Differential expression and localization of expansins in Arabidopsis shoots: implications for cell wall dynamics and drought tolerance
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
39996115
PubMed Central
PMC11847903
DOI
10.3389/fpls.2025.1546819
Knihovny.cz E-resources
- Keywords
- Arabidopsis, EXPA, abiotic stress, cell wall, highthroughput phenotyping,
- Publication type
- Journal Article MeSH
Expansins are cell wall-modifying proteins implicated in plant growth and stress responses. In this study, we explored the differential localization of expansins in Arabidopsis thaliana shoots, with a focus on EXPA1, EXPA10, EXPA14, and EXPA15 utilizing pEXPA::EXPA translational fusion lines. Employing the chemically inducible system pOp6/LhGR for EXPA1 overexpression and high-throughput automatic phenotyping we evaluated the drought response and photosynthetic efficiency under stress conditions. We observed distinct expression patterns of expansins, with EXPA1 primarily localized in stomatal guard cells, while EXPA10 and EXPA15 showed strong cell wall (CW) localization in epidermal and other tissues. Overexpression of EXPA1 resulted in pronounced changes in CW-related gene expression, particularly during early stages of induction, including the upregulation of other expansins and CW-modifying enzymes. The induced EXPA1 line also displayed significant morphological changes in shoots, including smaller plant size, delayed senescence, and structural alterations in vascular tissues. Additionally, EXPA1 overexpression conferred drought tolerance, as evidenced by enhanced photosynthetic efficiency (Fv/FM), and low steady-state non-photochemical quenching (NPQ) values under drought stress. These findings highlight the critical role of EXPA1 in regulating plant growth, development, and stress response, with potential applications in improving drought tolerance in crops.
CEITEC Central European Institute of Technology Masaryk University Brno Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czechia
See more in PubMed
Awlia M., Nigro A., Fajkus J., Schmoeckel S. M., Negrao S., Santelia D., et al. . (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana . Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01414 PubMed DOI PMC
Bertolino L. T., Caine R. S., Gray J. E. (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00225 PubMed DOI PMC
Calderini D. F., Castillo F. M., Arenas A., Molero G., Reynolds M. P., Craze M., et al. . (2021). Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential. New Phytol. 230, 629–640. doi: 10.1111/nph.17048 PubMed DOI PMC
Chaves M. M., Flexas J., Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103, 551–560. doi: 10.1093/aob/mcn125 PubMed DOI PMC
Chen Y., Han Y., Zhang M., Zhou S., Kong X., Wang W. (2016). Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PloS One 11, e0153494. doi: 10.1371/journal.pone.0153494 PubMed DOI PMC
Chen L., Zou W., Fei C., Wu G., Li X., Lin H., et al. . (2018). [amp]]alpha;-Expansin EXPA4 positively regulates abiotic stress tolerance but negatively regulates pathogen resistance in Nicotiana tabacum . Plant Cell Physiol. 59, 2317–2330. doi: 10.1093/pcp/pcy155 PubMed DOI
Cho H. T., Cosgrove D. J. (2000). Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 97, 9783–9788. doi: 10.1073/pnas.160276997 PubMed DOI PMC
Cho H. T., Cosgrove D. J. (2002). Regulation of root hair initiation and EXPANSIN gene expression in A. thaliana . Plant Cell 14, 3237–3253. doi: 10.1105/tpc.006437 PubMed DOI PMC
