A fast all-optical 3D photoacoustic scanner for clinical vascular imaging

. 2024 Sep 30 ; () : . [epub] 20240930

Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39349585
Odkazy

PubMed 39349585
DOI 10.1038/s41551-024-01247-x
PII: 10.1038/s41551-024-01247-x
Knihovny.cz E-zdroje

The clinical assessment of microvascular pathologies (in diabetes and in inflammatory skin diseases, for example) requires the visualization of superficial vascular anatomy. Photoacoustic tomography (PAT) scanners based on an all-optical Fabry-Perot ultrasound sensor can provide highly detailed 3D microvascular images, but minutes-long acquisition times have precluded their clinical use. Here we show that scan times can be reduced to a few seconds and even hundreds of milliseconds by parallelizing the optical architecture of the sensor readout, by using excitation lasers with high pulse-repetition frequencies and by exploiting compressed sensing. A PAT scanner with such fast acquisition minimizes motion-related artefacts and allows for the volumetric visualization of individual arterioles, venules, venous valves and millimetre-scale arteries and veins to depths approaching 15 mm, as well as for dynamic 3D images of time-varying tissue perfusion and other haemodynamic events. In exploratory case studies, we used the scanner to visualize and quantify microvascular changes associated with peripheral vascular disease, skin inflammation and rheumatoid arthritis. Fast all-optical PAT may prove useful in cardiovascular medicine, oncology, dermatology and rheumatology.

Zobrazit více v PubMed

James, W. D., Elston, D., Treat, J. R. & Rosenbach, M. A. Andrews’ Diseases of the Skin: Clinical Dermatology 13th edn (Elsevier, 2019).

Chao, C. Y. L. & Cheing, G. L. Y. Microvascular dysfunction in diabetic foot disease and ulceration. Diabetes Metab. Res. Rev. 25, 604–614 (2009). PubMed DOI

Paul, D. W. et al. Noninvasive imaging technologies for cutaneous wound assessment: a review. Wound Repair Regen. 23, 149–162 (2015). PubMed DOI

Allen, J. & Howell, K. Microvascular imaging: techniques and opportunities for clinical physiological measurements. Physiol. Meas. 35, R91–R141 (2014). PubMed DOI

Deegan, A. J. & Wang, R. K. Microvascular imaging of the skin. Phys. Med. Biol. 64, 07TR01 (2019). PubMed DOI PMC

Tanter, M. & Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 102–119 (2014). PubMed DOI

Soloukey, S. et al. Functional ultrasound (fUS) during awake brain surgery: the clinical potential of intra-operative functional and vascular brain mapping. Front. Neurosci. 13, 1384 (2020). PubMed DOI PMC

Beard, P. Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011). PubMed DOI PMC

Su, R., Ermilov, S., Liopo, A. & Oraevsky, A. Laser optoacoustic tomography: towards new technology for biomedical diagnostics. Nucl. Instrum. Methods Phys. Res. A 720, 58–61 (2013). PubMed DOI

Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016). PubMed DOI PMC

Taruttis, A., van Dam, G. M. & Ntziachristos, V. Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res. 75, 1548–1559 (2015). PubMed DOI

Li, D., Humayun, L., Vienneau, E., Vu, T. & Yao, J. Seeing through the skin: photoacoustic tomography of skin vasculature and beyond. JID Innov. 1, 100039 (2021). PubMed DOI PMC

Li, M., Tang, Y. & Yao, J. Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics 10, 65–73 (2018). PubMed DOI PMC

Lin, L. & Wang, L. V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 19, 365–384 (2022). PubMed DOI

Valluru, K. S., Wilson, K. E. & Willmann, J. K. Photoacoustic imaging in oncology: translational preclinical and early clinical experience. Radiology 280, 332–349 (2016). PubMed DOI

Karlas, A. et al. Cardiovascular optoacoustics: from mice to men – a review. Photoacoustics 14, 19–30 (2019). PubMed DOI PMC

