Recent Advances in the Detection of Food Toxins Using Mass Spectrometry
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38059476
PubMed Central
PMC10731662
DOI
10.1021/acs.chemrestox.3c00241
Knihovny.cz E-zdroje
- MeSH
- analýza potravin MeSH
- lidé MeSH
- mořské toxiny MeSH
- mykotoxiny * MeSH
- referenční standardy MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mořské toxiny MeSH
- mykotoxiny * MeSH
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
Amity Institute of Biotechnology AUUP Noida Uttar Pradesh 201313 India
Material Resource Efficiency Division CSIR Indian Institute of Petroleum Dehradun 248005 India
University Centre for Research and Development Chandigarh University Mohali Punjab 140413 India
University Institute of Biotechnology Chandigarh University Mohali Punjab 140413 India
Zobrazit více v PubMed
WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization, 2015.
Alshannaq A.; Yu J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14 (6), 632.10.3390/ijerph14060632. PubMed DOI PMC
Rasheed T.; Bilal M.; Nabeel F.; Adeel M.; Iqbal H. M. N. Environmentally-Related Contaminants of High Concern: Potential Sources and Analytical Modalities for Detection, Quantification, and Treatment. Environ. Int. 2019, 122, 52–66. 10.1016/j.envint.2018.11.038. PubMed DOI
Rather I. A.; Koh W. Y.; Paek W. K.; Lim J. The Sources of Chemical Contaminants in Food and Their Health Implications. Front Pharmacol 2017, 8, 830.10.3389/fphar.2017.00830. PubMed DOI PMC
Fletcher M. T.; Netzel G. Food Safety and Natural Toxins. Toxins 2020, 12 (4), 236.10.3390/toxins12040236. PubMed DOI PMC
Dey P.; Kundu A.; Kumar A.; Gupta M.; Lee B. M.; Bhakta T.; Dash S.; Kim H. S. Analysis of Alkaloids (Indole Alkaloids, Isoquinoline Alkaloids, Tropane Alkaloids). Recent Advances in Natural Products Analysis 2020, 505–567. 10.1016/B978-0-12-816455-6.00015-9. DOI
Picardo M.; Núñez O.; Farré M. Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity. Toxins 2020, 12 (12), 752.10.3390/toxins12120752. PubMed DOI PMC
Malachová A.; Stránská M.; Václavíková M.; Elliott C. T.; Black C.; Meneely J.; Hajšlová J.; Ezekiel C. N.; Schuhmacher R.; Krska R. Advanced LC-MS-Based Methods to Study the Co-Occurrence and Metabolization of Multiple Mycotoxins in Cereals and Cereal-Based Food. Anal Bioanal Chem. 2018, 410 (3), 801–825. 10.1007/s00216-017-0750-7. PubMed DOI PMC
Krska R.; de Nijs M.; McNerney O.; Pichler M.; Gilbert J.; Edwards S.; Suman M.; Magan N.; Rossi V.; van der Fels-Klerx H. j.; Bagi F.; Poschmaier B.; Sulyok M.; Berthiller F.; van Egmond H. p. Safe Food and Feed through an Integrated Toolbox for Mycotoxin Management: The MyToolBox Approach. World Mycotoxin Journal 2016, 9 (4), 487–495. 10.3920/WMJ2016.2136. DOI
Turner N. W.; Subrahmanyam S.; Piletsky S. A. Analytical Methods for Determination of Mycotoxins: A Review. Anal. Chim. Acta 2009, 632 (2), 168–180. 10.1016/j.aca.2008.11.010. PubMed DOI
Verma M.; Chaudhary M.; Singh A.; Kaur N.; Singh N. Naphthalimide-Gold-Based Nanocomposite for the Ratiometric Detection of Okadaic Acid in Shellfish. J. Mater. Chem. B 2020, 8 (36), 8405–8413. 10.1039/D0TB01195A. PubMed DOI
Fayyaz K.; Nawaz A.; Olaimat A. N.; Akram K.; Farooq U.; Fatima M.; Siddiqui S. A.; Rana I. S.; Mahnoor M.; Shahbaz H. M. Microbial Toxins in Fermented Foods: Health Implications and Analytical Techniques for Detection. Journal of Food and Drug Analysis 2022, 30 (4), 523–537. 10.38212/2224-6614.3431. PubMed DOI PMC
Abeysiriwardena N. M.; Gascoigne S. J. L.; Anandappa A. Algal Bloom Expansion Increases Cyanotoxin Risk in Food. Yale J. Biol. Med. 2018, 91 (2), 129–142. PubMed PMC
Mtewa A. G.; Egbuna C.; Ngwira K. J.; Lampiao F.; Shah U.; Mtewa T. K.. Classification of Phytotoxins and Their Mechanisms of Action. In Poisonous Plants and Phytochemicals in Drug Discovery; John Wiley & Sons, Ltd, 2020; pp 19–30. 10.1002/9781119650034.ch2. DOI
Campo J.; Picó Y.. 17 - Emerging Contaminants and Toxins. In Chemical Analysis of Food (Second ed.); Pico Y., Ed.; Academic Press, 2020; pp 729–758. 10.1016/B978-0-12-813266-1.00017-6. DOI
Dhakal A.; Hashmi M. F.; Sbar E.. Aflatoxin Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, 2023. PubMed
Jastrzebski M. K.; Kaczor A. A.; Wróbel T. M. Methods of Lysergic Acid Synthesis-The Key Ergot Alkaloid. Molecules 2022, 27 (21), 7322.10.3390/molecules27217322. PubMed DOI PMC
Maragos C. M.; Barnett K.; Morgan L.; Vaughan M. M.; Sieve K. K. Measurement of Fumonisins in Maize Using a Portable Mass Spectrometer. Toxins 2022, 14 (8), 523.10.3390/toxins14080523. PubMed DOI PMC
Wang L.; Wang Q.; Wang S.; Cai R.; Yuan Y.; Yue T.; Wang Z. Bio-Control on the Contamination of Ochratoxin A in Food: Current Research and Future Prospects. Curr. Res. Food Sci. 2022, 5, 1539–1549. 10.1016/j.crfs.2022.09.007. PubMed DOI PMC
Bacha S. A. S.; Li Y.; Nie J.; Xu G.; Han L.; Farooq S.. Comprehensive Review on Patulin and Alternaria Toxins in Fruit and Derived Products. Frontiers in Plant Science 2023, 14.10.3389/fpls.2023.1139757 PubMed DOI PMC
Jing S.; Liu C.; Zheng J.; Dong Z.; Guo N. Toxicity of Zearalenone and Its Nutritional Intervention by Natural Products. Food Funct. 2022, 13 (20), 10374–10400. 10.1039/D2FO01545E. PubMed DOI
Puvača N.; Avantaggiato G.; Merkuri J.; Vuković G.; Bursić V.; Cara M. Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method. Toxins (Basel) 2022, 14 (11), 791.10.3390/toxins14110791. PubMed DOI PMC
Charla R.; Patil P. P.; Patil V. S.; Bhandare V. V.; Karoshi V.; Balaganur V.; Joshi R. K.; Harish D. R.; Roy S.. Anti-Cholera Toxin Activity of Selected Polyphenols from Careya Arborea, Punica Granatum, and Psidium Guajava. Frontiers in Cellular and Infection Microbiology 2023, 13.10.3389/fcimb.2023.1106293 PubMed DOI PMC
Pomputius W. F.; Kilgore S. H.; Schlievert P. M. Probable Enterotoxin-Associated Toxic Shock Syndrome Caused by Staphylococcus Epidermidis. BMC Pediatr 2023, 23 (1), 108.10.1186/s12887-023-03914-5. PubMed DOI PMC
Nada H. G.; El-Tahan A. S.; El-Didamony G.; Askora A. Detection of Multidrug-Resistant Shiga Toxin-Producing Escherichia Coli in Some Food Products and Cattle Faeces in Al-Sharkia, Egypt: One Health Menace. BMC Microbiology 2023, 23 (1), 127.10.1186/s12866-023-02873-2. PubMed DOI PMC
Zhang L.; Lv Q.; Zheng Y.; Gao S.; Huang W.; Liu P.; Kong D.; Wang Y.; Yu Y.; Jiang Y.; Jiang H.. Rapid and Sensitive Detection of Botulinum Toxin Type A in Complex Sample Matrices by AlphaLISA. Frontiers in Public Health 2022, 10.10.3389/fpubh.2022.987517 PubMed DOI PMC
Yang S.; Wang Y.; Liu Y.; Jia K.; Zhang Z.; Dong Q. Cereulide and Emetic Bacillus Cereus: Characterizations, Impacts and Public Precautions. Foods 2023, 12 (4), 833.10.3390/foods12040833. PubMed DOI PMC
Wang T.; Fernandes S. P. S.; Araújo J.; Li X.; Salonen L. M.; Espiña B. A Carboxyl-Functionalized Covalent Organic Polymer for the Efficient Adsorption of Saxitoxin. J. Hazard Mater. 2023, 452, 131247.10.1016/j.jhazmat.2023.131247. PubMed DOI
Panlilio J. M.; Hammar K. M.; Aluru N.; Hahn M. E. Developmental Exposure to Domoic Acid Targets Reticulospinal Neurons and Leads to Aberrant Myelination in the Spinal Cord. Sci. Rep 2023, 13 (1), 2587.10.1038/s41598-023-28166-2. PubMed DOI PMC
Tebben J.; Zurhelle C.; Tubaro A.; Samdal I. A.; Krock B.; Kilcoyne J.; Sosa S.; Trainer V. L.; Deeds J. R.; Tillmann U. Structure and Toxicity of AZA-59, an Azaspiracid Shellfish Poisoning Toxin Produced by Azadinium Poporum (Dinophyceae). Harmful Algae 2023, 124, 102388.10.1016/j.hal.2023.102388. PubMed DOI
Brammer-Robbins E.; Costa K. A.; Bowden J. A.; Martyniuk C. J.; Larkin I. V.; Denslow N. D. Putative High-Level Toxicity Pathways Based on Evidence of Brevetoxin Immunotoxicity in Marine Fauna. Aquat Toxicol 2022, 252, 106298.10.1016/j.aquatox.2022.106298. PubMed DOI
Qin Y.; Li J.; Kuang J.; Shen S.; Jiang J.; Zhang Z.; Zhao C.; Zhou X.; Huang B.; Han B.. Sensitive Time-Resolved Fluoroimmunoassay for the Quantitative Detection of Okadaic Acid. Frontiers in Marine Science 2022, 9.10.3389/fmars.2022.961751 DOI
Bolarinwa I. F.; Oke M. O.; Olaniyan S. A.; Ajala A. S.; Bolarinwa I. F.; Oke M. O.; Olaniyan S. A.; Ajala A. S.. A Review of Cyanogenic Glycosides in Edible Plants. In Toxicology - New Aspects to This Scientific Conundrum; IntechOpen, 2016. 10.5772/64886. DOI
Melough M. M.; Lee S. G.; Cho E.; Kim K.; Provatas A. A.; Perkins C.; Park M. K.; Qureshi A.; Chun O. K. Identification and Quantitation of Furocoumarins in Popularly Consumed Foods in the U.S. Using QuEChERS Extraction Coupled with UPLC-MS/MS Analysis. J. Agric. Food Chem. 2017, 65 (24), 5049–5055. 10.1021/acs.jafc.7b01279. PubMed DOI PMC
Wu J. S.; Clauson-Kaas F.; Lindqvist D. N.; Rasmussen L. H.; Strobel B. W.; Hansen H. C. B. Does the Natural Carcinogen Ptaquiloside Degrade Readily in Groundwater?. Environmental Sciences Europe 2021, 33 (1), 24.10.1186/s12302-021-00468-0. DOI
Stegelmeier B. L.; Colegate S. M.; Brown A. W. Dehydropyrrolizidine Alkaloid Toxicity, Cytotoxicity, and Carcinogenicity. Toxins (Basel) 2016, 8 (12), 356.10.3390/toxins8120356. PubMed DOI PMC
Girardi C.; Odore R. Pharmacological Treatments and Risks for the Food Chain. Vet Res. Commun. 2008, 32, S11–18. 10.1007/s11259-008-9083-5. PubMed DOI
Kralj Cigic I.; Prosen H. An Overview of Conventional and Emerging Analytical Methods for the Determination of Mycotoxins. Int. J. Mol. Sci. 2009, 10 (1), 62–115. 10.3390/ijms10010062. PubMed DOI PMC
Kole P. L.; Venkatesh G.; Kotecha J.; Sheshala R. Recent Advances in Sample Preparation Techniques for Effective Bioanalytical Methods. Biomed Chromatogr 2011, 25 (1–2), 199–217. 10.1002/bmc.1560. PubMed DOI
Qiu N.; Sun D.; Zhou S.; Li J.; Zhao Y.; Wu Y. Rapid and Sensitive UHPLC-MS/MS Methods for Dietary Sample Analysis of 43 Mycotoxins in China Total Diet Study. Journal of Advanced Research 2022, 39, 15–47. 10.1016/j.jare.2021.10.008. PubMed DOI PMC
De Girolamo A.; Lippolis V.; Pascale M. Overview of Recent Liquid Chromatography Mass Spectrometry-Based Methods for Natural Toxins Detection in Food Products. Toxins (Basel) 2022, 14 (5), 328.10.3390/toxins14050328. PubMed DOI PMC
von Bargen C.; Brockmeyer J.; Humpf H.-U. Meat Authentication: A New HPLC-MS/MS Based Method for the Fast and Sensitive Detection of Horse and Pork in Highly Processed Food. J. Agric. Food Chem. 2014, 62 (39), 9428–9435. 10.1021/jf503468t. PubMed DOI
Liu Z.; Zhang M.; Chen P.; Harnly J. M.; Sun J. Mass Spectrometry-Based Nontargeted and Targeted Analytical Approaches in Fingerprinting and Metabolomics of Food and Agricultural Research. J. Agric. Food Chem. 2022, 70 (36), 11138–11153. 10.1021/acs.jafc.2c01878. PubMed DOI
Monbaliu S.; Van Poucke C.; Detavernier C.; Dumoulin F.; Van De Velde M.; Schoeters E.; Van Dyck S.; Averkieva O.; Van Peteghem C.; De Saeger S. Occurrence of Mycotoxins in Feed as Analyzed by a Multi-Mycotoxin LC-MS/MS Method. J. Agric. Food Chem. 2010, 58 (1), 66–71. 10.1021/jf903859z. PubMed DOI
Kerian K. S.; Jarmusch A. K.; Cooks R. G. Touch Spray Mass Spectrometry for In Situ Analysis of Complex Samples. Analyst 2014, 139 (11), 2714–2720. 10.1039/C4AN00548A. PubMed DOI PMC
Feider C. L.; Krieger A.; DeHoog R. J.; Eberlin L. S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91 (7), 4266–4290. 10.1021/acs.analchem.9b00807. PubMed DOI PMC
Hernández-Mesa M.; Le Bizec B.; Dervilly G. Metabolomics in Chemical Risk Analysis - A Review. Anal. Chim. Acta 2021, 1154, 338298.10.1016/j.aca.2021.338298. PubMed DOI
Selamat J.; Rozani N. A. A.; Murugesu S. Application of the Metabolomics Approach in Food Authentication. Molecules 2021, 26 (24), 7565.10.3390/molecules26247565. PubMed DOI PMC
Vilariño N.; Louzao M. C.; Fraga M.; Rodríguez L. P.; Botana L. M. Innovative Detection Methods for Aquatic Algal Toxins and Their Presence in the Food Chain. Anal Bioanal Chem. 2013, 405 (24), 7719–7732. 10.1007/s00216-013-7108-6. PubMed DOI
Law J. W.-F.; Ab Mutalib N.-S.; Chan K.-G.; Lee L.-H. Rapid Methods for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations. Front Microbiol 2015, 5, 770.10.3389/fmicb.2014.00770. PubMed DOI PMC
Liew W.-P.-P.; Sabran M.-R. Recent Advances in Immunoassay-Based Mycotoxin Analysis and Toxicogenomic Technologies. J. Food Drug Anal 2022, 30 (4), 549–561. 10.38212/2224-6614.3430. PubMed DOI PMC
Quilliam M. A.; Thomas K.; Wright J. L. Analysis of Domoic Acid in Shellfish by Thin-Layer Chromatography. Nat. Toxins 1998, 6 (3–4), 147–152. 10.1002/(SICI)1522-7189(199805/08)6:3/4<147::AID-NT8>3.0.CO;2-#. PubMed DOI
Rodríguez I.; Vieytes M. R.; Alfonso A. Analytical Challenges for Regulated Marine Toxins. Detection Methods. Current Opinion in Food Science 2017, 18, 29–36. 10.1016/j.cofs.2017.10.008. DOI
Jangampalli Adi P.; Matcha B. Analysis of Aflatoxin B1 in Contaminated Feed, Media, and Serum Samples of Cyprinus Carpio L. by High-Performance Liquid Chromatography. Food Quality and Safety 2018, 2 (4), 199–204. 10.1093/fqsafe/fyy013. DOI
Siracusa M.; Bacchiocchi S.; Dubbini A.; Campacci D.; Tavoloni T.; Stramenga A.; Ciriaci M.; Dall’Ara S.; Piersanti A. A High Throughput Screening HPLC-FLD Method for Paralytic Shellfish Toxins (PSTs) Enabling Effective Official Control. Molecules 2022, 27 (15), 4702.10.3390/molecules27154702. PubMed DOI PMC
Chandraleka T.; Abinayaa S.; Rathour A.; Mahalakshmi A.; Heema C. Detection of Aflatoxin in Food Products Using UV Fluorescence Spectroscopy. IJITEE 2020, 9 (5), 1068–1071. 10.35940/ijitee.E2272.039520. DOI
