Advanced LC-MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
This work has received funding from the European U
MultiCoop
PubMed
29273904
PubMed Central
PMC5775372
DOI
10.1007/s00216-017-0750-7
PII: 10.1007/s00216-017-0750-7
Knihovny.cz E-zdroje
- Klíčová slova
- Fungal secondary metabolites, Liquid chromatography–high-resolution mass spectrometry, Liquid chromatography–tandem mass spectrometry, Metabolomics, Validation,
- MeSH
- analýza potravin metody MeSH
- chromatografie afinitní metody MeSH
- extrakce na pevné fázi metody MeSH
- houby izolace a purifikace metabolismus MeSH
- jedlá semena chemie metabolismus mikrobiologie MeSH
- metabolomika metody MeSH
- mykotoxiny analýza metabolismus MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mykotoxiny MeSH
Liquid chromatography (LC) coupled with mass spectrometry (MS) is widely used for the determination of mycotoxins in cereals and cereal-based products. In addition to the regulated mycotoxins, for which official control is required, LC-MS is often used for the screening of a large range of mycotoxins and/or for the identification and characterization of novel metabolites. This review provides insight into the LC-MS methods used for the determination of co-occurring mycotoxins with special emphasis on multiple-analyte applications. The first part of the review is focused on targeted LC-MS approaches using cleanup methods such as solid-phase extraction and immunoaffinity chromatography, as well as on methods based on minimum cleanup (quick, easy, cheap, effective, rugged, and safe; QuEChERS) and dilute and shoot. The second part of the review deals with the untargeted determination of mycotoxins by LC coupled with high-resolution MS, which includes also metabolomics techniques to study the fate of mycotoxins in plants.
Zobrazit více v PubMed
Sarwar MH, Sarwar MF, Sarwar M, Qadri NA, Moghal S. The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J Cereals Oilseeds. 2013;4(3):32–35. 10.5897/JCO12.023.
Food and Agriculture Organization. FAO cereal supply and demand brief. http://www.fao.org/worldfoodsituation/csdb/en/ (2017). Accessed 26 Aug 2017.
Bhat RV, Miller JD. Mycotoxins and food supply. http://www.fao.org/docrep/U3550t/u3550t0e.htm. Accessed 26 Aug 2017.
European Commission. European Commission Decision C (2015) 2453: Horizon 2020 Work Programme 2014-2015: food security, sustainable agriculture and forestry, marine and maritime and inland water research and bioeconomy (revised). 2015. https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/main/h2020-wp1415-food_en.pdf.
Krska R, de Nijs M, McNerney O, Pichler M, Edwards S, Suman M, et al. Safe food and feed through an integrated toolbox for mycotoxin management: the MyToolBox approach. World Mycotoxin J. 2016;9(4):487–95. 10.3920/WMJ2016.2136.
Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B. Food and indoor fungi. Utrecht: CBS-KNAW Fungal Biodiversity Centre; 2010. p. 390.
Moss MO. Secondary metabolism and food intoxication – molds. J Appl Bacteriol. 1992;73(s21):80s–88s. 10.1111/j.1365-2672.1992.tb03627.x. PubMed
Sweeney MJ, Dobson ADW. Molecular biology of mycotoxin biosynthesis. FEMS Microbiol Lett. 1999;175(2):149–63. 10.1111/j.1574-6968.1999.tb13614.x. PubMed
Placinta CM, D'Mello JPF, Macdonald AMC. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol. 1999;78(1–2):21–37. 10.1016/S0377-8401(98)00278-8.
