• This record comes from PubMed

Berberine Exerts Neuroprotective Effects in Alzheimer's Disease by Switching Microglia M1/M2 Polarization Through PI3K-AKT Signaling

. 2025 Mar 24 ; 74 (1) : 129-140.

Language English Country Czech Republic Media print

Document type Journal Article

Berberine (BBR), a small molecule protoberberine isoquinoline alkaloid, is easy to cross the blood-brain barrier and is a potential drug for neurodegenerative diseases. Here, we explored the role and molecular mechanism of BBR in Alzheimer's disease (AD) progression. Weighted gene co-expression network analysis (WGCNA) was conducted to determine AD pathology-associated gene modules and differentially expressed genes (DEGs) were also identified. GO and KEGG analyses were performed for gene function and signaling pathway annotation. Cell counting kit-8 (CCK8) assay was applied to analyze cell viability. Immunofluorescence (IF) staining assay was conducted to measure the levels of polarization markers. The production of inflammatory cytokines was analyzed by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) were detected using a ROS detection kit and a MMP Detection Kit (JC-1), respectively. AD pathology-associated DEGs were applied for GO function annotation and KEGG enrichment analysis, and the results uncovered that AD pathology was related to immune and inflammation. Lipopolysaccharide (LPS) exposure induced the M1 phenotype of microglia, and BBR suppressed LPS-induced M1 polarization and induced microglia toward M2 polarization. Through co-culture of microglia and neuronal cells, we found that BBR exerted a neuro-protective role by attenuating the injury of LPS-induced HMC3 on SH-SY5Y cells. Mechanically, BBR switched the M1/M2 phenotypes of microglia by activating PI3K-AKT signaling. In summary, BBR protected neuronal cells from activated microglia-mediated neuro-inflammation by switching the M1/M2 polarization in LPS-induced microglia via activating PI3K-AKT signaling. Key words Alzheimer's Disease, Berberine, Microglia polarization, Neuroinflammation, PI3K-AKT signaling.

See more in PubMed

Rapaka D, Adiukwu PC, Challa SR, Bitra VR. Interplay Between Astroglial Endocannabinoid System and the Cognitive Dysfunction in Alzheimer’s Disease. Physiol Res. 2023;72:575–586. doi: 10.33549/physiolres.935156. PubMed DOI PMC

Wang X, Li M, Hu Y. miR-29c-3p Attenuates beta-Amyloid-Induced Neurotoxicity in Alzheimer’s Disease Through Regulating beta-Site Amyloid Precursor Protein-Cleaving Enzyme 1. Physiol Res. 2023;72:833–841. doi: 10.33549/physiolres.935084. PubMed DOI PMC

Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci. 2021;276:119129. doi: 10.1016/j.lfs.2021.119129. PubMed DOI

Laurent C, Buée L, Blum D. Tau and neuroinflammation: What impact for Alzheimer’s Disease and Tauopathies? Biomed J. 2018;41:21–33. doi: 10.1016/j.bj.2018.01.003. PubMed DOI PMC

Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353:777–783. doi: 10.1126/science.aag2590. PubMed DOI

Joseph B, Venero JL. A brief overview of multitalented microglia. Methods Mol Biol. 2013;1041:3–8. doi: 10.1007/978-1-62703-520-0_1. PubMed DOI

Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11:775–787. doi: 10.1038/nri3086. PubMed DOI

Ji Q, Zhu F, Liu X, Li Q, Su SB. Recent Advance in Applications of Proteomics Technologies on Traditional Chinese Medicine Research. Evid Based Complement Alternat Med. 2015;2015:983139. doi: 10.1155/2015/983139. PubMed DOI PMC

Zeng K, Li M, Hu J, Mahaman YAR, Bao J, Huang F, Xia Y, et al. Ginkgo biloba Extract EGb761 Attenuates Hyperhomocysteinemia-induced AD Like Tau Hyperphosphorylation and Cognitive Impairment in Rats. Curr Alzheimer Res. 2018;15:89–99. doi: 10.2174/1567205014666170829102135. PubMed DOI

Zhou L, Tan S, Shan YL, Wang YG, Cai W, Huang XH, Liao XY, et al. Baicalein improves behavioral dysfunction induced by Alzheimer’s disease in rats. Neuropsychiatric Dis Treat. 2016;12:3145–3152. doi: 10.2147/NDT.S117469. PubMed DOI PMC

Ortiz LM, Lombardi P, Tillhon M, Scovassi AI. Berberine, an epiphany against cancer. Molecules. 2014;19:12349–12367. doi: 10.3390/molecules190812349. PubMed DOI PMC

Rui R, Yang H, Liu Y, Zhou Y, Xu X, Li C, Liu S. Effects of Berberine on Atherosclerosis. Front Pharmacol. 2021;12:764175. doi: 10.3389/fphar.2021.764175. PubMed DOI PMC

Jin Y, Khadka DB, Cho WJ. Pharmacological Effects Of Berberine And Its Derivatives: A Patent Update. Expert Opin Ther Pat. 2016;26:229–243. doi: 10.1517/13543776.2016.1118060. PubMed DOI

Jiang W, Li S, Li X. Therapeutic potential of berberine against neurodegenerative diseases. Sci China Life Sci. 2015;58:564–569. doi: 10.1007/s11427-015-4829-0. PubMed DOI PMC

