.com/articles/nmeth.2285.

Saleh M.A., Ordal Z.J. Studies on Growth and Toxin Production of Clostridium botulinum in a Precooked Frozen Food. II. Inhibition by Lactic Acid Bacteria. Food Res. 1955;20:340–350. doi: 10.1111/j.1365-2621.1955.tb16847.x. DOI

Starr S.E., Killgore G.E., Dowell V.R. Comparison of Schaedler agar and trypticase soy-yeast extract agar for the cultivation of anaerobic bacteria. Appl. Microbiol. 1971;22:655–658. PubMed PMC

Park Y., Mikolajcik E.M. Effect of Temperature on Growth and Alpha Toxin Production by Clostridium perfringens. J. Food Prot. 1979;42:848–851. doi: 10.4315/0362-028X-42.11.848. PubMed DOI

Gibert M., Jolivet-Renaud C., Popoff M.R. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene. 1997;203:65–73. doi: 10.1016/S0378-1119(97)00493-9. PubMed DOI

Fisher D.J., Miyamoto K., Harrison B., Akimoto S., Sarker M.R., McClane B.A. Association of beta2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Mol. Microbiol. 2005;56:747–762. doi: 10.1111/j.1365-2958.2005.04573.x. PubMed DOI

Mani D.R., Abbatiello S.E., Carr S.A. Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics. BMC Bioinformatics. 2012;13(Suppl. 16):S9. doi: 10.1186/1471-2105-13-S16-S9. PubMed DOI PMC

Currie L.A. Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal. Chem. 1968;40:586–593. doi: 10.1021/ac60259a007. DOI

Schwarz K., Fiedler T., Fischer R.-J., Bahl H. A Standard Operating Procedure (SOP) for the preparation of intra- and extracellular proteins of Clostridium acetobutylicum for proteome analysis. J. Microbiol. Methods. 2007;68:396–402. doi: 10.1016/j.mimet.2006.09.018. PubMed DOI

Zhao Y., Kang L., Gao S., Zhou Y., Su L., Xin W., Su Y., Wang J. Expression and purification of functional Clostridium perfringens alpha and epsilon toxins in Escherichia coli. Protein Expr. Purif. 2011;77:207–213. doi: 10.1016/j.pep.2011.02.001. PubMed DOI

Maniatis T., Fritsch E.F., Sambrook J. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA: 1982.

Perelle S., Gibert M., Boquet P., Popoff M.R. Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect. Immun. 1993;61:5147–5156. PubMed PMC

Lebrun M., Filée P., Galleni M., Mainil J.G., Linden A., Taminiau B. Purification of the recombinant beta2 toxin (CPB2) from an enterotoxaemic bovine Clostridium perfringens strain and production of a specific immune serum. Protein Expr. Purif. 2007;55:119–131. doi: 10.1016/j.pep.2007.04.021. PubMed DOI

Milach A., de los Santos J.R.G., Turnes C.G., Moreira A.N., de Assis R.A., Salvarani F.M., Lobato F.C.F., Conceição F.R. Production and characterization of Clostridium perfringens recombinant β toxoid. Anaerobe. 2012;18:363–365. doi: 10.1016/j.anaerobe.2012.01.004. PubMed DOI

Gopal G.J., Kumar A. Strategies for the production of recombinant protein in Escherichia coli. Protein J. 2013;32:419–425. doi: 10.1007/s10930-013-9502-5. PubMed DOI

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Recent Advances in the Detection of Food Toxins Using Mass Spectrometry

. 2023 Dec 18 ; 36 (12) : 1834-1863. [epub] 20231207

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace