The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
803048
European Research Council - International
PubMed
37449525
PubMed Central
PMC10414970
DOI
10.7554/elife.85193
PII: 85193
Knihovny.cz E-zdroje
- Klíčová slova
- A. thaliana, auxin, pH, plant biology, root,
- MeSH
- adenosintrifosfatasy metabolismus MeSH
- Arabidopsis * metabolismus MeSH
- kationtové kanály řízené cyklickými nukleotidy metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kořeny rostlin MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku * metabolismus MeSH
- půda MeSH
- regulace genové exprese u rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- AUX1 protein, Arabidopsis MeSH Prohlížeč
- CNGC14 protein, Arabidopsis MeSH Prohlížeč
- kationtové kanály řízené cyklickými nukleotidy MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
- půda MeSH
Plant roots navigate in the soil environment following the gravity vector. Cell divisions in the meristem and rapid cell growth in the elongation zone propel the root tips through the soil. Actively elongating cells acidify their apoplast to enable cell wall extension by the activity of plasma membrane AHA H+-ATPases. The phytohormone auxin, central regulator of gravitropic response and root development, inhibits root cell growth, likely by rising the pH of the apoplast. However, the role of auxin in the regulation of the apoplastic pH gradient along the root tip is unclear. Here, we show, by using an improved method for visualization and quantification of root surface pH, that the Arabidopsis thaliana root surface pH shows distinct acidic and alkaline zones, which are not primarily determined by the activity of AHA H+-ATPases. Instead, the distinct domain of alkaline pH in the root transition zone is controlled by a rapid auxin response module, consisting of the AUX1 auxin influx carrier, the AFB1 auxin co-receptor, and the CNCG14 calcium channel. We demonstrate that the rapid auxin response pathway is required for an efficient navigation of the root tip.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czech Republic
Institute of Cell and Interaction Biology Heinrich Heine University Düsseldorf Düsseldorf Germany
Institute of Experimental Botany Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Ballio A, Chain EB, De Leo P, Erlanger BF, Mauri M, Tonolo A. Fusicoccin: a new wilting toxin produced by fusicoccum amygdali del. Nature. 1964;203:297. doi: 10.1038/203297a0. DOI
Band LR, Wells DM, Fozard JA, Ghetiu T, French AP, Pound MP, Wilson MH, Yu L, Li W, Hijazi HI, Oh J, Pearce SP, Perez-Amador MA, Yun J, Kramer E, Alonso JM, Godin C, Vernoux T, Hodgman TC, Pridmore TP, Swarup R, King JR, Bennett MJ. Systems analysis of auxin transport in the Arabidopsis root apex. The Plant Cell. 2014;26:862–875. doi: 10.1105/tpc.113.119495. PubMed DOI PMC
Barbez E, Dünser K, Gaidora A, Lendl T, Busch W. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. PNAS. 2017;114:E4884–E4893. doi: 10.1073/pnas.1613499114. PubMed DOI PMC
Beemster GT, Baskin TI. Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiology. 1998;116:1515–1526. doi: 10.1104/pp.116.4.1515. PubMed DOI PMC
Behera S, Zhaolong X, Luoni L, Bonza MC, Doccula FG, De MI, Morris RJ, Schwarzländer M, Costa A. Cellular ca2+ signals generate defined ph signatures in plants. The Plant Cell. 2018;30:2704–2719. doi: 10.1105/tpc.18.00655. PubMed DOI PMC
Behrens HM, Weisenseel MH, Sievers A. Rapid changes in the pattern of electric current around the root tip of lepidium sativum l. following gravistimulation. Plant Physiology. 1982;70:1079–1083. doi: 10.1104/pp.70.4.1079. PubMed DOI PMC
Bindels DS, Haarbosch L, van Weeren L, Postma M, Wiese KE, Mastop M, Aumonier S, Gotthard G, Royant A, Hink MA, Gadella TWJ. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nature Methods. 2017;14:53–56. doi: 10.1038/nmeth.4074. PubMed DOI
Björkman T, Leopold AC. An electric current associated with gravity sensing in maize roots. Plant Physiology. 1987;84:841–846. doi: 10.1104/pp.84.3.841. PubMed DOI PMC
Braidwood L, Breuer C, Sugimoto K. My body is a cage: mechanisms and modulation of plant cell growth. The New Phytologist. 2014;201:388–402. doi: 10.1111/nph.12473. PubMed DOI
Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature. 2012;482:103–106. doi: 10.1038/nature10791. PubMed DOI
Campilho A, Garcia B, Toorn HVD, Wijk HV, Campilho A, Scheres B. Time-lapse analysis of stem-cell divisions in the Arabidopsis thaliana root meristem. The Plant Journal. 2006;48:619–627. doi: 10.1111/j.1365-313X.2006.02892.x. PubMed DOI
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI
Collings DA, White RG, Overall RL. Ionic current changes associated with the gravity-induced bending response in roots of zea mays L. Plant Physiology. 1992;100:1417–1426. doi: 10.1104/pp.100.3.1417. PubMed DOI PMC
Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M. Plant development is regulated by a family of auxin receptor F box proteins. Developmental Cell. 2005;9:109–119. doi: 10.1016/j.devcel.2005.05.014. PubMed DOI
Dindas J, Scherzer S, Roelfsema MRG, von Meyer K, Müller HM, Al-Rasheid KAS, Palme K, Dietrich P, Becker D, Bennett MJ, Hedrich R. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nature Communications. 2018;9:1174. doi: 10.1038/s41467-018-03582-5. PubMed DOI PMC
Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993;119:71–84. doi: 10.1242/dev.119.1.71. PubMed DOI
Dubey SM, Serre NBC, Oulehlová D, Vittal P, Fendrych M. No time for transcription-rapid auxin responses in plants. Cold Spring Harbor Perspectives in Biology. 2021;13:a039891. doi: 10.1101/cshperspect.a039891. PubMed DOI PMC
Dusek J, Plchova H, Cerovska N, Poborilova Z, Navratil O, Kratochvilova K, Gunter C, Jacobs R, Hitzeroth II, Rybicki EP, Moravec T. Extended set of goldenbraid compatible vectors for fast assembly of multigenic constructs and their use to create geminiviral expression vectors. Frontiers in Plant Science. 2020;11:522059. doi: 10.3389/fpls.2020.522059. PubMed DOI PMC
Evans ML, Mulkey TJ, Vesper MJ. Auxin action on proton influx in corn roots and its correlation with growth. Planta. 1980;148:510–512. doi: 10.1007/BF00552667. PubMed DOI
Evans ML, Ishikawa H, Estelle MA. Responses ofArabidopsis roots to auxin studied with high temporal resolution: Comparison of wild type and auxin-response mutants. Planta. 1994;194:215–222. doi: 10.1007/BF01101680. DOI
Falhof J, Pedersen JT, Fuglsang AT, Palmgren M. Plasma membrane h(+)-atpase regulation in the center of plant physiology. Molecular Plant. 2016;9:323–337. doi: 10.1016/j.molp.2015.11.002. PubMed DOI
Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S, Takahashi K, Uchida N, Torii KU, Friml J. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants. 2018;4:453–459. doi: 10.1038/s41477-018-0190-1. PubMed DOI PMC
Friml J, Gallei M, Gelová Z, Johnson A, Mazur E, Monzer A, Rodriguez L, Roosjen M, Verstraeten I, Živanović BD, Zou M, Fiedler L, Giannini C, Grones P, Hrtyan M, Kaufmann WA, Kuhn A, Narasimhan M, Randuch M, Rýdza N, Takahashi K, Tan S, Teplova A, Kinoshita T, Weijers D, Rakusová H. ABP1-TMK auxin perception for global phosphorylation and auxin canalization. Nature. 2022;609:575–581. doi: 10.1038/s41586-022-05187-x. PubMed DOI
Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. PNAS. 2015;112:2275–2280. doi: 10.1073/pnas.1500365112. PubMed DOI PMC
Geilfus CM, Mühling KH. Real-time imaging of leaf apoplastic ph dynamics in response to nacl stress. Frontiers in Plant Science. 2011;2:13. doi: 10.3389/fpls.2011.00013. PubMed DOI PMC
Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature. 2007;449:1008–1013. doi: 10.1038/nature06215. PubMed DOI