Medina A, Valle-Algarra FM, Mateo R, Gimeno-Adelantado JV, Mateo F, Jimenez M. Survey of the mycobiota of Spanish malting barley and evaluation of the mycotoxin producing potential of species of Alternaria, Aspergillus and Fusarium. Int J Food Microbiol. 2006;108(2):196–203. 10.1016/j.ijfoodmicro.2005.12.003. PubMed
Turner NW, Subrahmanyam S, Piletsky SA. Analytical methods for determination of mycotoxins: a review. Anal Chim Acta. 2009;632(2):168–80.10.1016/j.aca.2008.11.010. PubMed
Creepy E. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett. 2002;127(1–3):19–28. 10.1016/S0378-4274(01)00479-9. PubMed
Pereira VL, Fernandes JO, Cunha SC. Mycotoxins in cereals and related foodstuffs: a review on occurrence and recent methods of analysis. Trends Food Sci Technol. 2014;36(2):96–136. 10.1016/j.tifs.2014.01.005.
European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006R1881&from=EN (2016). Accessed 26 Aug 2017.
European Commission. Commission Regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32007R1126&from=EN (2007). Accessed 26 Aug 2017.
Krska R, Schubert-Ullrich P, Molinelli A, Sulyok M, MacDonald S, Crew C. Mycotoxin analysis: an update. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008;25(2):152–63. 10.1080/02652030701765723. PubMed
Anumol T, Lehotay SJ, Stevens J, Zweigenbaum J. Comparison of veterinary drug residue results in animal tissues by ultrahigh-performance liquid chromatography coupled to triple quadrupole or quadrupole-time-of-flight tandem mass spectrometry after different sample preparation methods, including use of a commercial lipid removal product. Anal Bioanal Chem. 2017;409(10):2639–53. 10.1007/s00216-017-0208-y. PubMed
Holcapek M, Jirasko R, Lisa M. Recent developments in liquid chromatography-mass spectrometry and related techniques. J Chromatogr A. 2012;1259:3–15. 10.1016/j.chroma.2012.08.072. PubMed
Hird SJ, Lau BP-Y, Schuhmacher R, Krska R. Liquid chromatography-mass spectrometry for the determination of chemical contaminants in food. Trends Anal Chem. 2014;59:59–72. 10.1016/j.trac.2014.04.005.
Stroka J, Maragos CM. Challenges in analysis of multiple mycotoxins. World Mycotoxin J. 2016;9(5):847–61. 10.3920/WMJ2016.2038.
Maragos CM, Busman M. Rapid and advanced tools for mycotoxin analysis: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010;27(5):688–700.10.1080/19440040903515934. PubMed
Bueno D, Istamboulie G, Munoz R, Marty JL. Determination of mycotoxins in food: a review of bioanalytical to analytical methods. Appl Spectrosc Rev. 2015;50(9):728–74. 10.1080/05704928.2015.1072092.
Turner NW, Bramhmbhatt H, Szabo-Vezse M, Alessandro P, Coker R, Piletsky SA. Analytical methods for determination of mycotoxins: an update. Anal Chim Acta. 2015;901:12–33. 10.1016/j.aca.2015.10.013. PubMed
Anfossi L, Giovannoli C, Baggiani C. Mycotoxin detection. Curr Opin Biotechnol. 2016;37:120–6. 10.1016/j.copbio.2015.11.005. PubMed
Berthiller F, Burdaspal PA, Crews C, Iha MH, Krska R, Lattanzio VMT, et al. Developments in mycotoxin analysis: an update for 2012-2013. World Mycotoxin J. 2014;7(1):3–33. 10.3920/WMJ2013.1637.
Berthiller F, Breda C, Crews C, Iha MH, Krska R, Lattanzio VMT, et al. Developments in mycotoxin analysis: an update for 2013-2014. World Mycotoxin J. 2015;8(1):5–35. 10.3920/WMJ2014.1840.
Berthiller F, Breda C, Crews C, Iha MH, Krska R, Lattanzio VMT, et al. Developments in mycotoxin analysis: an update for 2014-2015. World Mycotoxin J. 2016;9(1):5–30. 10.3920/WMJ2015.1998.