Singh A. K.; Lakshmi G. B. V. S.; Dhiman T. K.; Kaushik A.; Solanki P. R.. Bio-Active Free Direct Optical Sensing of Aflatoxin B1 and Ochratoxin A Using a Manganese Oxide Nano-System. Frontiers in Nanotechnology 2021, 2.10.3389/fnano.2020.621681 DOI
Ray S.Sensory Properties of Foods and Their Measurement Methods. In Techniques to Measure Food Safety and Quality: Microbial, Chemical, and Sensory; Khan M. S., Shafiur Rahman M., Eds.; Springer International Publishing: Cham, 2021; pp 345–381. 10.1007/978-3-030-68636-9_15. DOI
Liu Y.; Qiao F.; Xu L.; Wang R.; Jiang W.; Xu Z.. Fast Detection of Diarrhetic Shellfish Poisoning Toxins in Mussels Using NIR Spectroscopy and Improved Twin Support Vector Machines. Frontiers in Marine Science 2022, 9.10.3389/fmars.2022.907378 DOI
Baden D. G.; Melinek R.; Sechet V.; Trainer V. L.; Schultz D. R.; Rein K. S.; Tomas C. R.; Delgado J.; Hale L. Modified Immunoassays for Polyether Toxins: Implications of Biological Matrixes, Metabolic States, and Epitope Recognition. Journal of AOAC INTERNATIONAL 1995, 78 (2), 499–507. 10.1093/jaoac/78.2.499. PubMed DOI
Yasumoto T.; Murata M.; Oshima Y.; Sano M.; Matsumoto G. K.; Clardy J. Diarrhetic Shellfish Toxins. Tetrahedron 1985, 41 (6), 1019–1025. 10.1016/S0040-4020(01)96469-5. DOI
Tubaro A.; Florio C.; Luxich E.; Sosa S.; Della Loggia R.; Yasumoto T. A Protein Phosphatase 2A Inhibition Assay for a Fast and Sensitive Assessment of Okadaic Acid Contamination in Mussels. Toxicon 1996, 34 (7), 743–752. 10.1016/0041-0101(96)00027-X. PubMed DOI
Eberhart B.-T. L.; Moore L. K.; Harrington N.; Adams N. G.; Borchert J.; Trainer V. L. Screening Tests for the Rapid Detection of Diarrhetic Shellfish Toxins in Washington State. Mar Drugs 2013, 11 (10), 3718–3734. 10.3390/md11103718. PubMed DOI PMC
Kim H. U.; Goepfert J. M. Enumeration and Identification of Bacillus Cereus in Foods. I. 24-h Presumptive Test Medium. Appl. Microbiol. 1971, 22 (4), 581–587. 10.1128/am.22.4.581-587.1971. PubMed DOI PMC
Lund T.; Granum P. E. Comparison of Biological Effect of the Two Different Enterotoxin Complexes Isolated from Three Different Strains of Bacillus Cereus. Microbiology (Reading) 1997, 143 (10), 3329–3336. 10.1099/00221287-143-10-3329. PubMed DOI
Hasan M. R.; Pulingam T.; Appaturi J. N.; Zifruddin A. N.; Teh S. J.; Lim T. W.; Ibrahim F.; Leo B. F.; Thong K. L. Carbon Nanotube-Based Aptasensor for Sensitive Electrochemical Detection of Whole-Cell Salmonella. Anal. Biochem. 2018, 554, 34–43. 10.1016/j.ab.2018.06.001. PubMed DOI
Tevell Åberg A.; Björnstad K.; Hedeland M. Mass Spectrometric Detection of Protein-Based Toxins. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science 2013, 11 (S1), S215–S226. 10.1089/bsp.2012.0072. PubMed DOI
Silva C. J. Food Forensics: Using Mass Spectrometry To Detect Foodborne Protein Contaminants, as Exemplified by Shiga Toxin Variants and Prion Strains. J. Agric. Food Chem. 2018, 66 (32), 8435–8450. 10.1021/acs.jafc.8b01517. PubMed DOI
Rodríguez-Carrasco Y.; Moltó J. C.; Mañes J.; Berrada H. Development of a GC-MS/MS Strategy to Determine 15 Mycotoxins and Metabolites in Human Urine. Talanta 2014, 128, 125–131. 10.1016/j.talanta.2014.04.072. PubMed DOI
Jadhav S. R.; Shah R. M.; Karpe A. V.; Morrison P. D.; Kouremenos K.; Beale D. J.; Palombo E. A.. Detection of Foodborne Pathogens Using Proteomics and Metabolomics-Based Approaches. Frontiers in Microbiology 2018, 9.10.3389/fmicb.2018.03132 PubMed DOI PMC
Xu M.-L.; Gao Y.; Wang X.; Han X. X.; Zhao B. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC-MS/MS: A Review of Recent Research Trends. Foods 2021, 10 (10), 2473.10.3390/foods10102473. PubMed DOI PMC
Kalb S. R.; Boyer A. E.; Barr J. R. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity. Toxins 2015, 7 (9), 3497–3511. 10.3390/toxins7093497. PubMed DOI PMC
Pavlovic M.; Huber I.; Konrad R.; Busch U. Application of MALDI-TOF MS for the Identification of Food Borne Bacteria. Open Microbiol J. 2013, 7, 135–141. 10.2174/1874285801307010135. PubMed DOI PMC
Zambonin C. MALDI-TOF Mass Spectrometry Applications for Food Fraud Detection. Applied Sciences 2021, 11 (8), 3374.10.3390/app11083374. DOI
Xing L. Determination of Toxic Elements in Food by ICP-MS Using AOAC Method 2015.01. Spectroscopy 2022, 37 (10), 7–12. 10.56530/spectroscopy.zv7982s5. DOI
Ammann A. A. Inductively Coupled Plasma Mass Spectrometry (ICP MS): A Versatile Tool. Journal of Mass Spectrometry 2007, 42 (4), 419–427. 10.1002/jms.1206. PubMed DOI
te Brinke E.; Arrizabalaga-Larrañaga A.; Blokland M. H. Insights of Ion Mobility Spectrometry and Its Application on Food Safety and Authenticity: A Review. Anal. Chim. Acta 2022, 1222, 340039.10.1016/j.aca.2022.340039. PubMed DOI
Hernández-Mesa M.; Ropartz D.; García-Campaña A. M.; Rogniaux H.; Dervilly-Pinel G.; Le Bizec B. Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends. Molecules 2019, 24 (15), 2706.10.3390/molecules24152706. PubMed DOI PMC
Büyükköroglu G.; Dora D. D.; Özdemir F.; Hızel C.. Chapter 15 - Techniques for Protein Analysis. In Omics Technologies and Bio-Engineering; Barh D.; Azevedo V., Eds.; Academic Press, 2018; pp 317–351. 10.1016/B978-0-12-804659-3.00015-4. DOI
Domínguez I.; Frenich A. G.; Romero-González R. Mass Spectrometry Approaches to Ensure Food Safety. Analytical Methods 2020, 12 (9), 1148–1162. 10.1039/C9AY02681A. DOI
Mazarakioti E. C.; Zotos A.; Thomatou A. A.; Kontogeorgos A.; Patakas A.; Ladavos A. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), a Useful Tool in Authenticity of Agricultural Products’ and Foods’ Origin. Foods 2022, 11 (22), 3705.10.3390/foods11223705. PubMed DOI PMC
Jull A. J. T.; Burr G. S.. 5.20 - Accelerator Mass Spectrometry. In Treatise on Geochemistry (Second ed.); Holland H. D., Turekian K. K., Eds.; Elsevier: Oxford, 2014; pp 375–383. 10.1016/B978-0-08-095975-7.01429-7. DOI
Wacker J. F.; Eiden G. C.; Lehn S. A.; Koppenaal D. W.. Accelerator Mass Spectrometry (AMS). In Encyclopedia of Spectroscopy and Spectrometry (Third ed.); Lindon J. C., Tranter G. E., Koppenaal D. W., Eds.; Academic Press: Oxford, 2017; pp 15–17. 10.1016/B978-0-12-803224-4.00043-1. DOI
Metz T. O.; Zhang Q.; Page J. S.; Shen Y.; Callister S. J.; Jacobs J. M.; Smith R. D. The Future of Liquid Chromatography-Mass Spectrometry (LC-MS) in Metabolic Profiling and Metabolomic Studies for Biomarker Discovery. Biomark Med. 2007, 1 (1), 159–185. 10.2217/17520363.1.1.159. PubMed DOI PMC
Alves T. O.; D’Almeida C. T. S.; Scherf K. A.; Ferreira M. S. L.. Modern Approaches in the Identification and Quantification of Immunogenic Peptides in Cereals by LC-MS/MS. Frontiers in Plant Science 2019, 10.10.3389/fpls.2019.01470 PubMed DOI PMC
Amirav A.; Fialkov A.; Margolin Eren K.; Neumark B.; Elkabets O.; Tsizin S.; Gordin A.; Alon T. Gas Chromatography-Mass Spectrometry (GC-MS) with Cold Electron Ionization (EI): Bridging the Gap Between GC-MS and LC-MS. 2020, 18 (4), 5–15.