Karlas, A. et al. Multispectral optoacoustic tomography of peripheral arterial disease based on muscle hemoglobin gradients—a pilot clinical study. Ann. Transl. Med. 9, 36–36 (2021). PubMed DOI PMC

Yang, J. et al. Detecting hemodynamic changes in the foot vessels of diabetic patients by photoacoustic tomography. J. Biophotonics 13, e202000011 (2020). PubMed DOI

Karlas, A. et al. Dermal features derived from optoacoustic tomograms via machine learning correlate microangiopathy phenotypes with diabetes stage. Nat. Biomed. Eng. 7, 1667–1682 (2023). PubMed DOI PMC

Zabihian, B. et al. In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies. Biomed. Opt. Express 6, 3163–3178 (2015). PubMed DOI PMC

van den Berg, P. J., Daoudi, K., Bernelot Moens, H. J. & Steenbergen, W. Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system. Photoacoustics 8, 8–14 (2017). PubMed DOI PMC

Jo, J. et al. Photoacoustic tomography for human musculoskeletal imaging and inflammatory arthritis detection. Photoacoustics 12, 82–89 (2018). PubMed DOI PMC

Rajian, J. R., Shao, X., Chamberland, D. L. & Wang, X. Characterization and treatment monitoring of inflammatory arthritis by photoacoustic imaging: a study on adjuvant-induced arthritis rat model. Biomed. Opt. Express 4, 900–908 (2013). PubMed DOI PMC

Nam, S. Y., Chung, E., Suggs, L. J. & Emelianov, S. Y. Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct. Tissue Eng. C Methods 21, 557–566 (2015). DOI

Mantri, Y., Mishra, A., Anderson, C. A. & Jokerst, J. V. Photoacoustic imaging to monitor outcomes during hyperbaric oxygen therapy: validation in a small cohort and case study in a bilateral chronic ischemic wound. Biomed. Opt. Express 13, 5683–5694 (2022). PubMed DOI PMC

Deán-Ben, X. L. & Razansky, D. Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths. Opt. Express 21, 28062–28071 (2013). PubMed DOI

Zhang, H. F., Maslov, K., Stoica, G. & Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006). PubMed DOI

Aguirre, J. et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng. 1, 0068 (2017). DOI

Tadayon, M. A., Baylor, M. & Ashkenazi, S. Polymer waveguide Fabry–Perot resonator for high-frequency ultrasound detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 2132–2138 (2014). PubMed DOI

Preisser, S. et al. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging. Biomed. Opt. Express 7, 4171–4186 (2016). PubMed DOI PMC

Hajireza, P., Krause, K., Brett, M. & Zemp, R. Glancing angle deposited nanostructured film Fabry–Perot etalons for optical detection of ultrasound. Opt. Express 21, 6391–6400 (2013). PubMed DOI

Guggenheim, J. A. et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics 11, 714–719 (2017). DOI

Li, H., Dong, B., Zhang, Z., Zhang, H. F. & Sun, C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep. 4, 4496 (2014). PubMed DOI PMC

Shnaiderman, R. et al. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature 585, 372–378 (2020). PubMed DOI

Westerveld, W. J. et al. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photonics 15, 341–345 (2021). DOI

Harary, T., Hazan, Y. & Rosenthal, A. All-optical optoacoustic micro-tomography in reflection mode. Biomed. Eng. Lett. 13, 475–483 (2023). PubMed DOI PMC

Zhang, E., Laufer, J. & Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry–Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 47, 561–577 (2008). PubMed DOI

Laufer, J. et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17, 056016 (2012).

Johnson, S. P., Ogunlade, O., Lythgoe, M. F., Beard, P. & Pedley, R. B. Longitudinal photoacoustic imaging of the pharmacodynamic effect of vascular targeted therapy on tumors. Clin. Cancer Res. 25, 7436–7448 (2019). PubMed DOI PMC

Ogunlade, O. et al. In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models. Am. J. Physiol. Ren. Physiol. 314, F1145–F1153 (2018). DOI

Huynh, N., Ogunlade, O., Zhang, E., Cox, B. & Beard, P. Photoacoustic imaging using an 8-beam Fabry–Perot scanner>. In Proc. SPIE 9708, Photons Plus Ultrasound (eds Oraevsky, A. A. & Wang, L. V.) 97082L (SPIE, 2016).