Großeholz R, Wanke F, Rohr L, Glöckner N, Rausch L, Scholl S, Scacchi E, Spazierer A-J, Shabala L, Shabala S, Schumacher K, Kummer U, Harter K. Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root. eLife. 2022;11:e73031. doi: 10.7554/eLife.73031. PubMed DOI PMC
Hager A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. Journal of Plant Research. 2003;116:483–505. doi: 10.1007/s10265-003-0110-x. PubMed DOI
Haruta M, Burch HL, Nelson RB, Barrett-Wilt G, Kline KG, Mohsin SB, Young JC, Otegui MS, Sussman MR. Molecular characterization of mutant Arabidopsis plants with reduced plasma membrane proton pump activity. The Journal of Biological Chemistry. 2010;285:17918–17929. doi: 10.1074/jbc.M110.101733. PubMed DOI PMC
Haruta M, Sussman MR. The effect of a genetically reduced plasma membrane protonmotive force on vegetative growth of Arabidopsis. Plant Physiology. 2012;158:1158–1171. doi: 10.1104/pp.111.189167. PubMed DOI PMC
Haruta M, Tan LX, Bushey DB, Swanson SJ, Sussman MR. Environmental and genetic factors regulating localization of the plant plasma membrane H+-ATPase. Plant Physiology. 2018;176:364–377. doi: 10.1104/pp.17.01126. PubMed DOI PMC
Iwabuchi A, Yano M, Shimizu H. Development of extracellular electric pattern aroundLepidium roots: its possible role in root growth and gravitropism. Protoplasma. 1989;148:94–100. doi: 10.1007/BF02079327. DOI
Jacobsen AGR, Jervis G, Xu J, Topping JF, Lindsey K. Root growth responses to mechanical impedance are regulated by a network of ROS, ethylene and auxin signalling in Arabidopsis. The New Phytologist. 2021;231:225–242. doi: 10.1111/nph.17180. PubMed DOI PMC
Konietschke F, Placzek M, Schaarschmidt F, Hothorn LA. nparcomp: An R software package for nonparametric multiple comparisons and simultaneous confidence intervals. Journal of Statistical Software. 2015;64:1–17. doi: 10.18637/jss.v064.i09. DOI
Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, Merrin J, Chen J, Shabala L, Smet W, Ren H, Vanneste S, Shabala S, De Rybel B, Weijers D, Kinoshita T, Gray WM, Friml J. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature. 2021;599:273–277. doi: 10.1038/s41586-021-04037-6. PubMed DOI PMC
Lin W, Zhou X, Tang W, Takahashi K, Pan X, Dai J, Ren H, Zhu X, Pan S, Zheng H, Gray WM, Xu T, Kinoshita T, Yang Z. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature. 2021;599:278–282. doi: 10.1038/s41586-021-03976-4. PubMed DOI PMC
Lintilhac PM. The problem of morphogenesis: unscripted biophysical control systems in plants. Protoplasma. 2014;251:25–36. doi: 10.1007/s00709-013-0522-y. PubMed DOI PMC
Liu S, Strauss S, Adibi M, Mosca G, Yoshida S, Dello Ioio R, Runions A, Andersen TG, Grossmann G, Huijser P, Smith RS, Tsiantis M. Cytokinin promotes growth cessation in the Arabidopsis root. Current Biology. 2022;32:1974–1985. doi: 10.1016/j.cub.2022.03.019. PubMed DOI
Lomax TL, Mehlhorn RJ, Briggs WR. Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations. PNAS. 1985;82:6541–6545. doi: 10.1073/pnas.82.19.6541. PubMed DOI PMC
Luschnig C, Gaxiola RA, Grisafi P, Fink GR. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes & Development. 1998;12:2175–2187. doi: 10.1101/gad.12.14.2175. PubMed DOI PMC
Lüthen H, Böttger M. Kinetics of proton secretion and growth in maize roots: action of various plant growth effectors. Plant Science. 1988;54:37–43. doi: 10.1016/0168-9452(88)90053-2. DOI
Mancuso S, Marras AM, Magnus V, Baluska F. Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode. Analytical Biochemistry. 2005;341:344–351. doi: 10.1016/j.ab.2005.03.054. PubMed DOI
Martín-Barranco A, Thomine S, Vert G, Zelazny E. A quick journey into the diversity of iron uptake strategies in photosynthetic organisms. Plant Signaling & Behavior. 2021;16:1975088. doi: 10.1080/15592324.2021.1975088. PubMed DOI PMC