Gilbert J. R.; McCaskill D.; Fishman V. N.; Brzak K.; Markham D.; Bartels M. J.; Winniford B.; Bano Mohsin S.; Godbey J.; Akinbo O.; Lewer P.. Chapter 17 - Industrial Applications of High-Resolution GC/MS. In Comprehensive Analytical Chemistry; Ferrer I., Thurman E. M., Eds.; Advanced Techniques in Gas Chromatography-Mass Spectrometry (GC-MS-MS and GC-TOF-MS) for Environmental Chemistry; Elsevier, 2013; Vol. 61, pp 403–429. 10.1016/B978-0-444-62623-3.00017-4. DOI
Vivekanandan-Giri A.; Byun J.; Pennathur S.. Chapter Five - Quantitative Analysis of Amino Acid Oxidation Markers by Tandem Mass Spectrometry. In Methods in Enzymology; Conn P. M., Ed.; The Unfolded Protein Response and Cellular Stress, Part C; Academic Press, 2011; Vol. 491, pp 73–89. 10.1016/B978-0-12-385928-0.00005-5. PubMed DOI PMC
Geer Wallace M. A.; McCord J. P.. Chapter 16 - High-Resolution Mass Spectrometry. In Breathborne Biomarkers and the Human Volatilome (Second ed.); Beauchamp J., Davis C., Pleil J., Eds.; Elsevier: Boston, 2020; pp 253–270. 10.1016/B978-0-12-819967-1.00016-5. DOI
Rychert J. Benefits and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms. Journal of Infectiology and Epidemiology 2019, 2 (4), 1.10.29245/2689-9981/2019/4.1142. DOI
Wilschefski S. C.; Baxter M. R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin Biochem Rev. 2019, 40 (3), 115–133. 10.33176/AACB-19-00024. PubMed DOI PMC
Vorderwülbecke S.; Cleverley S.; Weinberger S. R.; Wiesner A. Protein Quantification by the SELDI-TOF-MS-Based ProteinChip® System. Nat. Methods 2005, 2 (5), 393–395. 10.1038/nmeth0505-393. DOI
Poon T. C. Opportunities and Limitations of SELDI-TOF-MS in Biomedical Research: Practical Advices. Expert Review of Proteomics 2007, 4 (1), 51–65. 10.1586/14789450.4.1.51. PubMed DOI
Neagu A.-N.; Jayathirtha M.; Baxter E.; Donnelly M.; Petre B. A.; Darie C. C. Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules 2022, 27 (8), 2411.10.3390/molecules27082411. PubMed DOI PMC
Mittal R. D. Tandem Mass Spectroscopy in Diagnosis and Clinical Research. Indian J. Clin Biochem 2015, 30 (2), 121–123. 10.1007/s12291-015-0498-9. PubMed DOI PMC
Andjelković U.; Šrajer Gajdošik M.; Gašo-Sokač D.; Martinović T.; Josić D. Foodomics and Food Safety: Where We Are. Food Technol. Biotechnol 2017, 55 (3), 290–307. 10.17113/ftb.55.03.17.5044. PubMed DOI PMC
Wu P.; Wu X.; Huang Q.; Yu Q.; et al. Mass Spectrometry-Based Multimodal Approaches for the Identification and Quantification Analysis of Microplastics in Food Matrix. Front. Nutr. 2023, 10 (April), 1–7. 10.3389/fnut.2023.1163823. PubMed DOI PMC
Spanjer M. C. Mass Spectrometry in Multi-Mycotoxin and Fungal Spore Analysis 2011, 90.10.1533/9780857090973.1.90. DOI
Yang S.; Zhu X.; Wang J.; Jin X.; Liu Y.; Qian F.; Zhang S.; Chen J. Combustion of Hazardous Biological Waste Derived from the Fermentation of Antibiotics Using TG-FTIR and Py-GC/MS Techniques. Bioresour. Technol. 2015, 193 (x), 156–163. 10.1016/j.biortech.2015.06.083. PubMed DOI
Zhou Q.; Xing A.; Zhao K. Simultaneous Determination of Nickel, Cobalt and Mercury Ions in Water Samples by Solid Phase Extraction Using Multiwalled Carbon Nanotubes as Adsorbent after Chelating with Sodium Diethyldithiocarbamate Prior to High Performance Liquid Chromatography. Journal of Chromatography A 2014, 1360, 76–81. 10.1016/j.chroma.2014.07.084. PubMed DOI
El-Sayed R. A.; Jebur A. B.; Kang W.; El-Demerdash F. M. An Overview on the Major Mycotoxins in Food Products: Characteristics, Toxicity, and Analysis. Journal of Future Foods 2022, 2 (2), 91–102. 10.1016/j.jfutfo.2022.03.002. DOI
Yu S.; Jia B.; Li K.; Zhou H.; Lai W.; Tang Y.; Yan Z.; Sun W.; Liu N.; Yu D.; Wu A. Pre-Warning of Abiotic Factors in Maize Required for Potential Contamination of Fusarium Mycotoxins via Response Surface Analysis. Food Control 2021, 121, 107570.10.1016/j.foodcont.2020.107570. DOI
Bennett J. W.; Klich M. Mycotoxins. Clin Microbiol Rev. 2003, 16 (3), 497–516. 10.1128/CMR.16.3.497-516.2003. PubMed DOI PMC
Mohammadi Shad Z.; Venkitasamy C.. Mycotoxins as Food and Feed Contaminant: Effect on Health and Economy and Their Management. In Fungal Resources for Sustainable Economy: Current Status and Future Perspectives; Singh I., Rajpal V. R., Navi S. S., Eds.; Springer Nature: Singapore, 2023; pp 531–563. 10.1007/978-981-19-9103-5_20. DOI
Kumar P.; Mahato D. K.; Kamle M.; Mohanta T. K.; Kang S. G.. Aflatoxins: A Global Concern for Food Safety, Human Health and Their Management. Frontiers in Microbiology 2017, 7.10.3389/fmicb.2016.02170 PubMed DOI PMC
Tirmenstein M. A.; Mangipudy R.. Aflatoxin. In Encyclopedia of Toxicology (Third ed.); Wexler P., Ed.; Academic Press: Oxford, 2014; pp 104–106. 10.1016/B978-0-12-386454-3.00224-4. DOI
Pinto A. C. S. M.; De Pierri C. R.; Evangelista A. G.; Gomes A. S. d. L. P. B.; Luciano F. B. Deoxynivalenol: Toxicology, Degradation by Bacteria, and Phylogenetic Analysis. Toxins 2022, 14 (2), 90.10.3390/toxins14020090. PubMed DOI PMC
Cope R. B.Chapter 75 - Trichothecenes. In Veterinary Toxicology (Third ed.); Gupta R. C., Ed.; Academic Press, 2018; pp 1043–1053. 10.1016/B978-0-12-811410-0.00075-1. DOI
Kamle M.; Mahato D. K.; Devi S.; Lee K. E.; Kang S. G.; Kumar P. Fumonisins: Impact on Agriculture, Food, and Human Health and Their Management Strategies. Toxins (Basel) 2019, 11 (6), 328.10.3390/toxins11060328. PubMed DOI PMC
Braun M. S.; Wink M. Exposure, Occurrence, and Chemistry of Fumonisins and Their Cryptic Derivatives. Comprehensive Reviews in Food Science and Food Safety 2018, 17 (3), 769–791. 10.1111/1541-4337.12334. PubMed DOI
Damiani T.; Righetti L.; Suman M.; Galaverna G.; Dall’Asta C. Analytical Issue Related to Fumonisins: A Matter of Sample Comminution?. Food Control 2019, 95, 1–5. 10.1016/j.foodcont.2018.07.029. DOI
Ropejko K.; Twaruzek M. Zearalenone and Its Metabolites—General Overview, Occurrence, and Toxicity. Toxins (Basel) 2021, 13 (1), 35.10.3390/toxins13010035. PubMed DOI PMC
Zhang G.-L.; Feng Y.-L.; Song J.-L.; Zhou X.-S.. Zearalenone: A Mycotoxin With Different Toxic Effect in Domestic and Laboratory Animals’ Granulosa Cells. Frontiers in Genetics 2018, 9.10.3389/fgene.2018.00667 PubMed DOI PMC
Ben Salah-Abbès J.; Belgacem H.; Ezzdini K.; Abdel-Wahhab M. A.; Abbès S. Zearalenone Nephrotoxicity: DNA Fragmentation, Apoptotic Gene Expression and Oxidative Stress Protected by Lactobacillus Plantarum MON03. Toxicon 2020, 175, 28–35. 10.1016/j.toxicon.2019.12.004. PubMed DOI
Gromadzka K.; Waskiewicz A.; Chelkowski J.; Golinski P. Zearalenone and Its Metabolites: Occurrence, Detection, Toxicity and Guidelines. World Mycotoxin Journal 2008, 1 (2), 209–220. 10.3920/WMJ2008.x015. DOI
Mally A.; Solfrizzo M.; Degen G. H. Biomonitoring of the Mycotoxin Zearalenone: Current State-of-the Art and Application to Human Exposure Assessment. Arch. Toxicol. 2016, 90 (6), 1281–1292. 10.1007/s00204-016-1704-0. PubMed DOI
Reddy P.; Hemsworth J.; Guthridge K. M.; Vinh A.; Vassiliadis S.; Ezernieks V.; Spangenberg G. C.; Rochfort S. J. Ergot Alkaloid Mycotoxins: Physiological Effects, Metabolism and Distribution of the Residual Toxin in Mice. Sci. Rep 2020, 10 (1), 9714.10.1038/s41598-020-66358-2. PubMed DOI PMC
Schiff P. L. Ergot and Its Alkaloids. Am. J. Pharm. Educ 2006, 70 (5), 98.10.5688/aj700598. PubMed DOI PMC
Evans T. J.Chapter 67 - Endocrine Disruptors. In Reproductive and Developmental Toxicology; Gupta R. C., Ed.; Academic Press: San Diego, 2011; pp 873–891. 10.1016/B978-0-12-382032-7.10067-0. DOI
Bui-Klimke T. R.; Wu F. Ochratoxin A and Human Health Risk: A Review of the Evidence. Crit Rev. Food Sci. Nutr 2015, 55 (13), 1860–1869. 10.1080/10408398.2012.724480. PubMed DOI PMC
Al-Jaal B.; Salama S.; Al-Qasmi N.; Jaganjac M. Mycotoxin Contamination of Food and Feed in the Gulf Cooperation Council Countries and Its Detection. Toxicon 2019, 171, 43–50. 10.1016/j.toxicon.2019.10.003. PubMed DOI
European Union Commission. Commission Regulation (EC) No 401/2006 of 23 February 2006 Laying down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs; EU, 2006; Vol. 401/2006, p 12. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2006R0401:20100313:EN:PDF.
European Union Commission. COMMISSION REGULATION (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; EU, 2006; Vol. 1881/2006. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF.
European Union Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs (Text with EEA Relevance); EU, 2006; Vol. 364. http://data.europa.eu/eli/reg/2006/1881/oj/eng (accessed 05-28-2023).
European Union Commission. 2013/165/EU: Commission Recommendation of 27 March 2013 on the Presence of T-2 and HT-2 Toxin in Cereals and Cereal Products Text with EEA Relevance; EU, 2013; Vol. OJ L 91, (3.4.2013), , pp 12–15. https://eur-lex.europa.eu/eli/reco/2013/165/oj#PP3Contents (accessed 05-28-2023).
European Union Commission. Commission Recommendation of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding (Text with EEA Relevance) (2006/576/EC); EU, 2016. http://data.europa.eu/eli/reco/2006/576/2016-08-02/eng (accessed 05-28-2023).
European Union Commission. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed; EU, 2019. http://data.europa.eu/eli/dir/2002/32/2019-11-28/eng (accessed 05-28-2023).