Berthiller F, Breda C, Crews C, Iha MH, Krska R, Lattanzio VMT, et al. Developments in mycotoxin analysis: an update for 2015-2016. World Mycotoxin J. 2017;10(1):5–29. 10.3920/WMJ2016.2138.
European Commission. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC). http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32002D0657&from=EN(2002). Accessed 26 Aug 2017.
Murray KK, Boyd RK, Eberlin MN, Langley GJ, Li L, Naito Y. Definitions of terms related to mass spectrometry (IUPAC recommendation 2013). Pure Appl Chem. 2013;85(7):1515–609. 10.1351/PAC-REC-06-04-06.
Romer Labs. Mycotoxin testing. https://www.romerlabs.com/en/analytes/mycotoxins/ (2017).
Merck. Mycotoxins - biotoxin and mycotoxin standards. http://www.sigmaaldrich.com/analytical-chromatography/analytical-products.html?TablePage=9638511 (2017)
European Commission. Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006R0401&from=en (2006). Accessed 26 Aug 2017.
European Commission Directorate-General for Health and Food Safety. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed (SANTE 11945/2015). 2015. https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_11945.pdf. Accessed 26 Aug 2017.
International Organization for Standardization. ISO guide 13528:2015(en) statistical methods for use in proficiency zesting by interlaboratory comparison. 2015. Available from https://www.iso.org/obp/ui/#iso:std:iso:13528:ed-2:v2:en.
Malachova A, Sulyok M, Beltran E, Berthiller F, Krska R. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J Chromatogr A. 2014;1362:145–56. 10.1016/j.chroma.2014.08.037. PubMed
Federal Institute for Materials Research and Testing. EPTIS. http://www.eptis.org/index.htm (2017).
De Girolamo A, Ciasca B, Stroka J, Bratinova S, Pascale M, Visconti A, et al. Performance evaluation of LC-MS/MS methods for multi-mycotoxin determination in maize and wheat by means of international proficiency testing. Trends Anal Chem. 2017;86:22–234. 10.1016/j.trac.2016.11.005.
Berthiller F, Schuhmacher R, Buttinger G, Krska R. Rapid simultaneous determination of major type A-and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2005; 1062(2):209–2016. 10.1016/j.chroma.2004.11.011 PubMed
Ren Y, Zhang Y, Shao S, Cai Z, Feng L, Pan H, et al. Simultaneous determination of multi-component mycotoxin contaminants in food and feed by ultra-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2007;1143(1–2):48–64. 10.1016/j.chroma.2006.12.064. PubMed
Lattanzio VMT, Solfrizzo M, Powers S, Visconti A. Simultaneous determination of aflatoxins, ochratoxin A, and Fusarium toxins in maize by liquid chromatography/tandem mass spectrometry after multitoxin immunoaffinity cleanup. Rapid Commun Mass Spectrom. 2007;21(20):3253–61. 10.1002/rcm.3210. PubMed
Vaclavikova M, MacMahon S, Zhang K, Begley TH. Application of single immunoaffinity clean-up for simultaneous determination of regulated mycotoxins in cereals and nuts. Talanta. 2013;117:345–51. 10.1016/j.talanta.2013.09.007. PubMed
Lattanzio VMT, Ciasca B, Powers S, Visconti A. Improved method for the simultaneous determination of aflatoxins, ochratoxin A and Fusarium toxins in cereals and derived products by liquid chromatography-tandem mass spectrometry after multi-toxin immunoaffinity clean up. J Chromatogr A. 2014;1354:139–43. 10.1016/j.chroma.2014.05.069. PubMed
Wilcox J, Donnelly C, Leeman D, Marley E. The use of immunoaffinity columns connected in tandem for selective and cost-effective mycotoxin clean-up prior to multi-mycotoxin liquid chromatographic-tandem mass spectrometric analysis in food matrices. J Chromatogr A. 2015;1400:91–97. 10.1016/j.chroma.2015.04.053. PubMed
Desmachelier A, Oberson J, Tella P, Gremaud E, Seefelder W, Mottier P. Development and comparison of two mulriresidue methods for the analysis of 17 mycotoxins in cereals by liquid chromatography electrospray ionization tandem mass spectrometry. J Agric Food Chem. 2010;58(13):7510–19. 10.1021/jf100891m. PubMed
Fernandez PJ, Barros N, Santo JL, Camara J. High-throughput analytical strategy based on modified QuEChERS extraction and dispersive solid-phase extraction clean-up followed by liquid chromatography-triple-quadrupole tandem mass spectrometry for quantification of multiclass mycotoxins in cereals. Food Anal Methods. 2015;8(4):841–56. 10.1007/s12161-014-9947-y.