Martinière A, Bassil E, Jublanc E, Alcon C, Reguera M, Sentenac H, Blumwald E, Paris N. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. The Plant Cell. 2013;25:4028–4043. doi: 10.1105/tpc.113.116897. PubMed DOI PMC
Monshausen GB, Zieschang HE, Sievers A. Differential proton secretion in the apical elongation zone caused by gravistimulation is induced by a signal from the root cap. Plant, Cell & Environment. 1996;19:1408–1414. doi: 10.1111/j.1365-3040.1996.tb00019.x. PubMed DOI
Monshausen GB, Miller ND, Murphy AS, Gilroy S. Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. The Plant Journal. 2011;65:309–318. doi: 10.1111/j.1365-313X.2010.04423.x. PubMed DOI
Moreau H, Gaillard I, Paris N. Genetically encoded fluorescent sensors adapted to acidic pH highlight subdomains within the plant cell apoplast. Journal of Experimental Botany. 2022;73:6744–6757. doi: 10.1093/jxb/erac210. PubMed DOI
Mulkey TJ, Evans ML. Geotropism in corn roots: evidence for its mediation by differential Acid efflux. Science. 1981;212:70–71. doi: 10.1126/science.212.4490.70. PubMed DOI
Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. The EMBO Journal. 1998;17:6903–6911. doi: 10.1093/emboj/17.23.6903. PubMed DOI PMC
Pacheco-Villalobos D, Díaz-Moreno SM, van der Schuren A, Tamaki T, Kang YH, Gujas B, Novak O, Jaspert N, Li Z, Wolf S, Oecking C, Ljung K, Bulone V, Hardtke CS. The effects of high steady state auxin levels on root cell elongation in brachypodium. The Plant Cell. 2016;28:1009–1024. doi: 10.1105/tpc.15.01057. PubMed DOI PMC
Pacifici E, Di Mambro R, Dello Ioio R, Costantino P, Sabatini S. Acidic cell elongation drives cell differentiation in the Arabidopsis root. The EMBO Journal. 2018;37:e99134. doi: 10.15252/embj.201899134. PubMed DOI PMC
Prigge MJ, Platre M, Kadakia N, Zhang Y, Greenham K, Szutu W, Pandey BK, Bhosale RA, Bennett MJ, Busch W, Estelle M. Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. eLife. 2020;9:e54740. doi: 10.7554/eLife.54740. PubMed DOI PMC
Qi L, Kwiatkowski M, Chen H, Hoermayer L, Sinclair S, Zou M, Del Genio CI, Kubeš MF, Napier R, Jaworski K, Friml J. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature. 2022;611:133–138. doi: 10.1038/s41586-022-05369-7. PubMed DOI
Rayle DL, Cleland RE. The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiology. 1992;99:1271–1274. doi: 10.1104/pp.99.4.1271. PubMed DOI PMC
Ren H, Park MY, Spartz AK, Wong JH, Gray WM. A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis. PLOS Genetics. 2018;14:e1007455. doi: 10.1371/journal.pgen.1007455. PubMed DOI PMC
Retzer K, Akhmanova M, Konstantinova N, Malínská K, Leitner J, Petrášek J, Luschnig C. Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nature Communications. 2019;10:5516. doi: 10.1038/s41467-019-13543-1. PubMed DOI PMC
Rosario LM, Rojas E. Modulation of K+ conductance by intracellular pH in pancreatic beta-cells. FEBS Letters. 1986;200:203–209. doi: 10.1016/0014-5793(86)80539-7. PubMed DOI
Rubery PH, Sheldrake AR. Effect of pH and surface charge on cell uptake of auxin. Nature. 1973;244:285–288. doi: 10.1038/newbio244285a0. PubMed DOI
Sarrion-Perdigones A, Vazquez-Vilar M, Palací J, Castelijns B, Forment J, Ziarsolo P, Blanca J, Granell A, Orzaez D. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiology. 2013;162:1618–1631. doi: 10.1104/pp.113.217661. PubMed DOI PMC
Sauer M, Paciorek T, Benková E, Friml J. Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nature Protocols. 2006;1:98–103. doi: 10.1038/nprot.2006.15. PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Seksek O, Biwersi J, Verkman AS. Direct measurement of trans-Golgi pH in living cells and regulation by second messengers. The Journal of Biological Chemistry. 1995;270:4967–4970. doi: 10.1074/jbc.270.10.4967. PubMed DOI
Serre NBC, Kralík D, Yun P, Slouka Z, Shabala S, Fendrych M. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nature Plants. 2021;7:1229–1238. doi: 10.1038/s41477-021-00969-z. PubMed DOI PMC