Mbughuni M. M.; Jannetto P. J.; Langman L. J. Mass Spectrometry Applications for Toxicology. EJIFCC 2016, 27 (4), 272–287. PubMed PMC
Areo O. M.; Abafe O. A.; Gbashi S.; Njobeh P. B. Detection of Multi-Mycotoxins in Rooibos and Other Consumed Teas in South Africa by a Modified QuEChERS Method and Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. Food Control 2023, 143, 109255.10.1016/j.foodcont.2022.109255. DOI
You Y.; Hu Q.; Liu N.; Xu C.; Lu S.; Xu T.; Mao X. Metabolite Analysis of Alternaria Mycotoxins by LC-MS/MS and Multiple Tools. Molecules 2023, 28 (7), 3258.10.3390/molecules28073258. PubMed DOI PMC
Maragos C. M. Detection of T-2 Toxin in Wheat and Maize with a Portable Mass Spectrometer. Toxins (Basel) 2023, 15 (3), 222.10.3390/toxins15030222. PubMed DOI PMC
Ji X.; Deng T.; Xiao Y.; Jin C.; Lyu W.; Wang W.; Tang B.; Wu Z.; Yang H. Evaluation of Alternaria Toxins in Fruits, Vegetables and Their Derivatives Marketed in China Using a QuEChERS Method Coupled with Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry: Analytical Methods and Occurrence. Food Control 2023, 147, 109563.10.1016/j.foodcont.2022.109563. DOI
Leite M.; Freitas A.; Barbosa J.; Ramos F. Mycotoxins in Raw Bovine Milk: UHPLC-QTrap-MS/MS Method as a Biosafety Control Tool. Toxins 2023, 15 (3), 173.10.3390/toxins15030173. PubMed DOI PMC
Chen M.; Liu X.; Yang S.; Chen Z.; Di B.; Liu W.; Yan H. HPLC-MS/MS Method for the Simultaneous Determination of Aflatoxins in Blood: Toxicokinetics of Aflatoxin B1 and Aflatoxin M1 in Rats. Journal of Analytical Science and Technology 2022, 13 (1), 27.10.1186/s40543-022-00336-3. DOI
Tang H.; Han W.; Fei S.; Li Y.; Huang J.; Dong M.; Wang L.; Wang W.; Zhang Y. Development of Acid Hydrolysis-Based UPLC-MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products. Toxins 2023, 15 (3), 201.10.3390/toxins15030201. PubMed DOI PMC
Cai C.; Liu Y.; Tang X.; Zhang W.; Zhang Q.; Li P. Development of a Toxin-Free Competitive Immunoassay for Aflatoxin M1 Based on a Nanobody as Surrogate Calibrator. LWT 2023, 182, 114829.10.1016/j.lwt.2023.114829. DOI
Prakasham K.; Gurrani S.; Shiea J.-T.; Wu M.-T.; Wu C.-F.; Ku Y.-J.; Tsai T.-Y.; Hua H.-T.; Lin Y.-J.; Huang P.-C.; Andaluri G.; Ponnusamy V. K. Rapid Identification and Analysis of Ochratoxin-A in Food and Agricultural Soil Samples Using a Novel Semi-Automated In-Syringe Based Fast Mycotoxin Extraction (FaMEx) Technique Coupled with UHPLC-MS/MS. Molecules 2023, 28 (3), 1442.10.3390/molecules28031442. PubMed DOI PMC
Prusova N.; Behner A.; Dzuman Z.; Hajslova J.; Stranska M. Conjugated Type A Trichothecenes in Oat-Based Products: Occurrence Data and Estimation of the Related Risk. Food Control 2023, 143, 109281.10.1016/j.foodcont.2022.109281. DOI
Scheibenzuber S.; Dick F.; Asam S.; Rychlik M. Analysis of 13 Alternaria Mycotoxins Including Modified Forms in Beer. Mycotoxin Res. 2021, 37 (2), 149–159. 10.1007/s12550-021-00424-0. PubMed DOI PMC
Rodríguez-Carrasco Y.; Mañes J.; Berrada H.; Juan C. Development and Validation of a LC-ESI-MS/MS Method for the Determination of Alternaria Toxins Alternariol, Alternariol Methyl-Ether and Tentoxin in Tomato and Tomato-Based Products. Toxins (Basel) 2016, 8 (11), 328.10.3390/toxins8110328. PubMed DOI PMC
Bielecki J. Emerging Food Pathogens and Bacterial Toxins. Acta Microbiol Pol 2003, 52, 17–22. PubMed
Hernández-Cortez C.; Palma-Martínez I.; UrielGonzalez-Avila L.; Guerrero-Mandujano A.; Castro-Escarpulli R. C. S. G.; Hernández-Cortez C.; Palma-Martínez I.; UrielGonzalez-Avila L.; Guerrero-Mandujano A.; Castro-Escarpulli R. C. S. G.. Food Poisoning Caused by Bacteria (Food Toxins). In Poisoning - From Specific Toxic Agents to Novel Rapid and Simplified Techniques for Analysis; IntechOpen, 2017. 10.5772/intechopen.69953. DOI
Romero Hurtado S.; Iregui C. El Lipopolisacárido. Revista de Medicina Veterinaria 2010, 1 (19), 37–45. 10.19052/mv.783. DOI
Ramachandran G. Gram-Positive and Gram-Negative Bacterial Toxins in Sepsis. Virulence 2014, 5 (1), 213–218. 10.4161/viru.27024. PubMed DOI PMC
Foran P.; Lawrence G. W.; Shone C. C.; Foster K. A.; Dolly J. O. Botulinum Neurotoxin C1 Cleaves Both Syntaxin and SNAP-25 in Intact and Permeabilized Chromaffin Cells: Correlation with Its Blockade of Catecholamine Release. Biochemistry 1996, 35 (8), 2630–2636. 10.1021/bi9519009. PubMed DOI
Schiavo G. G.; Benfenati F.; Poulain B.; Rossetto O.; de Laureto P. P.; DasGupta B. R.; Montecucco C. Tetanus and Botulinum-B Neurotoxins Block Neurotransmitter Release by Proteolytic Cleavage of Synaptobrevin. Nature 1992, 359 (6398), 832–835. 10.1038/359832a0. PubMed DOI
Kuo S.-R.; Willingham M. C.; Bour S. H.; Andreas E. A.; Park S. K.; Jackson C.; Duesbery N. S.; Leppla S. H.; Tang W.-J.; Frankel A. E. Anthrax Toxin-Induced Shock in Rats Is Associated with Pulmonary Edema and Hemorrhage. Microbial Pathogenesis 2008, 44 (6), 467–472. 10.1016/j.micpath.2007.12.001. PubMed DOI
Duracova M.; Klimentova J.; Myslivcova Fucikova A.; Zidkova L.; Sheshko V.; Rehulkova H.; Dresler J.; Krocova Z. Targeted Mass Spectrometry Analysis of Clostridium Perfringens Toxins. Toxins (Basel) 2019, 11 (3), 177.10.3390/toxins11030177. PubMed DOI PMC
Kalb S. R.; Krilich J. C.; Dykes J. K.; Lúquez C.; Maslanka S. E.; Barr J. R. Detection of Botulinum Toxins A, B, E, and F in Foods by Endopep-MS. J. Agric. Food Chem. 2015, 63 (4), 1133–1141. 10.1021/jf505482b. PubMed DOI PMC
Rosen O.; Feldberg L.; Yamin T. S.; Dor E.; Barnea A.; Weissberg A.; Zichel R. Development of a Multiplex Endopep-MS Assay for Simultaneous Detection of Botulinum Toxins A, B and E. Sci. Rep 2017, 7 (1), 14859.10.1038/s41598-017-14911-x. PubMed DOI PMC
Drigo I.; Tonon E.; Pascoletti S.; Anniballi F.; Kalb S. R.; Bano L. Detection of Active BoNT/C and D by EndoPep-MS Using MALDI Biotyper Instrument and Comparison with the Mouse Test Bioassay. Toxins 2021, 13 (1), 10.10.3390/toxins13010010. PubMed DOI PMC
Wang H.; Hu L.; Chang X.; Hu Y.; Zhang Y.; Zhou P.; Cui X. Determination of Bacterial Toxin Toxoflavin and Fervenulin in Food and Identification of Their Degradation Products. Food Chem. 2023, 399, 134010.10.1016/j.foodchem.2022.134010. PubMed DOI
Safi A. U. R.; Mansour Salih M.; Rahman H.; Khattak B.; El Askary A.; Hussain Khalifa E.; Qasim M. Immunoaffinity-Based Mass Spectrometric Characterization of Immunoreactive Proteins of Salmonella Typhi. Saudi Journal of Biological Sciences 2023, 30 (1), 103502.10.1016/j.sjbs.2022.103502. PubMed DOI PMC
Murray P. R. What Is New in Clinical Microbiology—Microbial Identification by MALDI-TOF Mass Spectrometry. J. Mol. Diagn 2012, 14 (5), 419–423. 10.1016/j.jmoldx.2012.03.007. PubMed DOI PMC
Fagerquist C. K.; Garbus B. R.; Miller W. G.; Williams K. E.; Yee E.; Bates A. H.; Boyle S.; Harden L. A.; Cooley M. B.; Mandrell R. E. Rapid Identification of Protein Biomarkers of Escherichia Coli O157:H7 by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight-Time-of-Flight Mass Spectrometry and Top-down Proteomics. Anal. Chem. 2010, 82 (7), 2717–2725. 10.1021/ac902455d. PubMed DOI
Gagnaire J.; Dauwalder O.; Boisset S.; Khau D.; Freydiere A.-M.; Ader F.; Bes M.; Lina G.; Tristan A.; Reverdy M.-E.; Marchand A.; Geissmann T.; Benito Y.; Durand G.; Charrier J.-P.; Etienne J.; Welker M.; Van Belkum A.; Vandenesch F. Detection of Staphylococcus Aureus Delta-Toxin Production by Whole-Cell MALDI-TOF Mass Spectrometry. PLoS One 2012, 7 (7), e4066010.1371/journal.pone.0040660. PubMed DOI PMC
Thakur M. S.; Ragavan K. V. Biosensors in Food Processing. J. Food Sci. Technol. 2013, 50 (4), 625–641. 10.1007/s13197-012-0783-z. PubMed DOI PMC