Lacina O, Zachariasova M, Urbanova J, Vaclavikova M, Cajka T, Hajslova J. Critical assessment of extraction methods for the simultaneous determination of pesticide residues and mycotoxins in fruits, cereals, spices and oil seeds employing ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2012;1262:8–18. 10.1016/j.chroma.2012.08.097. PubMed
Sulyok M, Berthiller F, Krska R, Schuhmacher R. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun Mass Spectrom. 2006;20(18):2649–59. 10.1002/rcm.2640. PubMed
Varga E, Glauner T, Berthiller F, Krska R, Schuhmacher R, Sulyok M. Development and validation of a (semi)-quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Anal Bioanal Chem. 2013;405(15):5087–104. 10.1007/s00216-013-6831-3. PubMed PMC
Habler K, Rychlik M. Multi-mycotoxin stable isotope dilution LC-MS/MS method for Fusarium toxins in cereals. Anal Bioanal Chem. 2016;408(1):307–17. 10.1007/s00216-015-9110-7. PubMed
Lattanzio VMT, Ciasca B, Terzi V, Ghizzoni R, McCormick SP, Pascale M. Study of the natural occurrence of T-2 and HT-2 toxins and their glucosyl derivatives from field barley to malt by high-resolution Orbitrap mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32(10):1647–55. 10.1080/19440049.2015.1048750. PubMed
Rubert J, Dzuman Z, Vaclavikova M, Zachariasova M, Soler C, Hajslova J. Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: comparison of efficiency and efficacy of different extraction procedures. Talanta. 2012;99:712–19. 10.1016/j.talanta.2012.07.010. PubMed
Beccari G, Caproni L, Tini F, Uhlig S, Covarelli L. Presence of Fusarium species and other toxigenic fungi in malting barley and multi-mycotoxin analysis by liquid chromatography-high resolution mass spectrometry. J Agric Food Chem. 2016;64(21):4390–99. 10.1021/acs.jafc.6b00702. PubMed
Herrero P, Corés-Francisco N, Borrull F, Caixach J, Pocurull E, Marcé RM. Comparison of triple quadrupole mass spectrometry and Orbitrap high-resolution mass spectrometry in ultrahigh performance liquid chromatography for the determination of veterinary drugs in sewage: benefits and drawbacks. J Mass Spectrom. 2014;49(7):585–96. 10.1002/jms.3377. PubMed
Abia WA, Warth B, Sulyok M, Krska R, Tchana AN, Njobeh PB, et al. Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control. 2013;31(2):438–53. 10.1016/j.foodcont.2012.10.006.