Clauw P., Coppens. F., De Beuf K., Dhondt S., Van Daele T., Maleux K., et al. . (2015). Leaf responses to mild drought stress in natural variants of Arabidopsis . Plant Physiol. 167, 800–816. doi: 10.1104/pp.114.254284 PubMed DOI PMC
Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana . Plant J. 16, 735–743. doi: 10.1046/j.1365-313x PubMed DOI
Cosgrove D. J. (2000. a). Loosening of plant cell walls by EXPANSINs. Nature 407, 321–326. doi: 10.1038/35030000 PubMed DOI
Cosgrove D. J. (2000. b). Expansive growth of plant cell walls. Plant Physiol and. Biochem 38, 109–124. doi: 10.1016/S0981-9428(00)00164-9 PubMed DOI
Cosgrove D. J. (2000. c). New genes and new biological roles for expansins. Curr. Opin. Plant Biol. 3, 73–78. doi: 10.1016/S1369-5266(99)00039-4 PubMed DOI
Cosgrove D. J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861. doi: 10.1038/nrm1746 PubMed DOI
Cosgrove D. J. (2015). Plant EXPANSINs: diversity and interactions with plant cell walls. Curr. Opin. Plant Biol. 25, 162–172. doi: 10.1016/j.pbi.2015.05.014 PubMed DOI PMC
Cosgrove D. J. (2016). Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J. Exp. Bot. 67, 463–476. doi: 10.1093/jxb/erv511 PubMed DOI
Cosgrove D. J. (2024). Plant cell wall loosening by expansins. Annu. Rev. Cell Dev. Biol. 40, 329–352. doi: 10.1146/annurev-cellbio-111822-115334 PubMed DOI
Cosgrove D. J., Li L. C., Cho H. T., Hoffmann-Benning S., Moore R. C., Blecker D. (2002). The growing world of expansins. Plant Cell Physiol. 43, 1436–1444. doi: 10.1093/pcp/pcf180 PubMed DOI
Cutler S. R., Rodriguez P. L., Finkelstein R. R., Abrams S. R. (2010). Abscisic acid: emergence of a core signaling network. Ann. Rev. Plant Biol. 61, 651–679. doi: 10.1146/annurev-arplant-042809-112122 PubMed DOI
Dai F., Zhang C., Jiang X., Kang M., Yin X., Lu P., et al. . (2012). RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol. 160, 2064–2082. doi: 10.1104/pp.112.207720 PubMed DOI PMC
Eden E., Navon R., Steinfeld I., Lipson D., Yakhini Z. (2009). GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinf. 10, 48. doi: 10.1186/1471-2105-10-48 PubMed DOI PMC
Edgar R., Domrachev M., Lash A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210. doi: 10.1093/nar/30.1.207 PubMed DOI PMC
Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185–212. doi: 10.1051/agro:2008021 DOI
Flexas J., Bota J., Loreto F., Corinic G., Sharkey T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 6, 269–279. doi: 10.1055/s-2004-820867 PubMed DOI
Flutsch S., Nigro A., Conci F., Fajkus J., Thalmann M., Trtílek M., et al. . (2020). Glucose uptake to guard cells via STP transporters provides carbon sources for stomatal opening and plant growth. EMBO Rep. 21, e49719. doi: 10.15252/embr.201949719 PubMed DOI PMC
Gao X., Liu K., Lu Y. T. (2010). Specific roles of AtEXPA1 in plant growth and stress adaptation. Russian J. Plant Physiol. 57, 241–246. doi: 10.1134/S1021443710020111 DOI
Gigli-Bisceglia N., Engelsdorf T., Hamann T. (2020). Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell. Mol. Life Sci. 77, 2049–2077. doi: 10.1007/s00018-019-03388-8 PubMed DOI PMC
Guo W., Zhao J., Li X., Qin L., Yan X., Liao H. (2011). A soybean β-EXPANSIN gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J. 66, 541–552. doi: 10.1111/j.1365-313X.2011.04511.x PubMed DOI
Hamann T. (2015). The plant cell wall integrity maintenance mechanism concepts for organization and mode of action. Plant Cell Physiol. 56, 215–223. doi: 10.1093/pcp/pcu164 PubMed DOI