Bragazzi N. L.; Amicizia D.; Panatto D.; Tramalloni D.; Valle I.; Gasparini R. Quartz-Crystal Microbalance (QCM) for Public Health: An Overview of Its Applications. Adv. Protein Chem. Struct Biol. 2015, 101, 149–211. 10.1016/bs.apcsb.2015.08.002. PubMed DOI
Lamanna J.; Scott E. Y.; Edwards H. S.; Chamberlain M. D.; Dryden M. D. M.; Peng J.; Mair B.; Lee A.; Chan C.; Sklavounos A. A.; Heffernan A.; Abbas F.; Lam C.; Olson M. E.; Moffat J.; Wheeler A. R. Digital Microfluidic Isolation of Single Cells for -Omics. Nat. Commun. 2020, 11 (1), 5632.10.1038/s41467-020-19394-5. PubMed DOI PMC
Nedelkov D.; Rasooly A.; Nelson R. W. Multitoxin Biosensor-Mass Spectrometry Analysis: A New Approach for Rapid, Real-Time, Sensitive Analysis of Staphylococcal Toxins in Food. Int. J. Food Microbiol. 2000, 60 (1), 1–13. 10.1016/S0168-1605(00)00328-7. PubMed DOI
Visciano P.; Schirone M.; Berti M.; Milandri A.; Tofalo R.; Suzzi G.. Marine Biotoxins: Occurrence, Toxicity, Regulatory Limits and Reference Methods. Frontiers in Microbiology 2016, 7.10.3389/fmicb.2016.01051 PubMed DOI PMC
Rambla-Alegre M.; Miles C. O.; de la Iglesia P.; Fernandez-Tejedor M.; Jacobs S.; Sioen I.; Verbeke W.; Samdal I. A.; Sandvik M.; Barbosa V.; Tediosi A.; Madorran E.; Granby K.; Kotterman M.; Calis T.; Diogene J. Occurrence of Cyclic Imines in European Commercial Seafood and Consumers Risk Assessment. Environmental Research 2018, 161, 392–398. 10.1016/j.envres.2017.11.028. PubMed DOI
García-Altares M.; Casanova A.; Bane V.; Diogène J.; Furey A.; De la Iglesia P. Confirmation of Pinnatoxins and Spirolides in Shellfish and Passive Samplers from Catalonia (Spain) by Liquid Chromatography Coupled with Triple Quadrupole and High-Resolution Hybrid Tandem Mass Spectrometry. Marine Drugs 2014, 12 (6), 3706–3732. 10.3390/md12063706. PubMed DOI PMC
Otero P.; Pérez S.; Alfonso A.; Vale C.; Rodríguez P.; Gouveia N. N.; Gouveia N.; Delgado J.; Vale P.; Hirama M.; Ishihara Y.; Molgó J.; Botana L. M. First Toxin Profile of Ciguateric Fish in Madeira Arquipelago (Europe). Anal. Chem. 2010, 82 (14), 6032–6039. 10.1021/ac100516q. PubMed DOI
Estevez P.; Castro D.; Pequeño-Valtierra A.; Giraldez J.; Gago-Martinez A. Emerging Marine Biotoxins in Seafood from European Coasts: Incidence and Analytical Challenges. Foods 2019, 8 (5), 149.10.3390/foods8050149. PubMed DOI PMC
Burrell S.; Gunnarsson T.; Gunnarsson K.; Clarke D.; Turner A. D. First Detection of Paralytic Shellfish Poisoning (PSP) Toxins in Icelandic Mussels (Mytilus Edulis): Links to Causative Phytoplankton Species. Food Control 2013, 31 (2), 295–301. 10.1016/j.foodcont.2012.10.002. DOI
SCHWARZ M.; JANDOVÁ K.; STRUK I.; MAREŠOVÁ D.; POKORNÝ J.; RILJAK V. Low Dose Domoic Acid Influences Spontaneous Behavior in Adult Rats. Physiological Research 2014, 63, 369–376. 10.33549/physiolres.932636. PubMed DOI
Mafra L. L.; Bricelj V. M.; Fennel K. Domoic Acid Uptake and Elimination Kinetics in Oysters and Mussels in Relation to Body Size and Anatomical Distribution of Toxin. Aquatic Toxicology 2010, 100 (1), 17–29. 10.1016/j.aquatox.2010.07.002. PubMed DOI
Nielsen L. T.; Hansen P. J.; Krock B.; Vismann B. Accumulation, Transformation and Breakdown of DSP Toxins from the Toxic Dinoflagellate Dinophysis Acuta in Blue Mussels, Mytilus Edulis. Toxicon 2016, 117, 84–93. 10.1016/j.toxicon.2016.03.021. PubMed DOI
Louzao M. C.; Vilariño N.; Vale C.; Costas C.; Cao A.; Raposo-Garcia S.; Vieytes M. R.; Botana L. M. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022, 20 (3), 198.10.3390/md20030198. PubMed DOI PMC
Li A.; Ma J.; Cao J.; McCarron P. Toxins in Mussels (Mytilus Galloprovincialis) Associated with Diarrhetic Shellfish Poisoning Episodes in China. Toxicon 2012, 60 (3), 420–425. 10.1016/j.toxicon.2012.04.339. PubMed DOI
Sun P.; Leeson C.; Zhi X.; Leng F.; Pierce R. H.; Henry M. S.; Rein K. S. Characterization of an Epoxide Hydrolase from the Florida Red Tide Dinoflagellate, Karenia Brevis. Phytochemistry 2016, 122, 11–21. 10.1016/j.phytochem.2015.11.002. PubMed DOI PMC
Traylor J.; Singhal M.. Ciguatera Toxicity. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2023. PubMed
Pottier I.; Lewis R. J.; Vernoux J.-P. Ciguatera Fish Poisoning in the Caribbean Sea and Atlantic Ocean: Reconciling the Multiplicity of Ciguatoxins and Analytical Chemistry Approach for Public Health Safety. Toxins 2023, 15 (7), 453.10.3390/toxins15070453. PubMed DOI PMC
Hidalgo J.; Liberona J. L.; Molgó J.; Jaimovich E. Pacific Ciguatoxin-1b Effect over Na+ and K+ Currents, Inositol 1,4,5-Triphosphate Content and Intracellular Ca2+ Signals in Cultured Rat Myotubes. Br. J. Pharmacol. 2002, 137 (7), 1055–1062. 10.1038/sj.bjp.0704980. PubMed DOI PMC
Vijayakumar G.; Venkatesan S. A.; Kannan V. A.; Perumal S.. Chapter8 - Detection of Food Toxins, Pathogens, and Microorganisms Using Nanotechnology-Based Sensors. In Nanotechnology Applications for Food Safety and Quality Monitoring; Sharma A., Vijayakumar P. S., Prabhakar E. P. K., Kumar R., Eds.; Academic Press, 2023; pp 155–170. 10.1016/B978-0-323-85791-8.00022-7. DOI
Karunarathne A.; Bhalla A.; Sethi A.; Perera U.; Eddleston M. Importance of Pesticides for Lethal Poisoning in India during 1999 to 2018: A Systematic Review. BMC Public Health 2021, 21, 1441.10.1186/s12889-021-11156-2. PubMed DOI PMC
Blay P.; Hui J. P. M.; Chang J.; Melanson J. E. Screening for Multiple Classes of Marine Biotoxins by Liquid Chromatography-High-Resolution Mass Spectrometry. Anal Bioanal Chem. 2011, 400 (2), 577–585. 10.1007/s00216-011-4772-2. PubMed DOI
Bosch-Orea C.; Sanchís J.; Farré M. Analysis of Highly Polar Marine Biotoxins in Seawater by Hydrophilic Interaction Liquid Chromatography Coupled to High Resolution Mass Spectrometry. MethodsX 2021, 8, 101370.10.1016/j.mex.2021.101370. PubMed DOI PMC
Kolrep F.; Hessel S.; These A.; Ehlers A.; Rein K.; Lampen A. Differences in Metabolism of the Marine Biotoxin Okadaic Acid by Human and Rat Cytochrome P450 Monooxygenases. Arch. Toxicol. 2016, 90 (8), 2025–2036. 10.1007/s00204-015-1591-9. PubMed DOI
Kolrep F.; Rein K.; Lampen A.; Hessel-Pras S. Metabolism of Okadaic Acid by NADPH-Dependent Enzymes Present in Human or Rat Liver S9 Fractions Results in Different Toxic Effects. Toxicology in Vitro 2017, 42, 161–170. 10.1016/j.tiv.2017.04.009. PubMed DOI
Lefebvre D.; Blanco-Valle K.; Hennekinne J.-A.; Simon S.; Fenaille F.; Becher F.; Nia Y. Multiplex Detection of 24 Staphylococcal Enterotoxins in Culture Supernatant Using Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Toxins (Basel) 2022, 14 (4), 249.10.3390/toxins14040249. PubMed DOI PMC
Barr J. R.; Moura H.; Boyer A. E.; Woolfitt A. R.; Kalb S. R.; Pavlopoulos A.; McWilliams L. G.; Schmidt J. G.; Martinez R. A.; Ashley D. L. Botulinum Neurotoxin Detection and Differentiation by Mass Spectrometry. Emerg Infect Dis 2005, 11 (10), 1578–1583. 10.3201/eid1110.041279. PubMed DOI PMC
Lee S. Y.; Woo S. Y.; Tian F.; Park J. B.; Choi K.-S.; Chun H. S. Simultaneous Determination of Okadaic Acid, Dinophysistoxin-1, Dinophysistoxin-2, and Dinophysistoxin-3 Using Liquid Chromatography-Tandem Mass Spectrometry in Raw and Cooked Food Matrices. Food Control 2022, 139, 109068.10.1016/j.foodcont.2022.109068. DOI
Beach D. G.; Zamlynny L.; MacArthur M.; Miles C. O. Liquid Chromatography-High-Resolution Tandem Mass Spectrometry of Anatoxins, Including New Conjugates and Reduction Products. Anal Bioanal Chem. 2023, 415, 5281.10.1007/s00216-023-04836-y. PubMed DOI PMC