Gosetti F, Mazzucco E, Zampieri D, Gennaro MC. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2010;1217(25):3929–37. 10.1016/j.chroma.2009.11.060. PubMed
Matuszewski BK, Constanzer ML, Chavez-Eng CM. Matrix effect in quantitative LC/MS/MS analysis of biological fluids: a method for determination of finasteride in human plasma at pictogram per milliliter concentrations. Anal Chem. 1998;70(5):882–9. 10.1021/ac971078. PubMed
Sulyok M, Krska R, Schuhmacher R. Application of a liquid chromatography–tandem mass spectrometric method in multimycotoxin multimycotoxin determination in raw cereals and evaluation of matrix effects. Food Addit Contam. 2007;24(10):1184–95. 10.1080/02652030701510004. PubMed
Malachova A, Sulyok M, Schuhmacher R, Berthiller F, Hajslova A, Veprikova Z, et al. Collaborative investigation of matrix effects in mycotoxin determination by high performance liquid chromatography coupled to mass spectrometry. Qual Assur Saf Crops Foods. 2013;5(2):91–103. 10.3920/QAS2012.0213.
Diana di Mavungu J, Monbaliu S, Scippo M-L, Maghuin-Rogister G, Schneider Y-J, Larondelle Y, et al. LC-MS/MS multi-analyte method for mycotoxin determination in food supplements. Food Addit Contam. 2009;26(6):885–95. 10.1080/02652030902774649. PubMed
Rychlik M, Asam S. Stable isotope dilution assays in mycotoxin analysis. Anal Bioanal Chem. 2008;390(2):617–28. 10.1007/s00216-007-1717-x. PubMed
International Organization for Standardization. ISO 16050:2003(en) foodstuffs - determination of aflatoxin B1, and the sum of aflatoxins B1, B2, G1, G2 in cereals, shell-fruits and derived products – high performance liquid chromatographic method. 2003. Available from https://www.iso.org/obp/ui/#iso:std:iso:16050:ed-1:v1:en.
International Organization for Standardization. BS EN 14132:2009 foodstuffs – determination of ochratoxin A in barley and roasted coffee – HPLC method with immunoaffinity column clean-up. 2009. Available from https://shop.bsigroup.com/ProductDetail/?pid=000000000030187771
Desmarchelier A, Tessiot S, Bessaire T, Racault L, Fiorese E, Urbani A, et al. Combining the quick, easy, cheap, effective, rugged and safe approach and clean-up by immunoaffinity column for the analysis of 15 mycotoxins by isotope dilution liquid chromatography tandem mass spectrometry. J Chromatogr A. 2014;1337:75–84. 10.1016/j.chroma.2014.02.025 PubMed
Mol HGJ, Plaza-Bolanos P, Zomer P, de Rijk TC, Stolker AAM, Mulder PPJ. Toward a generic extreaction method for simultaneous determination of pesticides, mycotoxins, plant toxins, and veterinary drugs in feed and food matrixes. Anal Chem. 2008;80(24):9450–59. 10.1021/ac801557f. PubMed
Romer Labs. Mycotoxin cleanup columns. https://www.romerlabs.com/en/products/cleanup-columns/ (2017).
Krska R. Performance of modern sample preparation techniques in the analysis of Fusarium mycotoxins. J Chromatogr A. 1998;815(1):49–57. 10.1016/S0021-9673(98)00003-X. PubMed
Dagnac T, Latorre A, Lorenzo BF, Llompart M. Validation and application of a liquid chromatography-tandem mass spectrometry based method for the assessment of the co-occurrence of mycotoxins in maize silages from dairy in NW Spain. Food Addit Contam Part A Chem Control Expo Risk Assess. 2016;33(12):1850–63.10.1080/19440049.2016.1243806. PubMed
Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck F. Fast and easy multiresidue method employing acetonitrile extraction/ partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int. 2003;86:412–431. PubMed