Hao Y. Y., Chu L. W., He X. J., Zhao S. T., Tang F. (2024). PagEXPA1 combines with PagCDKB2;1 to regulate plant growth and the elongation of fibers in Populus alba x Populus glandulosa . Intern. J. Biol. Macromol. 268, 131559. doi: 10.1016/j.ijbiomac.2024 PubMed DOI
Hao Z., Qian X., Xiao X., Huabo L., Junkai Z., Jichen X. (2017). Transgenic tobacco plants expressing grass AstEXPA1 gene show improved performance to several stresses. Plant Biotechnol. Rep. 11, 331–337. doi: 10.1007/s11816-017-0454-7 DOI
Hepworth C., Doheny-Adams T., Hunt L., Cameron D. D., Gray J. E. (2015). Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytol. 208, 336–341. doi: 10.1111/nph.13598 PubMed DOI PMC
Huang G. T., Ma S. L., Bai L. P., Zhang L., Ma H., Jia P., et al. . (2012). Signal transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep. 39, 969–987. doi: 10.1007/s11033-011-0823-1 PubMed DOI
Kok B. O., Altunoglu Y. C., Oncul A. B., Karaci A., Baloglu M. C. (2023). Expansin gene family database: A comprehensive bioinformatics resource for plant expansin multigene family. J. Bioinform. Compl. Biol. 21 (3), 2350015. doi: 10.1142/S0219720023500154 PubMed DOI
Kuluev B. R., Knyazev A. B., Lebedev Y. P., Chemeris A. V. (2012). Morphological and physiological characteristics of transgenic tobacco plants expressing expansin genes: AtEXP10 from Arabidopsis and PnEXPA1 from poplar. Russ. J. Plant Physiol. 59, 97–104. doi: 10.1134/S1021443712010128 DOI
Kwon Y. R., Lee H. J., Kim K. H., Hong S. W., Lee S. J., Lee H. (2008). Ectopic expression of Expansin3 or Expansin b 1 causes enhanced hormone and salt stress sensitivity in Arabidopsis . Biotechnol. Lett. 30, 1281–1288. doi: 10.1007/s10529-008-9678-5 PubMed DOI
Lee D. K., Ahn J. H., Song S. K., Choi Y. D., Lee J. S. (2003). Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol. 131, 985–997. doi: 10.1104/pp.009902 PubMed DOI PMC
Lee Y., Kende H., Cho H. T. (2001). EXPANSINs: ever-expanding numbers and functions. Curr. Opin. Plant Biol. 4, 527–532. doi: 10.1016/S1369-5266(00)00211-9 PubMed DOI
Li Y., Jones L., McQueen-Mason S. (2003). EXPANSINs and cell growth. Curr. Opin. Plant Biol. 6, 603–610. doi: 10.1016/j.pbi.2003.09.003 PubMed DOI
Li J. F., Liu L. T., Wang L. J., Rao I. M., Wang Z. Y., Chen Z. J. (2024). AcEXPA1, an α-expansin gene, participates in the aluminum tolerance of carpetgrass (Axonopus compressus) through root growth regulation. Plant Cell Rep. 43, 159. doi: 10.1007/s00299-024-03243-6 PubMed DOI
Li F., Xing S., Guo Q., Zhao M., Zhang J., Gao Q., et al. . (2011). Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. J. Plant Physiol. 168, 960–966. doi: 10.1016/j.jplph.2010.11.023 PubMed DOI
Liu X. Q., Cai Y. P., Yao W. W., Chen L., Hou W. S. (2024). The soybean NUCLEAR FACTOR-Y C4 and α-EXPANSIN 7 module influences phosphorus uptake by regulating root morphology. Plant Physiol. 197 (1), kiae478. doi: 10.1093/plphys/kiae478 PubMed DOI
Liu Y., Zhang L., Hao W., Zhang L., Liu Y., Chen L. (2019). Expression of two α−type expansins from Ammopiptanthus nanus in Arabidopsis thaliana enhance tolerance to cold and drought stresses. Int. J. Mol. Sci. 20, 5255. doi: 10.3390/ijms20215255 PubMed DOI PMC
Lohoff C., Buchholz P. C. F., Le-Roes-Hill M., Pleiss J. (2020). The Expansin engineering database: A navigation and classification tool for expansins and homologues. Proteins 89, 149–162. doi: 10.1002/prot.26001 PubMed DOI