Serre NBC, Fendrych M. ACORBA: Automated workflow to measure Arabidopsis thaliana root tip angle dynamics. Quantitative Plant Biology. 2022;3:e9. doi: 10.1017/qpb.2022.4. PubMed DOI PMC
Shih H-W, Miller ND, Dai C, Spalding EP, Monshausen GB. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Current Biology. 2014;24:1887–1892. doi: 10.1016/j.cub.2014.06.064. PubMed DOI
Shih H-W, DePew CL, Miller ND, Monshausen GB. The Cyclic Nucleotide-Gated Channel CNGC14 Regulates Root Gravitropism in Arabidopsis thaliana. Current Biology. 2015;25:3119–3125. doi: 10.1016/j.cub.2015.10.025. PubMed DOI
Siao W, Coskun D, Baluška F, Kronzucker HJ, Xu W. Root-apex proton fluxes at the centre of soil-stress acclimation. Trends in Plant Science. 2020;25:794–804. doi: 10.1016/j.tplants.2020.03.002. PubMed DOI
Spartz AK, Ren H, Park MY, Grandt KN, Lee SH, Murphy AS, Sussman MR, Overvoorde PJ, Gray WM. SAUR inhibition of pp2c-d phosphatases activates plasma membrane h+-atpases to promote cell expansion in arabidopsis. The Plant Cell. 2014;26:2129–2142. doi: 10.1105/tpc.114.126037. PubMed DOI PMC
Staal M, De Cnodder T, Simon D, Vandenbussche F, Van der Straeten D, Verbelen J-P, Elzenga T, Vissenberg K. Apoplastic alkalinization is instrumental for the inhibition of cell elongation in the Arabidopsis root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Plant Physiology. 2011;155:2049–2055. doi: 10.1104/pp.110.168476. PubMed DOI PMC
Stanković B. In: Plant Electrophysiology. Stanković B, editor. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2006. Electrophysiology of plant Gravitropism; pp. 423–436. DOI
Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P, Tsurumi S, Moore I, Napier R, Kerr ID, Bennett MJ. Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. The Plant Cell. 2004;16:3069–3083. doi: 10.1105/tpc.104.024737. PubMed DOI PMC
Swarup R, Kramer EM, Perry P, Knox K, Leyser HMO, Haseloff J, Beemster G, Bhalerao R, Bennett MJ. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biology. 2005;7:1057–1065. doi: 10.1038/ncb1316. PubMed DOI
Verbelen J-P, De Cnodder T, Le J, Vissenberg K, Baluska F. The root apex of Arabidopsis thaliana consists of four distinct zones of growth activities: meristematic zone, transition zone, fast elongation zone and growth terminating zone. Plant Signaling & Behavior. 2006;1:296–304. doi: 10.4161/psb.1.6.3511. PubMed DOI PMC
Weisenseel MH, Dorn A, Jaffe LF. Natural H currents traverse growing roots and root hairs of barley (Hordeum vulgare L.) Plant Physiology. 1979;64:512–518. doi: 10.1104/pp.64.3.512. PubMed DOI PMC
Weisenseel MH, Becker HF, Ehlgötz JG. Growth, gravitropism, and endogenous ion currents of cress roots (Lepidium sativum L.) : measurements using a novel three-dimensional recording probe. Plant Physiology. 1992;100:16–25. doi: 10.1104/pp.100.1.16. PubMed DOI PMC
Weisenseel MH, Meyer AJ. Bioelectricity, gravity and plants. Planta. 1997;203:S98–S106. doi: 10.1007/pl00008122. PubMed DOI
Wisniewska J, Xu J, Seifertová D, Brewer PB, Ruzicka K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J. Polar PIN localization directs auxin flow in plants. Science. 2006;312:883. doi: 10.1126/science.1121356. PubMed DOI
Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E. High-affinity auxin transport by the AUX1 influx carrier protein. Current Biology. 2006;16:1123–1127. doi: 10.1016/j.cub.2006.04.029. PubMed DOI
Zieschang H, Köhler K, Sievers A. Changing proton concentrations at the surfaces of gravistimulated Phleum roots. Planta. 1993;190:00224794. doi: 10.1007/BF00224794. DOI
Zuo J, Niu QW, Chua NH. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal. 2000;24:265–273. doi: 10.1046/j.1365-313x.2000.00868.x. PubMed DOI
RAF-like protein kinases mediate a deeply conserved, rapid auxin response