Varga E, Glauner T, Köppen R, Mayer K, Sulyok M, Schuhmacher R, et al. Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS. Anal Bioanal Chem. 2012;402(9):2675–86. 10.1007/s00216-012-5757-5. PubMed PMC
Habler K, Gotthardt M, Schüler J, Rychlik M. Multi-mycotoxin stable isotope dilution LC-MS/MS method for Fusarium toxins in beer. Food Chem. 2017;218:447–54. 10.1016/j.foodchem.2016.09.100. PubMed
Al-Taher F, Banaszewski K, Jackson L, Zweigenbaum J, Ryu D, Cappozzo J. Rapid method for the determination of multiple mycotoxins in wines and beers by LC-MS/MS using a stable isotope dilution assay. J Agric Food Chem. 2013;61(10):2378–84. 10.1021/jf304729f PubMed
Berthiller F, Crews C, Dall’Asta C, De Saeger S, Haesaert G, Karlovsky P, et al. Masked mycotoxins: a review. Mol Nutr Food Res. 2012;57(1):165–86. 10.1002/mnfr.201100764 PubMed PMC
Berthiller F, Schuhmacher R, Adam G, Krska R. Formation, determination and significance of masked and other conjugated mycotoxins. Anal Bioanal Chem. 2009;395(5):1243–52. 10.1007/s00216-009-2874-x. PubMed
Renaud JB, Sumarah MW. Data independent acquisition-digital archiving mass spectrometry: application to single kernel mycotoxin analysis of Fusarium graminearum infected maize. Anal Bioanal Chem. 2016;408(12):3083–91. 10.1007/s00216-016-9391-5. PubMed
Kelman MJ, Renaud JB, Seifert KA, Mack J, Sivagnanam K, Yeung KKC, et al. Identification of six new Alternaria sulfoconjugated metabolites by high-resolution neutral loss filtering. Rapid Commun Mass Spectrom. 2015;29(19):1805–10.10.1002/rcm.7286. PubMed
Renaud JB, Kelman MJ, Qi TF, Seifert KA, Sumarah MW. Product ion filtering with rapid polarity switching for the detection of all fumonisins and AAL-toxins. Rapid Commun Mass Spectrom. 2015;29(2):2131–3139. 10.1002/rcm.7374. PubMed
Tanaka H, Takino M, Sugita-Konishi Y, Tanaka T. Development of a liquid chromatography/time-of-flight mass spectrometric method for simultaneous determination of trichothecenes, zearalenone and aflatoxins in foodstuffs. Rapid Commun Mass Spectrom. 2006;20(9)1422–28. 10.1002/rcm.2460. PubMed
Zachariasova M, Lacina O, Malachova A, Kostelanska M, Poustka J, Godula M, et al. Novel approaches in analysis of Fusarium mycotoxins in cereals employing ultra performance liquid chromatography coupled with high resolution mass spectrometry. Anal Chim Acta. 2010;622(1):51–61. 10.1016/j.aca.2009.12.034 PubMed
Sirhan A, Tan GH, Wong RCS. Simultaneous detection of type A and type B trichothecenes in cereals by liquid chromatography coupled with electrospray ionization quadrupole time of flight mass spectrometry (LC-ESI-QTOF-MS/MS). J Liq Chromatogr Relat Technol. 2012;35(14):1945–57. 10.1080/10826076.2011.627613
Herebian D, Zühlke S, Lamshöft M, Spiteller M. Multi-mycotoxin analysis in complex biological matrices using LC-ESI/MS: experimental study using triple stage quadrupole and LTQ-Orbitrap. J Sep Sci. 2009;32(7)939–48. 10.1002/jssc.200800589 PubMed
De Dominicis E, Commissati I, Suman M. Targeted screening of pesticides, veterinary drugs and mycotoxins in bakery ingredients and food commodities by liquid chromatography-high-resolution single-stage Orbitrap mass spectrometry. J Mass Spectrom. 2012;47(9):1232–41. 10.1002/jms.3074 PubMed