Plumb, A. A., Huynh, N. T., Guggenheim, J., Zhang, E. & Beard, P. Rapid volumetric photoacoustic tomographic imaging with a Fabry–Perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli. Eur. Radiol. 28, 1037–1045 (2018). PubMed DOI

Jathoul, A. P. et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 9, 239–246 (2015). DOI

Märk, J. et al. Dual-wavelength 3D photoacoustic imaging of mammalian cells using a photoswitchable phytochrome reporter protein. Commun. Phys. 1, 3 (2018). DOI

Ma, X., Fan, M., Cai, Y., Xu, L. & Ma, J. A Fabry–Perot fiber-optic array for photoacoustic imaging. IEEE Trans. Instrum. Meas. 71, 4501508 (2022).

Saucourt, J., Moreau, A., Lumeau, J., Rigneault, H. & Chaigne, T. Fast interrogation wavelength tuning for all-optical photoacoustic imaging. Opt. Express 31, 11164–11172 (2023). PubMed DOI

Cox, B. T. & Beard, P. C. The frequency-dependent directivity of a planar Fabry–Perot polymer film ultrasound sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 394–404 (2007). PubMed DOI

Morris, P., Hurrell, A., Shaw, A., Zhang, E. & Beard, P. A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J. Acoust. Soc. Am. 125, 3611–3622 (2009).

Allen, T. J. et al. High pulse energy fibre laser as an excitation source for photoacoustic tomography. Opt. Express 28, 34255–34265 (2020). PubMed DOI

Arridge, S. R. et al. Accelerated high-resolution photoacoustic tomography via compressed sensing. Phys. Med. Biol. 61, 8908–8940 (2016). PubMed DOI

Köstli, K. P., Frenz, M., Bebie, H. & Weber, H. P. Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys. Med. Biol. 46, 1863–1872 (2001). PubMed DOI

Caggiati, A., Phillips, M., Lametschwandtner, A. & Allegra, C. Valves in small veins and venules. Eur. J. Vasc. Endovasc. Surg. 32, 447–452 (2006). PubMed DOI

Pu, K. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9, 233–239 (2014). PubMed DOI PMC

De Angelis, R., Grassi, W. & Cutolo, M. A growing need for capillaroscopy in rheumatology. Arthritis Rheum. 61, 405–410 (2009). PubMed DOI

Ingegnoli, F. et al. Prognostic model based on nailfold capillaroscopy for identifying Raynaud’s phenomenon patients at high risk for the development of a scleroderma spectrum disorder: PRINCE (Prognostic Index for Nailfold Capillaroscopic Examination). Arthritis Rheum. 58, 2174–2182 (2008). PubMed DOI

Haltmeier et al. Compressed sensing and sparsity in photoacoustic tomography. J. Opt. 18, 114004–114012 (2016). DOI

Antholzer, S., Haltmeier, M. & Schwab, J. Deep learning for photoacoustic tomography from sparse data. Inverse Prob. Sci. Eng. 27, 987–1005 (2019). DOI

Davoudi, N., Deán-Ben, X. L. & Razansky, D. Deep learning optoacoustic tomography with sparse data. Nat. Mach. Intell. 1, 453–460 (2019). DOI

Özbek, A., Deán-Ben, X. L. & Razansky, D. Optoacoustic imaging at kilohertz volumetric frame rates. Optica 5, 857–863 (2018). PubMed DOI PMC

Hauptmann, A. & Cox, B. Deep learning in photoacoustic tomography: current approaches and future directions. J. Biomed. Opt. 25, 112903 (2020). DOI PMC

Pan, B. & Betcke, M. M. On learning the invisible in photoacoustic tomography with flat directionally sensitive detector. SIAM J. Imag. Sci. 16, 770–801 (2023). DOI

