Hormone-regulated expansins: Expression, localization, and cell wall biomechanics in Arabidopsis root growth
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
37073485
PubMed Central
PMC10762514
DOI
10.1093/plphys/kiad228
PII: 7129196
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * metabolismus MeSH
- biomechanika MeSH
- buněčná stěna metabolismus MeSH
- hormony metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- meristém metabolismus MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- EXPA1 protein, Arabidopsis MeSH Prohlížeč
- hormony MeSH
- proteiny huseníčku * MeSH
Expansins facilitate cell expansion by mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in controlling CW biomechanical properties in specific tissues and organs remains elusive. We monitored hormonal responsiveness and spatial specificity of expression and localization of expansins predicted to be the direct targets of cytokinin signaling in Arabidopsis (Arabidopsis thaliana). We found EXPANSIN1 (EXPA1) homogenously distributed throughout the CW of columella/lateral root cap, while EXPA10 and EXPA14 localized predominantly at 3-cell boundaries in the epidermis/cortex in various root zones. EXPA15 revealed cell-type-specific combination of homogenous vs. 3-cell boundaries localization. By comparing Brillouin frequency shift and AFM-measured Young's modulus, we demonstrated Brillouin light scattering (BLS) as a tool suitable for non-invasive in vivo quantitative assessment of CW viscoelasticity. Using both BLS and AFM, we showed that EXPA1 overexpression upregulated CW stiffness in the root transition zone (TZ). The dexamethasone-controlled EXPA1 overexpression induced fast changes in the transcription of numerous CW-associated genes, including several EXPAs and XYLOGLUCAN:XYLOGLUCOSYL TRANSFERASEs (XTHs), and associated with rapid pectin methylesterification determined by in situ Fourier-transform infrared spectroscopy in the root TZ. The EXPA1-induced CW remodeling is associated with the shortening of the root apical meristem, leading to root growth arrest. Based on our results, we propose that expansins control root growth by a delicate orchestration of CW biomechanical properties, possibly regulating both CW loosening and CW remodeling.
CEITEC Central European Institute of Technology Masaryk University Brno 625 00 Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno 625 00 Czech Republic
Department of Natural Sciences Novosibirsk State University Novosibirsk 630073 Russia
Genomics Core Facility European Molecular Biology Laboratory Heidelberg 69117 Germany
Zobrazit více v PubMed
Andres-Robin A, Reymond MC, Dupire A, Battu V, Dubrulle N, Mouille G, Lefebvre V, Pelloux J, Boudaoud A, Traas J, et al. . Evidence for the regulation of gynoecium morphogenesis by ETTIN via cell wall dynamics. Plant Physiol. 2018:178(3):1222–1232. 10.1104/pp.18.00745 PubMed DOI PMC
Andriotis OG, Elsayad K, Smart DE, Nalbach M, Davies DE, Thurner PJ. Hydration and nanomechanical changes in collagen fibrils bearing advanced glycation end-product. Biomed Opt Express. 2019:10(4):1841–1855. 10.1364/BOE.10.001841 PubMed DOI PMC
Antonacci G, Beck T, Bilenca A, Czarske J, Elsayad K, Guck J, Kim K, Krug B, Palombo F, Prevedel R, et al. . Recent progress and current opinions in Brillouin microscopy for life science applications. Biophys Rev. 2020:12(3):615–624. 10.1007/s12551-020-00701-9 PubMed DOI PMC
Bacete L, Schulz J, Engelsdort T, Bartosova Z, Vaahtera L, Zan G, Gerhold JM, Ticha T, Ovstebo C, Gigli-Bisceglia N, et al. . THESEUS1 Modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proc Natl Acad Sci. 2022:119(1):e2119258119. 10.1073/pnas.2119258119 PubMed DOI PMC
Baez LA, Ticha T, Hamann T. Cell wall integrity regulation across plant species. Plant Mol Biol. 2022:109(4–5):1–22. 10.1007/s11103-022-01284-7 PubMed DOI PMC
Balestrini R, Cosgrove DJ, Bonfante P. Differential location of alpha-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta. 2005:220(6):889–899. 10.1007/s00425-004-1431-2 PubMed DOI
Barbez E, Dunser K, Gaidora A, Lendl T, Busch W. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci. 2017:114(24):E4884–E4893. 10.1073/pnas.1613499114 PubMed DOI PMC
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015:67(1):1–48. 10.18637/jss.v067.i01 DOI
Berne BJ, Pecora R. Dynamic light scattering, with applications to chemistry, biology, and physics. New York: (NY: ): Dover Publications; 2000.
Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang Y-H, Schaller GE, Loraine A, Kieber JJ. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiol. 2013:162(1):272–229. 10.1104/pp.113.217026 PubMed DOI PMC
Braybrook S, Jönsson H. Shifting foundations: the mechanical cell wall and development. Curr Opin Plant Biol. 2016:29:115–120. 10.1016/j.pbi.2015.12.009 PubMed DOI
Caderas D, Muster M, Vogler H, Mandel T, Rose JKC, McQueen-Mason S, Kuhlemeier C. Limited correlation between expansin gene expression and elongation growth rate. Plant Physiol. 2000:123(4):1399–1413. 10.1104/pp.123.4.1399 PubMed DOI PMC
Cho H-T, Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell. 2002:14(12):3237–3253. 10.1105/tpc.006437 PubMed DOI PMC
Cho H-T, Kende H. Tissue localization of expansins in deepwater rice. Plant J. 1998:15(6):805–812. 10.1046/j.1365-313X.1998.00258.x PubMed DOI
Cleland R. Cell wall extension. Ann Rev Plant Physiol. 1971:22(1):197–222. 10.1146/annurev.pp.22.060171.001213 DOI
Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005:6(11):850–861. 10.1038/nrm1746 PubMed DOI
Cosgrove DJ. Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol. 2014:22:122–131. 10.1016/j.pbi.2014.11.001 PubMed DOI PMC
Cosgrove DJ. Catalysts of plant cell wall loosening. F1000Research. 2016:5:119. 10.12688/f1000research.7180.1 PubMed DOI PMC
Cosgrove DJ. Nanoscale structure, mechanics and growth of epidermal cell walls. Curr Opin Plant Biol. 2018a:46:77–86. 10.1016/j.pbi.2018.07.016 PubMed DOI
Cosgrove DJ. Diffuse growth of plant cell walls. Plant Physiol. 2018b:176(1):16–27. 10.1104/pp.17.01541 PubMed DOI PMC
Cosgrove DJ, Li LC, Cho H-T, Hoffmann-Benning S, Moore RC, Blecker D. The growing world of expansins. Plant Cell Physiol. 2002:43(12):1436–1444. 10.1093/pcp/pcf180 PubMed DOI
Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J. 2005:41(6):899–918. 10.1111/j.1365-313X.2005.02342.x PubMed DOI
Dello Ioio R, Linhares FS, Sabatini S. Emerging role of cytokinin as a regulator of cellular differentiation. Curr Opin Plant Biol. 2008:11(1):23–27. 10.1016/j.pbi.2007.10.006 PubMed DOI
Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol. 2007:17(8):678–682. 10.1016/j.cub.2007.02.047 PubMed DOI
Didi V, Jackson P, Hejatko J. Hormonal regulation of secondary cell wall formation. J Exp Bot. 2015:66(16):5015–5027. 10.1093/jxb/erv222 PubMed DOI
Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey PN, Busch W, Novak O, Ljung K, Di Paola L, et al. . Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc Natl Acad Sci. 2017:114(36):E7641–E7649. 10.1073/pnas.1705833114 PubMed DOI PMC
Di Mambro R, Svolacchia N, Dello Ioio R, Pierdonati E, Salvi E, Pedrazzini E, Vitale A, Perilli S, Sozzani R, Benfey PN, et al. . The lateral root cap acts as an auxin sink that controls meristem size. Curr Biol. 2019:29(7):1199–1205. 10.1016/j.cub.2019.02.022 PubMed DOI
Edrei E, Gather MC, Scarcelli G. Adaptive optics in spectroscopy and densely labeled-fluorescence applications. Opt Express. 2017:26(26):33865–33877. 10.1364/OE.26.033865 PubMed DOI PMC
Elsayad K. Spectral phasor analysis for Brillouin microspectroscopy. Front Phys. 2019:7:62. 10.3389/fphy.2019.00062 DOI
Elsayad K, Polakova S, Gregan J. Probing mechanical properties in biology using Brillouin microscopy. Trends Cell Biol. 2019:8(8):608–611. 10.1016/j.tcb.2019.04.002 PubMed DOI
Elsayad K, Werner S, Gallemí M, Kong J, Sánchez Guajardo ER, Zhang L, Jaillais Y, Greb T, Belkhadir Y. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging. Sci Signal. 2016:435:rs5. doi:10.1126/scisignal.aaf6326 PubMed DOI
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006:126(4):677–689. 10.1016/j.cell.2006.06.044 PubMed DOI
Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I, et al. . The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol. 2018:28(5):666–675. 10.1016/j.cub.2018.01.023 PubMed DOI PMC
Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C. Induction of leaf primordia by the cell wall protein expansin. Science. 1997:276(5317):1415–1418. 10.1126/science.276.5317.1415 DOI
Geitmann A, Ortega JKE. Mechanics and modeling of plant cell growth. Trends Plant Sci. 2009:14(9):467–478. 10.1016/j.tplants.2009.07.006 PubMed DOI
Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ. Structure-function analysis of the bacterial expansin EXLX1. J Biol Chem. 2011:286(19):16814–16823. 10.1074/jbc.M111.225037 PubMed DOI PMC
Gigli-Bisceglia N, Engelsdorf T, Strnad M, Vaahtera L, Khan GA, Yamoune A, Alipanah L, Novak O, Persson S, Hejatko J, et al. . Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner. Development. 2018:145(19):dev166678. 10.1242/dev.166678 PubMed DOI
Gouveia RM, Lepert G, Gupta S, Mohan RR, Paterson C, Connon CJ. Assessment of corneal substrate biomechanics and its effect on epithelial stem cell maintenance and differentiation. Nat Commun. 2019:10(1):1496. 10.1038/s41467-019-09331-6 PubMed DOI PMC
Großeholz R, Wanke F, Glöckner N, Rausch L, Rohr L, Scholl S, Scacch E, Spaziere A-J, Shabala L, Shabala S, et al. . Computational modeling and quantitative cell physiology reveal central parameters for the brassinosteroid-regulated cell growth of the Arabidopsis root. Elife. 2022:11.10.7554/eLife.73031 PubMed DOI PMC
Gruel J, Landrein B, Tarr P, Schuster C, Refahi Y, Sampathkumar A, Hamant O, Meyerowitz EM, Jonsson H. An epidermis-driven mechanism positions and scales stem cell niches in plants. Sci Adv. 2016:2(1):e1500989. 10.1126/sciadv.1500989 PubMed DOI PMC
Haas KT, Wightman R, Meyerowitz EM, Peaucelle A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science. 2020:367(6481):1003–1007. 10.1126/science.aaz5103 PubMed DOI PMC
Hager A, Menzel H, Krauss A. Versuche und Hypothese zur Primarwirkung des Auxin beim Streckungswachtum. Planta. 1971:100(1):47–75. 10.1007/BF00386886 PubMed DOI
Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, et al. . Developmental patterning by mechanical signals in Arabidopsis. Science. 2008:322(5908):1650–1655. 10.1126/science.1165594 PubMed DOI
Hamant O, Traas J. The mechanics behind plant development. New Phytol. 2010:185(2):369–385. 10.1111/j.1469-8137.2009.03100.x PubMed DOI
Hervieux N, Tsugawa S, Fruleux A, Dumond M, Routier-Kierzkowska AL, Komatsuzaki T, Boudaoud A, Larkin JC, Smith RS, Li CB, et al. . Mechanical shielding of rapidly growing cells buffers growth heterogeneity and contributes to organ shape reproducibility. Curr Biol. 2017:27(22):3468–3479. 10.1016/j.cub.2017.10.033 PubMed DOI
Hurny A, Cuesta C, Cavallari N, Otvos K, Duclercq J, Dokladal L, Montesinos JC, Gallemi M, Semeradova H, Rauter T, et al. . SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nat Commun. 2020:11(1):2170. 10.1038/s41467-020-15895-5 PubMed DOI PMC
Landrein B, Kiss A, Sassi M, Chauvet A, Das P, Cortizo M, Laufs P, Takeda S, Aida M, Traas J, et al. . Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. eLife. 2015:4: e07811. 10.7554/eLife.07811 PubMed DOI PMC
Lee HW, Kim J. EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response. Plant Cell Physiol. 2013:54(10):1600–1611. 10.1093/pcp/pct105 PubMed DOI
Lee DJ, Park JY, Ku SJ, Ha YM, Kim S, Kim MD, Oh MH, Kim J. (2007) Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Mol Genet Genomics 277:115–137. PubMed
Levesque-Tremblay G, Pelloux J, Braybrook SA, Muller K. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta. 2015:242(4):791–781. 10.1007/s00425-015-2358-5 PubMed DOI
Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, McQueen-Mason SJ. Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol. 2002:128(3):854–864. 10.1104/pp.010658 PubMed DOI PMC
Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, Merrin J, Chen J, Shabala L, Smet W, Ren H, et al. . Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature. 2021:599(7884):273–277. 10.1038/s41586-021-04037-6 PubMed DOI PMC
Liu S, Strauss S, Adibi M, Mosca G, Yoshida S, Dello Ioio R, Runions A, Andersen TG, Grossmann G, Huijser P, et al. . Cytokinin promotes growth cessation in the Arabidopsis root. Curr Biol. 2022:32(9):1–12. 10.1016/j.cub.2022.03.019 PubMed DOI
Majda M, Grones P, Sintorn IM, Vain T, Milani P, Krupinski P, Zagorska-Marek B, Viotti C, Jonsson H, Mellerowicz EJ, et al. . Mechanochemical polarization of contiguous cell walls shapes plant pavement cells. Dev Cell. 2017:43(3):290–300. 10.1016/j.devcel.2017.10.017 PubMed DOI
McCann MC, Hammouri M, Wilson R, Belton P, Roberts K. Fourier Transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol. 1992:100(4):1940–1947. 10.1104/pp.100.4.1940 PubMed DOI PMC
McQueen-Mason S, Cosgrove DJ. Expansin mode of action on cell walls: analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 1995:107(1):87–100. 10.1104/pp.107.1.87 PubMed DOI PMC
McQueen-Mason S, Durachko DM, Cosgrove DJ. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992:4:1425–1433. doi:10.1105/tpc.4.11.1425 PubMed DOI PMC
Mouille G, Robin S, Lecomte M, Pagant S, Höfte H. Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform Infrared (FT-IR) microspectroscopy. Plant J. 2003:35(3):393–404. 10.1046/j.1365-313X.2003.01807.x PubMed DOI
Nardi C, Escudero C, Villarreal N, Martinez G, Civello PM. The carbohydrate-binding module of Fragaria x ananassa expansin 2 (CBM-FaExp2) binds to cell wall polysaccharides and decreases cell wall enzyme activities “in vitro”. J Plant Res. 2013:126(1):151–159. 10.1007/s10265-012-0504-8 PubMed DOI
O’Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell. 2016:165(5):1280–1292. 10.1016/j.cell.2016.04.038 PubMed DOI PMC
Pacifici E, Di Mambro R, Dello Ioio R, Costantino P, Sabatini S. Acidic cell elongation drives cell differentiation in the Arabidopsis root. EMBO J. 2018:37(16):e99134. 10.15252/embj.201899134 PubMed DOI PMC
Palombo F, Winlove CP, Edginton RS, Green E, Stone N, Caponi S, Madami M, Fioretto D. Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. J R Soc Interface. 2014:11(101):20140739. 10.1098/rsif.2014.0739 PubMed DOI PMC
Park YB, Cosgrove DJ. Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis. Plant Physiol. 2012:158(1):465–475. 10.1104/pp.111.189779 PubMed DOI PMC
Park SH, Li F, Renaud J, Shen W, Li Y, Guo L, Cui H, Sumarah M, Wang A. NbEXPA1, an (-expansin, is plasmodesmata-specific and a novel host factor for potyviral infection. Plant J. 2017:92(5):846–886. 10.1111/tpj.13723 PubMed DOI
Peaucelle A. AFM-based mapping of the elastic properties of cell walls: at tissue, cellular, and subcellular resolutions. J Vis Exp. 2014:89:51317. doi:10.3791/51317 PubMed DOI PMC
Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol. 2011:21(20):1720–1726. 10.1016/j.cub.2011.08.057 PubMed DOI
Peaucelle A, Louvet R, Johansen JN, Höfte H, Laufs P, Pelloux J, Mouille G. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol. 2008:18(24):1943–1948. 10.1016/j.cub.2008.10.065 PubMed DOI
Peaucelle A, Wightman R, Höfte H. The control of growth symmetry breaking in the Arabidopsis hypocotyl. Curr Biol. 2015:25(13):1746–1752. 10.1016/j.cub.2015.05.022 PubMed DOI
Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A. Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci. 2001:98(20):11812–11817. 10.1073/pnas.191380498 PubMed DOI PMC