Veprikova Z, Vaclavikova M, Lacina O, Dzuman Z, Zachariasova M, Hajslova J. Occurrence of mono and di-glucosylated conjugates of T-2 and HT-2 toxins in naturally contaminated cereals. World Mycotoxin J. 2012;5(3):231–40. 10.3920/WMJ2012.1453
Nakagawa H, Ohmichi K, Sakamoto S, Sago Y, Kushiro M, Nagashima H, et al. Detection of a new Fusarium masked mycotoxin in wheat grain by high-resolution LC-Orbitrap TM MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011;28(10):1447–56. 10.1080/19440049.2011.597434. PubMed
Kluger B, Bueschl C, Lemmens M, Michlmayr H, Malachova A, Koutnik A, et al. Biotransformation of the mycotoxin deoxynivalenol in Fusarium resistant and susceptible near isogenic wheat lines. PLoS One. 2015;10(3):1–19. 10.1371/journal.pone.0119656. PubMed PMC
Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, et al. Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev. 2016;35(5):620–49. 10.1002/mas.21449 PubMed
Engskog MKR, Haglof J, Ardvidsson T, Pettersson C. LC-MS based global metabolite profiling: the necessity of high data quality. Metabolomics. 2016;12:114–33. 10.1007/s11306-016-1058-x
Gorrochategui E, Jaumot J, Lacorte S, Tauler R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. Trends Anal Chem. 2016;80:425–42. 10.1016/j.trac.2016.07.004
Kluger B, Büchl C, Lemmens M, Berthiller F, Häubl G, Jaunecker G, et al. Stable isotopic labelling-assisted untargeted metabolomic profiling reveals novel conjugates of the mycotoxin deoxynivalenol in wheat. Anal Bioanal Chem. 2013;405(15):5031–36. 10.1007/s00216-012-6483-8 PubMed PMC
Meng-Reiterer J, Varga E, Nathanail AV, Bueschl C, Rechthaler J, McCormick SP, et al. Tracing the metabolism of HT-2 toxin and T-2 toxin in barley by isotope-assisted untargeted screening and quantitative LC-HRMS analysis. Anal Bioanal Chem. 2015;407(26):8019–33. 10.1007/s00216-015-8975-9. PubMed PMC
Nathanail AV, Varga W, Meng-Reiterer J, Bueschl C, Michlmayr H, Malachova A, et al. Metabolism of the Fusarium mycotoxins T-2 toxin and HT-2 toxin in wheat. J Agric Food Chem. 2015;63(35):7862–72. 10.1021/acs.jafc.5b02697. PubMed PMC
Büschl C, Kluger B, Berthiller F, Lirk G, Winkler S, Krska R, et al. MetExtract: a new software tool for the automated comprehensive extraction of metabolite-derived LC/MS signals in metabolomics research. Bioinformatics. 2012;28(4):494–501. 10.1093/bioinformatics/bts012 PubMed PMC
Lancova K, Hajslova J, Poustka J, Krplova A, Zachariasova M, Dostalek P, et al. Transfer of Fusarium mycotoxins and “masked” deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer. Food Addit Contam. 2008;25(6):732–44. 10.1080/02652030701779625 PubMed
Zachariasova M, Vaclavikova M, Lacina O, Vaclavik L, Hajslova J. Deoxynivalenol Oligoglycosides: New “masked” Fusarium toxins occurring in malt, beer, and breadstuff. J Agric Food Chem. 2012;60(36):9280–91. 10.1021/jf302069z PubMed
La Barbera G, Capriotti AL, Cavaliere C, Foglia P, Montone CM, Chiozzi RZ, et al. A rapid magnetic solid phase extraction method followed by liquid chromatography-tandem mass spectrometry analysis for the determination of mycotoxins in cereals. Toxins. 2017;9(4):147–61. 10.3390/toxins9040147 PubMed PMC
Soleymani F, Jinap S, Rahmani A, Khatib A. Simultaneous detection of 12 mycotoxins in cereals using RP-HPLC-PDA-FLD with PHRED and a post-column derivatization system. Food Addit Contam Part A Chem Control Expo Risk Assess. 2011;28(4):494–501. 10.1080/19440049.2010.551547. PubMed
Recent Advances in the Detection of Food Toxins Using Mass Spectrometry