Targeted proteomics recently proved to be a technique for the detection and absolute quantification of proteins not easily accessible to classical bottom-up approaches. Due to this, it has been considered as a high fidelity tool to detect potential warfare agents in wide spread kinds of biological and environmental matrices. Clostridium perfringens toxins are considered to be potential biological weapons, especially the epsilon toxin which belongs to a group of the most powerful bacterial toxins. Here, the development of a target mass spectrometry method for the detection of C. perfringens protein toxins (alpha, beta, beta2, epsilon, iota) is described. A high-resolution mass spectrometer with a quadrupole-Orbitrap system operating in target acquisition mode (parallel reaction monitoring) was utilized. Because of the lack of commercial protein toxin standards recombinant toxins were prepared within Escherichia coli. The analysis was performed using proteotypic peptides as the target compounds together with their isotopically labeled synthetic analogues as internal standards. Calibration curves were calculated for each peptide in concentrations ranging from 0.635 to 1101 fmol/μL. Limits of detection and quantification were determined for each peptide in blank matrices.
- MeSH
- bakteriální proteiny analýza genetika MeSH
- bakteriální toxiny analýza genetika MeSH
- chromatografie kapalinová MeSH
- Clostridium perfringens * genetika růst a vývoj metabolismus MeSH
- Escherichia coli genetika MeSH
- peptidy analýza genetika MeSH
- proteomika MeSH
- rekombinantní proteiny analýza MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A prerequisite for successful identification of anaerobic pathogenic bacteria from samples of clinical material is the method of cultivation. Currently, several methods of cultivation in anaerobic environment are used: cultivation in anaerobic box, anaerobic jar, and in nonrecurring cultivation system. Here, we determined the suitability of the above methods of cultivation using the estimation of the growth (diameters of colony size) of commonly isolated anaerobic pathogens (Bacteroides fragilis, Clostridium difficile, and Clostridium perfringens). The tested bacterial strains were exposed to atmospheric oxygen for various time periods and then they were cultivated using different anaerobic cultivation systems. Maximum growth differed, depending on the type of cultivation and the strain used. Thus, largest zone diameters, in the majority of measurements, were achieved in the anaerobic box. However, nonrecurring cultivation system seemed better in several cases; this applied to the cultivation of C. perfringens after 15, 30, and 60 min exposure to atmospheric oxygen as well as the cultivation of B. fragilis after 30 and 60 min of oxygen exposure. The cultivation in anaerobic box was the most convenient method for growth of C. difficile. In almost all cases, higher growth was observed in nonrecurring cultivation system than in the system of anaerobic jar. On the other hand, no significant differences were observed among these anaerobic cultivation systems which confirmed their applicability (taking into account some individual features concerning the optimization of cultivations) for identification of pathogenic anaerobes.
- MeSH
- anaerobióza MeSH
- anaerobní bakterie metabolismus MeSH
- Bacteroides fragilis metabolismus MeSH
- Clostridioides difficile metabolismus MeSH
- Clostridium perfringens metabolismus MeSH
- klostridiové infekce mikrobiologie MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bilirubin is degraded in the human gut by microflora into urobilinoids. In our study we investigated whether the bilirubin-reducing strain of Clostridium perfringens can reduce bilirubin ditaurate (BDT), a bile pigment of some lower vertebrates, without hydrolysis of the taurine moiety. C. perfringes was incubated under anaerobic conditions with BDT; reduction products were quantified by spectrophotometry and separated by TLC. Based on Rf values of BDT reduction products and synthetic urobilinogen ditaurate, three novel taurine-conjugated urobilinoids were identified. It is likely that bilirubin-reducing enzyme(s) serve for the effective disposal of electrons produced by fermentolytic processes in these anaerobic bacteria.