Aparicio-Muriana M. d. M.; Lara F. J.; Olmo-Iruela M. D.; Garcia-Campana A. M. Determination of Multiclass Cyanotoxins in Blue-Green Algae (BGA) Dietary Supplements Using Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry. Toxins 2023, 15 (2), 127.10.3390/toxins15020127. PubMed DOI PMC
Li P.; Lu R.; Zhu J.; Ke Q.; Wang D.; Wang Y.; Zhang C.; Lu X.; Zhao M.; Wang Z.; Pan L.; Zhang M.; Ying J.; Li S. Simultaneous Determination of 13 Paralytic Shellfish Toxins and Tetrodotoxin in Marine Shellfish by Porous Graphitic Carbon Solid-Phase Extraction and Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry. Food Additives & Contaminants: Part A 2023, 40 (1), 147–158. 10.1080/19440049.2022.2143576. PubMed DOI
Urugo M. M.; Tringo T. T. Naturally Occurring Plant Food Toxicants and the Role of Food Processing Methods in Their Detoxification. Int. J. Food Sci. 2023, 2023, 9947841.10.1155/2023/9947841. PubMed DOI PMC
Colegate S. M.; Gardner D. R.; Lee S. T.. Plant-Associated Natural Food Toxins. In Handbook of Food Chemistry; Cheung P. C. K., Mehta B. M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2015; pp 753–783. 10.1007/978-3-642-36605-5_9. DOI
Arigò A.; Rigano F.; Russo M.; Trovato E.; Dugo P.; Mondello L. Dietary Intake of Coumarins and Furocoumarins through Citrus Beverages: A Detailed Estimation by a HPLC-MS/MS Method Combined with the Linear Retention Index System. Foods 2021, 10 (7), 1533.10.3390/foods10071533. PubMed DOI PMC
Rizzo S.; Celano R.; Piccinelli A. L.; Serio S.; Russo M.; Rastrelli L. An Analytical Platform for the Screening and Identification of Pyrrolizidine Alkaloids in Food Matrices with High Risk of Contamination. Food Chem. 2023, 406, 135058.10.1016/j.foodchem.2022.135058. PubMed DOI
Bessaire T.; Ernest M.; Christinat N.; Carrères B.; Panchaud A.; Badoud F. High Resolution Mass Spectrometry Workflow for the Analysis of Food Contaminants: Application to Plant Toxins, Mycotoxins and Phytoestrogens in Plant-Based Ingredients. Food Addit Contam Part A Chem. Anal Control Expo Risk Assess 2021, 38 (6), 978–996. 10.1080/19440049.2021.1902575. PubMed DOI
Kalb S. R.; Schieltz D. M.; Becher F.; Astot C.; Fredriksson S.-Å.; Barr J. R. Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples. Toxins (Basel) 2015, 7 (12), 4881–4894. 10.3390/toxins7124854. PubMed DOI PMC
Liang X.; Christensen J. H.; Nielsen N. J. Enhancing the Power of Liquid Chromatography-Mass Spectrometry for Chemical Fingerprinting of Phytotoxins in the Environment. Journal of Chromatography A 2021, 1642, 462027.10.1016/j.chroma.2021.462027. PubMed DOI
Hosu I. S.; Sobaszek M.; Ficek M.; Bogdanowicz R.; Coffinier Y. Boron-Doped Carbon Nanowalls for Fast and Direct Detection of Cytochrome C and Ricin by Matrix-Free Laser Desorption/Ionization Mass Spectrometry. Talanta 2023, 252, 123778.10.1016/j.talanta.2022.123778. PubMed DOI
Chen L.; Zhang Q.; Yi Z.; Chen Y.; Xiao W.; Su D.; Shi W. Risk Assessment of (Herbal) Teas Containing Pyrrolizidine Alkaloids (PAs) Based on Margin of Exposure Approach and Relative Potency (REP) Factors. Foods 2022, 11 (19), 2946.10.3390/foods11192946. PubMed DOI PMC
Park H.; Cho Y.; Lee J.; Lee K. M.; Kim H. J.; Lee J.; Bahn Y.-S.; Son J. Evaluation and Monitoring of the Natural Toxin Ptaquiloside in Bracken Fern, Meat, and Dairy Products. Toxins 2023, 15 (3), 231.10.3390/toxins15030231. PubMed DOI PMC
Dosoky N. S.; Satyal P.; Setzer W. N. Authentication of Citrus Spp. Cold-Pressed Essential Oils by Their Oxygenated Heterocyclic Components. Molecules 2022, 27 (19), 6277.10.3390/molecules27196277. PubMed DOI PMC
Makovi C. M.; Parker C. H.; Zhang K. Determination of Amygdalin in Apricot Kernels and Almonds Using LC-MS/MS. J. AOAC Int. 2023, 106 (2), 457–463. 10.1093/jaoacint/qsac154. PubMed DOI
Rizzo S.; Celano R.; Piccinelli A. L.; Russo M.; Rastrelli L. Target Screening Method for the Quantitative Determination of 118 Pyrrolizidine Alkaloids in Food Supplements, Herbal Infusions, Honey and Teas by Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Food Chem. 2023, 423, 136306.10.1016/j.foodchem.2023.136306. PubMed DOI
Gruber-Dorninger C.; Novak B.; Nagl V.; Berthiller F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem. 2017, 65 (33), 7052–7070. 10.1021/acs.jafc.6b03413. PubMed DOI
Thompson L. A.; Darwish W. S. Environmental Chemical Contaminants in Food: Review of a Global Problem. J. Toxicol 2019, 2019, 2345283.10.1155/2019/2345283. PubMed DOI PMC
Sage A.; Taylor P.; Stahl-Zeng J. Novel Methods Using Mass Spectrometry for Food Safety—From Contamination to Nutrition. Column 2018, 14 (5), 13–19.
Vass A.; Robles-Molina J.; Pérez-Ortega P.; Gilbert-López B.; Dernovics M.; Molina-Díaz A.; García-Reyes J. F. Study of Different HILIC, Mixed-Mode, and Other Aqueous Normal-Phase Approaches for the Liquid Chromatography/Mass Spectrometry-Based Determination of Challenging Polar Pesticides. Anal Bioanal Chem. 2016, 408 (18), 4857–4869. 10.1007/s00216-016-9589-6. PubMed DOI
Gopalakrishnan S.; Ghosh R.; Renganathan T.; Pushpavanam S. Sensitive and Selective Determination of Triclosan Using Visual Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 254, 119623.10.1016/j.saa.2021.119623. PubMed DOI
Morgan M. K.; Clifton M. S. Exposure to Triclosan and Bisphenol Analogues B, F, P, S and Z in Repeated Duplicate-Diet Solid Food Samples of Adults. Toxics 2021, 9 (3), 47.10.3390/toxics9030047. PubMed DOI PMC
Wichert W. R. A.; Dhummakupt E. S.; Zhang C.; Mach P. M.; Bernhards R. C.; Glaros T.; Manicke N. E. Detection of Protein Toxin Simulants from Contaminated Surfaces by Paper Spray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2019, 30 (8), 1406–1415. 10.1007/s13361-019-02141-6. PubMed DOI
Prata R.; López-Ruiz R.; Petrarca M. H.; Teixeira Godoy H.; Garrido Frenich A.; Romero-González R. Targeted and Non-Targeted Analysis of Pesticides and Aflatoxins in Baby Foods by Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Food Control 2022, 139, 109072.10.1016/j.foodcont.2022.109072. DOI
Thuy Q. C.; Phuong P. T.; Thien T. L. T.; Minh B. Q. Determination of Seven Parabens in Surface Water Samples by UHPLC-MS/MS and Solid-Phase Extraction. Vietnam Journal of Chemistry 2022, 60 (6), 738–743. 10.1002/vjch.202200016. DOI
Bian L.; Li S.; Ge X.; Wang M.; Li K.; Wang X. Determination of Bisphenols, Triclosan, and Parabens in Bottled Water by Solid-Phase Microextraction Combined with Gas Chromatography-Tandem Mass Spectrometry and Assessment of the Associated Health Risk. Journal of Food Composition and Analysis 2023, 123, 105548.10.1016/j.jfca.2023.105548. DOI
Mou B.; Zuo C.; Chen L.; Xie H.; Zhang W.; Wang Q.; Wen L.; Gan N. On-Site Simultaneous Determination of Neonicotinoids, Carbamates, and Phenyl Pyrazole Insecticides in Vegetables by QuEChERS Extraction on Nitrogen and Sulfur Co-Doped Carbon Dots and Portable Mass Spectrometry. Journal of Chromatography A 2023, 1689, 463744.10.1016/j.chroma.2022.463744. PubMed DOI
Zhang S.; He Z.; Zeng M.; Chen J. Impact of Matrix Species and Mass Spectrometry on Matrix Effects in Multi-Residue Pesticide Analysis Based on QuEChERS-LC-MS. Foods 2023, 12 (6), 1226.10.3390/foods12061226. PubMed DOI PMC
Koloka O.; Boti V.; Albanis T.; Konstantinou I. Accurate Determination of Pesticide Residues in Milk by Sonication-QuEChERS Extraction and LC-LTQ/Orbitrap Mass Spectrometry. Separations 2023, 10 (3), 146.10.3390/separations10030146. DOI