Prevedel R, Diz-Munoz A, Ruocco G, Antonacci G. Brillouin microscopy: an emerging tool for mechanobiology. Nat Methods. 2019:16(10):969–977. 10.1038/s41592-019-0543-3 PubMed DOI
Ramakrishna P, Ruiz Duarte P, Rance GA, Schubert M, Vordermaier V, Dai Vue L, Murphy E, Vilches Barro A, Swarup K, Moirangthema K, et al. . EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc Natl Acad Sci. 2019:116(17):8597–8602. 10.1073/pnas.1820882116 PubMed DOI PMC
Reinhardt D, Wittwer F, Mandel T, Kuhlemeier C. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell. 1998:10(9):1427–1437. 10.1105/tpc.10.9.1427 PubMed DOI PMC
Ribas A, de Silva NV, Santos T, Abrantes F, Custodio C, Machado Neto N, Vieira L. Regulation of α-expansins genes in Arabidopsis thaliana seeds during post-osmopriming germination. Physiol Mol Biol Plants. 2019:25(2):511–522. 10.1007/s12298-018-0620-6 PubMed DOI PMC
Samalova M, Brzobohaty B, Moore I. Pop6/LhGR: a stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. Plant J. 2005:41(6):919–935. 10.1111/j.1365-313X.2005.02341.x PubMed DOI
Samalova M, Gahurova E, Hejatko J. Expansin-mediated developmental and adaptive responses—a matter of cell wall biomechanics? Quant Plant Biol. 2022:3:e11. 10.1017/qpb.2022.6 PubMed DOI PMC
Samalova M, Kirchhelle C, Moore I. Universal methods for transgene induction using the dexamethasone-inducible transcription activation system pOp6/LhGR in Arabidopsis and other plant species. Curr Protoc Plant Biol. 2019:4(2):e20089. 10.1002/cppb.20089 PubMed DOI
Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jonsson H, Meyerowitz EM. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife. 2014:3:e01967. 10.7554/eLife.01967 PubMed DOI PMC
Sampedro J, Cosgrove DJ. The expansin superfamily. Genome Biol. 2005:6(12):242. 10.1186/gb-2005-6-12-242 PubMed DOI PMC
Sanchez-Montesino R, Bouza-Morcillo L, Marquez J, Ghita M, Duran-Nebreda S, Gomez L, Holdsworth MJ, Basse l, Onate-Sanchez L. A regulatory module controlling GA-mediated endosperm cell expansion is critical for seed germination in Arabidopsis. Mol Plant. 2019:12(1):71–85. 10.1016/j.molp.2018.10.009 PubMed DOI PMC
Sassi M, Trass J. When biochemistry meets mechanics: a systems view of growth control in plants. Curr Opin Plant Biol. 2015:28:137–143. 10.1016/j.pbi.2015.10.005 PubMed DOI
Scarcelli G, Polacheck WJ, Nia HT, Patel K, Grodzinsky AJ, Kamm RD, Yun SH. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat Methods. 2015:12(12):1132–1134. 10.1038/nmeth.3616 PubMed DOI PMC
Senechal F, Wattier C, Rusterucci C, Pelloux J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot. 2014:65(18):5125–5160. 10.1093/jxb/eru272 PubMed DOI PMC
Serre NBC, Wernerova D, Vittal P, Dubey SM, Medvecka E, Jelinkova A, Petrasek J, Grossmann G, Fendrych M. The AUX1-AFB1-CNGC14 module establishes longitudinal root surface pH profile. bioRxiv. 2022. 10.1101/2022.11.23.517700 PubMed DOI PMC
Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004:22(12):1567–1572. 10.1038/nbt1037 PubMed DOI
Takatani S, Verger S, Okamoto T, Takahashi T, Hamant O, Motose H. Microtubule response to tensile stress is curbed by NEK6 to buffer growth variation in the Arabidopsis hypocotyl. Curr Biol. 2020:30(8):1491–1503. 10.1016/j.cub.2020.02.024 PubMed DOI
Takatsuka H, Higaki T, Umeda M. Actin reorganization triggers rapid cell elongation in roots. Plant Physiol. 2018:178(3):1130–1141. 10.1104/pp.18.00557 PubMed DOI PMC
Taniguchi M, Sasaki N, Tsuge T, Aoyama A, Oka A. ARR1 Directly activates cytokinin response genes that encode proteins with diverse regulatory functions. Plant Cell Physiol. 2007:48(2):263–277. 10.1093/pcp/pcl063 PubMed DOI