- MeSH
- bilirubin analogy a deriváty izolace a purifikace metabolismus MeSH
- chromatografie na tenké vrstvě MeSH
- Clostridium perfringens izolace a purifikace metabolismus MeSH
- feces mikrobiologie MeSH
- hydrolýza MeSH
- lidé MeSH
- novorozenec MeSH
- oxidace-redukce MeSH
- střeva mikrobiologie MeSH
- taurin analogy a deriváty izolace a purifikace metabolismus MeSH
- urobilinogen MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Food poisoning and non-food poisoning illnesses due to C. perfringens (by enterotoxin production) have been associated to chromosomal or plasmidic location of the cpe gene, respectively. Clostridial pathogenicity has been correlated to protease and azoreductase production.The aim of this work was: i) to assess the sanitary-hygienic quality of dehydrated soups (100 samples) consumed in San Luis – Argentina; ii) to verify the presence of C. perfringens in these food products using the "Most Probable Number" method (MPN) and plate-counting methods; iii) to characterise enterotoxigenicity in strain isolates by RPLA; iv) to determine the chromosomal or plasmidic location of the cpe gene in enterotoxigenic strains previously isolated from food in our lab, using PCR; v) to correlate chromosomal cpe and spore heat-resistance; vi) to compare protease activity in cpe+ and cpe– strains; and vii) to compare azoreductase activity in cpe+ and cpe– strains. Twenty-six isolates had a count a 3–43 bacteria g-1 count using MPN; 7.7% exceeded the Argentine Food Code (CAA) limit. All isolates showed protease activity: enterotoxigenic isolates had higher protease activity than non-enterotoxigenic isolates. All isolates showed azoreductase activity: enterotoxigenic isolates had higher activity and shorter reducing times. Enterotoxigenic isolates showed chromosomal location for the gene responsible for the enterotoxin.
- MeSH
- bakteriální chromozomy genetika MeSH
- bakteriální geny MeSH
- bakteriální toxiny genetika MeSH
- bakteriologické techniky MeSH
- Clostridium perfringens genetika izolace a purifikace metabolismus MeSH
- financování organizované MeSH
- kontaminace potravin MeSH
- lidé MeSH
- plazmidy MeSH
- potravinářská mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Geografické názvy
- Argentina MeSH
Urobilinoids belong to the heterogenous group of degradation products of bilirubin formed in the gastrointestinal tract by intestinal microflora. Among them urobilinogen and stercobilinogen with their respective oxidation products, urobilin and stercobilin, are the most important compounds. The aim of present study was to analyze the products of bacterial reduction of bilirubin in more detail. The strain of Clostridium perfringens isolated from neonatal stools, capable of reducing bilirubin, was used in the study. Bacteria were incubated under anaerobic conditions with various native as well as synthetic bile pigments, including radiolabeled unconjugated bilirubin (UCB). Their reduction products were extracted from media and separated following thin layer chromatography. Pigments isolated were analyzed by spectrophotometry, spectrofluorometry and mass spectrometry. In a special set of experiments, bilirubin diglucuronide was incubated with either bacterial lysate or partially purified bilirubin reductase and beta-glucuronidase to reveal whether bilirubin glucuronides may be directly reduced onto conjugated urobilinoids. A broad substrate activity was detected in the investigated strain of C. perfringens and a series of bilirubin reduction products was identified. These products were separated in the form of their respective chromogens and further oxidized. Based on their physical-chemical properties, as well as mass spectra, end-catabolic bilirubin products were identified to belong to urobilinogen species. The reduction process, catalyzed enzymatically by the studied bacterial strain, does not proceed to stercobilinogen. Bilirubin diglucuronide is not reduced onto urobilinoid conjugates, glucuronide hydrolysis must precede double bond reduction and thus UCB is reduced much faster.
- MeSH
- bilirubin metabolismus MeSH
- chromatografie na tenké vrstvě MeSH
- Clostridium perfringens izolace a purifikace metabolismus MeSH
- feces mikrobiologie MeSH
- financování organizované MeSH
- hmotnostní spektrometrie MeSH
- lidé MeSH
- oxidace-redukce MeSH
- spektrofotometrie ultrafialová MeSH
- Check Tag
- lidé MeSH