Stoyke M.; Becker R.; Brockmeyer J.; Jira W.; Popping B.; Uhlig S.; Wittke S. German Government Official Methods Board Points the Way Forward: Launch of a New Working Group for Mass Spectrometry for Protein Analysis to Detect Food Fraud and Food Allergens. Journal of AOAC INTERNATIONAL 2019, 102 (5), 1280–1285. 10.1093/jaoac/102.5.1280. PubMed DOI
Dou X.; Zhang L.; Yang R.; Wang X.; Yu L.; Yue X.; Ma F.; Mao J.; Wang X.; Zhang W.; Li P. Mass Spectrometry in Food Authentication and Origin Traceability. Mass Spectrom Rev. 2023, 42, e2177910.1002/mas.21779. PubMed DOI
Kosek V.; Uttl L.; Jíru M.; Black C.; Chevallier O.; Tomaniová M.; Elliott C. T.; Hajšlová J. Ambient Mass Spectrometry Based on REIMS for the Rapid Detection of Adulteration of Minced Meats by the Use of a Range of Additives. Food Control 2019, 104, 50–56. 10.1016/j.foodcont.2018.10.029. DOI
Piras C.; Hale O. J.; Reynolds C. K.; Jones A. K.; Taylor N.; Morris M.; Cramer R. Speciation and Milk Adulteration Analysis by Rapid Ambient Liquid MALDI Mass Spectrometry Profiling Using Machine Learning. Sci. Rep 2021, 11 (1), 3305.10.1038/s41598-021-82846-5. PubMed DOI PMC
Nichani K.; Uhlig S.; Colson B.; Hettwer K.; Simon K.; Bönick J.; Uhlig C.; Kemmlein S.; Stoyke M.; Gowik P.; Huschek G.; Rawel H. M. Development of Non-Targeted Mass Spectrometry Method for Distinguishing Spelt and Wheat. Foods 2023, 12 (1), 141.10.3390/foods12010141. PubMed DOI PMC
Ding B.; Tao Y.; Xie J.; Zeng G.; Huang H. Traceability Evaluation of Wild and Cultivated Cordyceps Sinensis by Elemental Analysis and GasBench II Coupled to Stable Isotope Ratio Mass Spectrometry. Food Anal. Methods 2023, 16 (3), 515–524. 10.1007/s12161-022-02433-w. DOI
Agriopoulou S.; Stamatelopoulou E.; Varzakas T. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods 2020, 9 (4), 518.10.3390/foods9040518. PubMed DOI PMC
Liew W.-P.-P.; Mohd-Redzwan S.. Mycotoxin: Its Impact on Gut Health and Microbiota. Frontiers in Cellular and Infection Microbiology 2018, 8.10.3389/fcimb.2018.00060 PubMed DOI PMC
Turner P. C.; Snyder J. A. Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins. Toxins (Basel) 2021, 13 (5), 314.10.3390/toxins13050314. PubMed DOI PMC
Donnelly R.; Elliott C.; Zhang G.; Baker B.; Meneely J. Understanding Current Methods for Sampling of Aflatoxins in Corn and to Generate a Best Practice Framework. Toxins 2022, 14 (12), 819.10.3390/toxins14120819. PubMed DOI PMC
Scheerlinck E.; Dhaenens M.; Van Soom A.; Peelman L.; De Sutter P.; Van Steendam K.; Deforce D. Minimizing Technical Variation during Sample Preparation Prior to Label-Free Quantitative Mass Spectrometry. Anal. Biochem. 2015, 490, 14–19. 10.1016/j.ab.2015.08.018. PubMed DOI
Piehowski P. D.; Petyuk V. A.; Orton D. J.; Xie F.; Ramirez-Restrepo M.; Engel A.; Lieberman A. P.; Albin R. L.; Camp D. G.; Smith R. D.; Myers A. J.; et al. Sources of Technical Variability in Quantitative LC-MS Proteomics: Human Brain Tissue Sample Analysis. J. Proteome Res. 2013, 12 (5), 2128–2137. 10.1021/pr301146m. PubMed DOI PMC
Loi M.; Logrieco A. F.; Pusztahelyi T.; Leiter É.; Hornok L.; Pócsi I.. Advanced Mycotoxin Control and Decontamination Techniques in View of an Increased Aflatoxin Risk in Europe Due to Climate Change. Frontiers in Microbiology 2023, 13.10.3389/fmicb.2022.1085891 PubMed DOI PMC
Hansen H. C. B.; Hilscherova K.; Bucheli T. D. Natural Toxins: Environmental Contaminants Calling for Attention. Environmental Sciences Europe 2021, 33 (1), 112.10.1186/s12302-021-00543-6. DOI
FSSAI . MANUAL OF METHODS OF ANALYSIS OF FOODS-Mycotoxins; Food Safety and Standards Authority of India: India, 2016; p 64. https://fssai.gov.in/upload/advisories/2018/02/5a93ebeeda71cManual_Mycotoxins_25_05_2016(1).pdf.
Cinar A.; Onbası E.; Cinar A.; Onbası E.. Mycotoxins: The Hidden Danger in Foods. In Mycotoxins and Food Safety; IntechOpen, 2019. 10.5772/intechopen.89001. DOI
Iqbal S. Z. Mycotoxins in Food, Recent Development in Food Analysis and Future Challenges; a Review. Current Opinion in Food Science 2021, 42, 237–247. 10.1016/j.cofs.2021.07.003. DOI
Tittlemier S. a.; Cramer B.; Dall’Asta C.; Iha M. h.; Lattanzio V. m. t.; Maragos C.; Solfrizzo M.; Stranska M.; Stroka J.; Sumarah M. Developments in Mycotoxin Analysis: An Update for 2018–19. World Mycotoxin Journal 2020, 13 (1), 3–24. 10.3920/WMJ2019.2535. DOI
Renaud J. B.; Miller J. D.; Sumarah M. W. Mycotoxin Testing Paradigm: Challenges and Opportunities for the Future. J. AOAC Int. 2019, 102 (6), 1681–1688. 10.5740/jaoacint.19-0046. PubMed DOI
Lattanzio V. M. T.; Solfrizzo M.; Powers S.; Visconti A. Simultaneous Determination of Aflatoxins, Ochratoxin A and Fusarium Toxins in Maize by Liquid Chromatography/Tandem Mass Spectrometry after Multitoxin Immunoaffinity Cleanup. Rapid Commun. Mass Spectrom. 2007, 21 (20), 3253–3261. 10.1002/rcm.3210. PubMed DOI
Cheng H.-L.; Wang F.-L.; Zhao Y.-G.; Zhang Y.; Jin M.-C.; Zhu Y. Simultaneous Determination of Fifteen Toxic Alkaloids in Meat Dishes and Vegetable Dishes Using Double Layer Pipette Tip Magnetic Dispersive Solid Phase Extraction Followed by UFLC-MS/MS. Anal. Methods 2018, 10 (10), 1151–1162. 10.1039/C7AY02608K. DOI
Wang R.; Guo L.; Wang P.; Su X.; Song Z.; Lin G.; Zhu R. [Simultaneous determination of 37 mycotoxins in grain and animal feed by impurity adsorption purification coupled with ultra-performance liquid chromatography-tandem mass spectrometry]. Se Pu 2020, 38 (7), 817–825. 10.3724/SP.J.1123.2019.12013. PubMed DOI
Nualkaw K.; Poapolathep S.; Zhang Z.; Zhang Q.; Giorgi M.; Li P.; Logrieco A. F.; Poapolathep A. Simultaneous Determination of Multiple Mycotoxins in Swine, Poultry and Dairy Feeds Using Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry. Toxins 2020, 12 (4), 253.10.3390/toxins12040253. PubMed DOI PMC
Albero B.; Fernández-Cruz M. L.; Pérez R. A. Simultaneous Determination of 15 Mycotoxins in Aquaculture Feed by Liquid Chromatography-Tandem Mass Spectrometry. Toxins 2022, 14 (5), 316.10.3390/toxins14050316. PubMed DOI PMC
Berthiller F.; Crews C.; Dall’Asta C.; Saeger S. D.; Haesaert G.; Karlovsky P.; Oswald I. P.; Seefelder W.; Speijers G.; Stroka J. Masked Mycotoxins: A Review. Mol. Nutr Food Res. 2013, 57 (1), 165–186. 10.1002/mnfr.201100764. PubMed DOI PMC
Fiby I.; Sopel M. M.; Michlmayr H.; Adam G.; Berthiller F. Development and Validation of an LC-MS/MS Based Method for the Determination of Deoxynivalenol and Its Modified Forms in Maize. Toxins 2021, 13 (9), 600.10.3390/toxins13090600. PubMed DOI PMC
Zhang Y.; Chen T.; Chen D.; Liang W.; Lu X.; Zhao C.; Xu G. Suspect and Nontarget Screening of Mycotoxins and Their Modified Forms in Wheat Products Based on Ultrahigh-Performance Liquid Chromatography-High Resolution Mass Spectrometry. Journal of Chromatography A 2023, 1708, 464370.10.1016/j.chroma.2023.464370. PubMed DOI
Pascari X.; Weigel S.; Marin S.; Sanchis V.; Maul R. Detection and Quantification of Zearalenone and Its Modified Forms in Enzymatically Treated Oat and Wheat Flour. J. Food Sci. Technol. 2023, 60 (4), 1367–1375. 10.1007/s13197-023-05683-6. PubMed DOI PMC
EMR . Global Mycotoxin Testing Market Report and Forecast 2023–2028; EMR, 2022. https://www.expertmarketresearch.com/reports/mycotoxin-testing-market (accessed 07-03-2023).
BaySpec Inc . ContinuityTM Portable Mass Spectrometer; BaySpec, 2023. https://www.bayspec.com/products/high-sensitivity-portable-mass-spectrometer/ (accessed 07-03-2023).
Nolan P.; Auer S.; Spehar A.; Oplatowska-Stachowiak M.; Campbell K. Evaluation of Mass Sensitive Micro-Array Biosensors for Their Feasibility in Multiplex Detection of Low Molecular Weight Toxins Using Mycotoxins as Model Compounds. Talanta 2021, 222, 121521.10.1016/j.talanta.2020.121521. PubMed DOI