Lu P., Kang M., Jiang X., Dai F., Gao J., ZhangG C. (2013). RhEXPA4, a rose EXPANSIN gene, modulates leaf growth and confers drought and salt tolerance to A. thaliana . Planta 237, 1547–1559. doi: 10.1007/s00425-013-1867-3 PubMed DOI
Marowa P., Ding A., Kong Y. (2016). Expansins: Roles in plant growth and potential applications in crop improvement. Plant Cell Rep. 35, 949–965. doi: 10.1007/s00299-016-1948-4 PubMed DOI PMC
Marowa P., Dinga A., Xua Z., Konga Y. (2020). Overexpression of NtEXPA11 modulates plant growth and development and enhances stress tolerance in tobacco. Plant Physiol. Biochem. 151, 477–485. doi: 10.1016/j.plaphy.2020.03.033 PubMed DOI
McQueen-Mason S. J., Cosgrove D. J. (1995). EXPANSIN mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 107, 87–100. doi: 10.1104/pp.107.1.87 PubMed DOI PMC
Mira W., Heinz O., Goncalvez A., Crema L., Vicentini R., Cardoso S., et al. . (2024). SacEXP32 sugarcane expansin gene expression increases cell size and improves biomass digestibility. J. Plant Biochem. Biotechnol. 33, 313–325. doi: 10.1007/s13562-024-00891-3 DOI
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue. Physiol. Plant. 15, 493–497. doi: 10.1111/j.1399-3054.1962.tb08052.x DOI
Narayan J. A., Chakravarthi M., Nerkar G., Manoj V. M., Dharshini S., Subramonian N., et al. . (2021). Overexpression of expansin EaEXPA1, a cell wall loosening protein enhances drought tolerance in sugarcane. Ind. Crops Prod. 159, 113035. doi: 10.1016/j.indcrop.2020.113035 DOI
Narayan J. A., Dharshini S., Manoj V. M., Padmanabhan T. S. S., Kadirvelu K., Suresha G. S., et al. . (2019). Isolation and characterization of water-deficit stress-responsive α-expansin 1 (EXPA1) gene from Saccharum complex. 3. Biotech 9, 186. doi: 10.1007/s13205-019-1719-3 PubMed DOI PMC
Novakovic L., Guo T., Bacic A., Sampathkumar A., Johnson K. L. (2018). Hitting the wall—Sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants 7, 89. doi: 10.3390/plants7040089 PubMed DOI PMC
Poeschl Y., Möller B., Müller L., Bürstenbinder K. (2020). User-friendly assessment of pavement cell shape features with PaCeQuant: Novel functions and tools. Methods Cell Biol. 160, 349–363. doi: 10.1016/bs.mcb.2020.04.010 PubMed DOI
Ramakrishna P., Ruiz Duarte P., Rance G. A., Schubert M., Vordermaier V., Dai Vue L., et al. . (2019). EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc. Natl. Acad. Sci. 116, 8597–8602. doi: 10.1073/pnas.1820882116 PubMed DOI PMC
Ren Y., Chen Y., An J., Zhao Z., Zhang Z., Wang Y., et al. . (2018). Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to cd toxicity. Plant Sci. 270, 245–256. doi: 10.1016/j.plantsci.2018.02.022 PubMed DOI
Richter J., Watson J. M., Stasnik P., Borowska M., Neuhold J., Berger M., et al. . (2018). Multiplex mutagenesis of four clustered CrRLK1L with CRISPR/Cas9 exposes their growth regulatory roles in response to metal ions. Sci. Rep. 8, 12182. doi: 10.1038/s41598-018-30711-31 PubMed DOI PMC
Rui Y., Dinneny J. R. (2020). A wall with integrity: Surveillance and maintenance of the plant cell wall under stress. New Phytol. 225, 1428–1439. doi: 10.1111/nph.v225.4 PubMed DOI
Salehi-Lisar S. Y., Bakhshayeshan-Agdam H. (2016). “Drought stress in plants: Causes, consequences, and tolerance,” in Drought Stress Tolerance in Plants, vol. 1 . Eds. Hossain M., Wani S., Bhattacharjee S., Burritt D., Tran L. S. (Switzerland: Springer International Publishing; ), 1–16.