Trinh D-C, Alonso-Serra J, Asaoka M, Colin L, Cortes M, Malivert A, Takatani S, Zhao F, Traas J, Trehin C, et al. . How mechanical forces shape plant organs. Curr Biol. 2021:31(3):R143–R159. 10.1016/j.cub.2020.12.001 PubMed DOI
Vaahtera L, Schulz J, Hamann T. Cell wall integrity maintenance during plant development and interaction with the environment. Nat Plants. 2019:5(9):924–932. 10.1038/s41477-019-0502-0 PubMed DOI
Vermeer JE, von Wangenheim D, Barberon M, Lee Y, Stelzer EH, Maizel A, Geldner N. A spatial accommodation by neighbouring cells is required for organ initiation in Arabidopsis. Science. 2014:343(6167):178–183. 10.1126/science.1245871 PubMed DOI
Vogler H, Caderas D, Mandel T, Kuhlemeier C. Domains of expansin gene expression define growth regions in the shoot apex of tomato. Plant Mol Biol. 2003:53(3):267–272. 10.1023/B:PLAN.0000006999.48516.be PubMed DOI
Voxeur A, Hofte H. Cell wall integrity signalling in plants: “to grow or not to grow that`s the question”. Glycobiology. 2016:26(9):950–960. 10.1093/glycob/cww029 PubMed DOI
Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M. Sensitivity-enhanced solid-state NMR detection of expansin's Target in plant cell walls. Proc Natl Acad Sci. 2013:110(41):16444–16449. 10.1073/pnas.1316290110 PubMed DOI PMC
Willis L, Refahi Y, Wightman R, Landrein B, Teles J, Huang KC, Meyerowitz EM, Jönsson H. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche. Proc Natl Acad Sci. 2016:113(51):E8238-E8246. 10.1073/pnas.1616768113 PubMed DOI PMC
Wolf S, Hematy K, Hofte H. Growth control and cell wall signaling in plants. Annu Rev Plant Biol. 2012:63(1):381–407. 10.1146/annurev-arplant-042811-105449 PubMed DOI
Wu P-J, Kabakova IV, Ruberti JW, Sherwood JM, Dunlop IE, Paterson C, Torok P, Overby DR. Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials. Nat Methods. 2018:15(8):561–562. 10.1038/s41592-018-0076-1 PubMed DOI PMC
Xie M, Chen H, Huang L, O’Neil RC, Shokhirev MN, Ecker JR. A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nat Commun. 2018:9(1):1604. 10.1038/s41467-018-03921-6 PubMed DOI PMC
Yan A, Wu MJ, Yan LM, Hu R, Ali I, Gan YB. AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLOS One. 2014:9(1):e85208. 10.1371/journal.pone.0085208 PubMed DOI PMC
Yang C, DelRio FW, Ma H, Killaars AR, Basta LP, Kyburz KA, Anseth KS. Spatially patterned matrix elasticity directs stem cell fate. Proc Natl Acad Sci. 2016:113(31):E4439-4445. 10.1073/pnas.1609731113 PubMed DOI PMC
Yuan S, Wu Y, Cosgrove DJ. A fungal endoglucanase with plant cell wall extension activity. Plant Physiol. 2001:127(1):324–333. 10.1104/pp.127.1.324 PubMed DOI PMC
Zhang N, Hasenstein KH. Distribution of expansins in graviresponding maize roots. Plant Cell Physiol. 2000:41(12):1305–1312. 10.1093/pcp/pcd064 PubMed DOI
Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ. Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose. 2014:21(2):853–862. 10.1007/s10570-013-9996-1 DOI
Zhang T, Tang H, Vavylonis D, Cosgrove DJ. Disentangling loosening from softening: insights into primary cell wall structure. Plant J. 2019:100(6):1101–1117. 10.1111/tpj.14519 PubMed DOI
Zhang Y, Yu J, Wang X, Durachko DM, Zhang S, Cosgrove DJ. Molecular insights into the complex mechanics of plant epidermal cell walls. Science. 2021:372(6543):706–711. 10.1126/science.abf2824 PubMed DOI
Zhao H, Brown PH, Schuck P. On the distribution of protein refractive index increments. Biophys J. 2011:100(9):2309–2317. 10.1016/j.bpj.2011.03.004 PubMed DOI PMC
Zubo YO, Clabaugh Blakley I, Yamburenko MV, Worthen JM, Street HS, Franco-Zorrilla JM, Zhang W, Hill K, Raines T, Solano S, et al. . Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc Natl Acad Sci. 2017:114(29):E5995–E6004. 10.1073/pnas.1620749114 PubMed DOI PMC