Roustit, M. & Cracowski, J.-L. Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharmacol. Sci. 34, 373–384 (2013). PubMed DOI

Rossi, M. et al. Peripheral microvascular dysfunction as an independent predictor of atherosclerotic damage in type 1 diabetes patients: a preliminary study. Clin. Hemorheol. Microcirc. 54, 381–391 (2013). PubMed DOI

Belch, J. J. et al. Critical issues in peripheral arterial disease detection and management: a call to action. Arch. Intern. Med. 163, 884–892 (2003). PubMed DOI

Han, H.-C. C. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J. Vasc. Res. 49, 185–197 (2012). PubMed DOI PMC

Owen, C. G. et al. Diabetes and the tortuosity of vessels of the bulbar conjunctiva. Ophthalmology 115, e27–e32 (2008). PubMed DOI

Ciurică, S. et al. Arterial tortuosity. Hypertension 73, 951–960 (2019). PubMed DOI

Almutairi, K. B., Nossent, J. C., Preen, D. B., Keen, H. I. & Inderjeeth, C. A. The prevalence of rheumatoid arthritis: a systematic review of population-based Studies. J. Rheumatol. 48, 669–676 (2021). PubMed DOI

Wiacek, A. & Lediju Bell, M. A. Photoacoustic-guided surgery from head to toe [Invited]. Biomed. Opt. Express 12, 2079–2117 (2021). PubMed DOI PMC

Ansari, R., Zhang, E. Z., Desjardins, A. E. & Beard, P. C. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy. Light. Sci. Appl. 7, 75 (2018). PubMed DOI PMC

Ansari, R., Zhang, E., Desjardins, A. & Beard, P. Miniature all-optical flexible forward-viewing photoacoustic endoscopy probe for surgical guidance. Opt. Lett. 45, 6238–6241 (2020). PubMed DOI PMC

Ansari, R., Zhang, E. & Beard, P. Dual-modality rigid endoscope for photoacoustic imaging and white light videoscopy. J. Biomed. Opt. 29, 020502 (2024). PubMed DOI PMC

Lamont, M. & Beard, P. 2D imaging of ultrasound fields using CCD array to map output of Fabry–Perot polymer film sensor. Electron. Lett. 42, 7–8 (2006). DOI

Sievers, J., Villringer, C., Lebek, W., Gilani, T. & Laufer, J. Photoacoustic tomography using a Fabry–Perot sensor with homogeneous optical thickness and wide-field camera-based detection. In Opto-Acoustic Methods and Applications in Biophotonics VI (eds Zemp, R. J. et al.) 126310P (SPIE, 2023).

Zhang, E. Z. & Beard, P. C. A miniature all-optical photoacoustic imaging probe. In Proc. SPIE, Photons Plus Ultrasound Vol. 7899 (eds Oraevsky, A. A. & Wang, L. V.) 78991F (SPIE, 2011).

Zhang, E. Z. et al. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging. Biomed. Opt. Express 2, 2202–2215 (2011). PubMed DOI PMC

Pham, K. et al. Broadband all-optical plane-wave ultrasound imaging system based on a Fabry–Perot scanner. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68, 1007–1016 (2021). PubMed DOI

Yasuda, H. Plasma Polymerisation (Academic Press, 1985).

Treeby, B. E., Jaros, J. & Cox, B. T. Advanced photoacoustic image reconstruction using the k-Wave toolbox. In Proc. SPIE, Photons Plus Ultrasound Vol. 9708 (eds Oraevsky, A. A. & Wang, L. V.) 97082P (SPIE, 2016).

Treeby, B. E., Varslot, T. K., Zhang, E. Z., Laufer, J. G. & Beard, P. C. Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach. J. Biomed. Opt. 16, 090501 (2011). PubMed DOI

Treeby, B. E. & Cox, B. T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15, 021314 (2010). PubMed DOI

Arthur, D. & Vassilvitskii, S. K-means++: the advantages of careful seeding. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms 1027–1035 (Society for Industrial and Applied Mathematics, 2007).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...