Samalova M., Gahurova E., Hejatko J. (2022). Expansin-mediated developmental and adaptive responses: a matter of cell wall biomechanics. Quantitative. Plant Biol. 3, e11. doi: 10.1017/qpb.2022.6 PubMed DOI PMC
Samalova M., Kirchhelle C., Moore I. (2019). Universal methods for transgene induction using the dexamethasone-inducible transcription activation system pOp6/LhGR in Arabidopsis and other plant species. Curr. Protoc. Plant Biol. 4, e20089. doi: 10.1002/cppb.20089 PubMed DOI
Samalova M., Melnikava A., Elsayad K., Peaucelle A., Gahurova E., Gumulec J., et al. . (2024). Hormone-regulated expansins: Expression, localization, and cell wall biomechanics in Arabidopsis root growth. Plant Physiol. 194, 209–228. doi: 10.1093/plphys/kiad228 PubMed DOI PMC
Sampedro J., Cosgrove D. J. (2005). The EXPANSIN superfamily. Genome Biol. 6, 242. doi: 10.1186/gb-2005-6-12-242 PubMed DOI PMC
Sanchez-Munoz R., Depaepe D., Samalova M., Hejatko J., Zaplana I., van der Straeten D. (2024). The molecular core of transcriptome responses to abiotic stress in plants: a machine learning-driven meta-analysis. BioRxiv. Preprint. doi: 10.1101/2024.01.24.576978 DOI
Schipper O., Schaefer D., Reski R., Flemin A. (2002). Expansins in the bryophyte Physcomitrella patens . Plant Mol. Biol. 50, 789–802. doi: 10.1023/A:1019907207433 PubMed DOI
Shao H. B., Chu L. Y., Jaleel C. A., Zhao C. X. (2008. a). Water-deficit stress-induced anatomical changes in higher plants. Comptes. Rendus. Biol. 331, 215–225. 95. doi: 10.1016/j.crvi.2008.01.002 PubMed DOI
Shao H. B., Song W. Y., Chu L. Y. (2008. b). Advances of calcium signals involved in plant anti-drought. Comptes. Rendus. Biol. 331, 587–596. doi: 10.1016/j.crvi.2008.03.012 PubMed DOI
Somyong S., Phetchawang P., Bihi A. K., Sonthirod C., Kongkachana W., Sangsrakru D., et al. . (2022). A SNP variation in an expansin EgExp4 gene affects height in oil palm. PEERJ 10, e13046. doi: 10.7717/peerj.13046 PubMed DOI PMC
Su G. Q., Lin Y. F., Wang C. F., Lu J., Liu Z. M., He Z. R., et al. . (2024). Expansin SlExp1 and endoglucanase SlCel2 synergistically promote fruit softening and cell wall disassembly in tomato. Plant Cell 36, 709–726. doi: 10.1093/plcell/koad291 PubMed DOI PMC
Tenhaken R. (2015). Cell wall remodeling under abiotic stress. Front. Plant Sci. 5, 771. doi: 10.3389/fpls.2014.00771 PubMed DOI PMC
Vaahtera L., Schulz J., Hamann T. (2019). Cell wall integrity maintenance during plant development and interaction with the environment. Nat. Plants 5, 924–932. doi: 10.1038/s41477-019-0502-0 PubMed DOI
Wei P., Chen S., Zhang X., Zhao P., Xiong Y., Wang W., et al. . (2011). An a-expansin, VfEXPA1, is involved in regulation of stomatal movement in Vicia faba L. Chin. Sci. Bull. 56, 3531–3537. doi: 10.1007/s11434-011-4817-0 DOI
Wolf S. (2022). Cell wall signaling in plant development and defense. Annu. Rev. Plant Biol. 73, 323–353. doi: 10.1146/annurev-arplant-102820-095312 PubMed DOI
Wu Y., Thorne E. T., Sharp R. E., Cosgrove D. J. (2001). Modification of EXPANSIN transcript levels in the maize primary root at low water potentials. Plant Physiol. 126, 1471–1479. doi: 10.1104/pp.126.4.1471 PubMed DOI PMC
Yang C., Jiang L. Q., Leng Z. M., Yuan S., Wang Y., Liu G., et al. . (2024). Overexpression of NtEXPA7 promotes seedling growth and resistance to root-knot nematode in tobacco. Biochem. Biophys. Res. Commun. 720, 150086. doi: 10.1016/j.bbrc.2024.150086 PubMed DOI
Yaqoob A., Bashir S., Rao A. Q., Shahid A. A. (2020). Transformation of α-EXPA1 gene leads to an improved fibre quality in Gossypium hirsutum . Plant Breed. 139, 1213–1220. doi: 10.1111/pbr.12878 DOI
Zhang B., Chang L., Sun W., Ullah A., Yang X. (2021). Overexpression of an expansin-like gene, GhEXLB2 enhanced drought tolerance in cotton. Plant Physiol. Biochem. 162, 468–475. doi: 10.1016/j.plaphy.2021.03.018 PubMed DOI
Zhang X. W., Wang Y., Liu M. Y., Yan P. W., Niu F., Ma F. Y., et al. . (2024). OsEXPA7 encoding an expansin affects grain size and quality traits in rice (Oryza sativa L.). Rice 17, 36. doi: 10.1186/s12284-024-00715-x PubMed DOI PMC
Zhang X. Q., Wei P. C., Xiong Y. M., Yang Y., Chen J., Wang X. C. (2011). Overexpression of the Arabidopsis α-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus. Plant Cell Rep. 30, 27–36. doi: 10.1007/s00299-010-0937-2 PubMed DOI