Chen Y, Chen Y, Liang Y, Chen H, Ji X, Huang M. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed Pharmacother. 2020;121:109670. doi: 10.1016/j.biopha.2019.109670. PubMed DOI

Ye C, Liang Y, Chen Y, Xiong Y, She Y, Zhong X, Chen H, Huang M. Berberine Improves Cognitive Impairment by Simultaneously Impacting Cerebral Blood Flow and β-Amyloid Accumulation in an APP/tau/PS1 Mouse Model of Alzheimer’s Disease. Cells. 2021;10:1161. doi: 10.3390/cells10051161. PubMed DOI PMC

Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016;12:719–732. doi: 10.1016/j.jalz.2016.02.010. PubMed DOI

Brigas HC, Ribeiro M, Coelho JE, Gomes R, Gomez-Murcia V, Carvalho K, Faivre E, et al. IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease. Cell Rep. 2021;36:109574. doi: 10.1016/j.celrep.2021.109574. PubMed DOI

Jayaraman A, Htike TT, James R, Picon C, Reynolds R. TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer’s disease hippocampus. Acta Neuropathol Commun. 2021;9:159. doi: 10.1186/s40478-021-01264-w. PubMed DOI PMC

Nichols MR, St-Pierre MK, Wendeln AC, Makoni NJ, Gouwens LK, Garrad EC, Sohrabi M, et al. Inflammatory mechanisms in neurodegeneration. J Neurochem. 2019;149:562–581. doi: 10.1111/jnc.14674. PubMed DOI PMC

Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17:157–172. doi: 10.1038/s41582-020-00435-y. PubMed DOI

Dang Y, Mu Y, Wang K, Xu K, Yang J, Zhu Y, Luo B. Papaverine inhibits lipopolysaccharide-induced microglial activation by suppressing NF-κB signaling pathway. Drug Des Devel Ther. 2016;10:851–859. doi: 10.2147/DDDT.S97380. PubMed DOI PMC

Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer’s Disease and Parkinson’s Disease. Front Pharmacol. 2021;12:648636. doi: 10.3389/fphar.2021.648636. PubMed DOI PMC

Wang Q, Yao H, Liu W, Ya B, Cheng H, Xing Z, Wu Y. Microglia Polarization in Alzheimer’s Disease: Mechanisms and a Potential Therapeutic Target. Front Aging Neurosci. 2021;13:772717. doi: 10.3389/fnagi.2021.772717. PubMed DOI PMC

Mohanraj M, Sekar P, Liou HH, Chang SF, Lin WW. The Mycobacterial Adjuvant Analogue TDB Attenuates Neuroinflammation via Mincle-Independent PLC-γ1/PKC/ERK Signaling and Microglial Polarization. Mol Neurobiol. 2019;56:1167–1187. doi: 10.1007/s12035-018-1135-4. PubMed DOI

Han Z, Zhao H, Tao Z, Wang R, Fan Z, Luo Y, Luo Y, Ji X. TOPK Promotes Microglia/Macrophage Polarization towards M2 Phenotype via Inhibition of HDAC1 and HDAC2 Activity after Transient Cerebral Ischemia. Aging Dis. 2018;9:235–248. doi: 10.14336/AD.2017.0328. PubMed DOI PMC

Cai Z, Wang C, Yang W. Role of berberine in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2016;12:2509–2520. doi: 10.2147/NDT.S114846. PubMed DOI PMC

Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med. 2004;10:1344–1351. doi: 10.1038/nm1135. PubMed DOI

Wang X, Wang R, Xing D, Su H, Ma C, Ding Y, Du L. Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract. Life Sci. 2005;77:3058–3067. doi: 10.1016/j.lfs.2005.02.033. PubMed DOI

Wang X, Xing D, Wang W, Su H, Tao J, Du L. Pharmacokinetics of berberine in rat thalamus after intravenous administration of Coptidis rhizoma extract. Am J Chin Med. 2005;33:935–943. doi: 10.1142/S0192415X05003557. PubMed DOI

Zhang X, Zhang X, Wang C, Li Y, Dong L, Cui L, Wang L, et al. Neuroprotection of early and short-time applying berberine in the acute phase of cerebral ischemia: up-regulated pAkt, pGSK and pCREB, down-regulated NF-κB expression, ameliorated BBB permeability. Brain Res. 2012;1459:61–70. doi: 10.1016/j.brainres.2012.03.065. PubMed DOI

Fang Z, Tang Y, Ying J, Tang C, Wang Q. Traditional Chinese medicine for anti-Alzheimer’s disease: berberine and evodiamine from Evodia rutaecarpa. Chin Med. 2020;15:82. doi: 10.1186/s13020-020-00359-1. PubMed DOI PMC

Song T, Chen WD. Berberine inhibited carotid atherosclerosis through PI3K/AKTmTOR signaling pathway. Bioengineered. 2021;12:8135–8146. doi: 10.1080/21655979.2021.1987130. PubMed DOI PMC

Tong Y, Liu L, Wang R, Yang T, Wen J, Wei S, Jing M, Zou W, Zhao Y. Berberine Attenuates Chronic Atrophic Gastritis Induced by MNNG and Its Potential Mechanism. Front Pharmacol. 2021;12:644638. doi: 10.3389/fphar.2021.644638. PubMed DOI PMC

Wang L, Ma H, Xue Y, Shi H, Ma T, Cui X. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways. Exp Ther Med. 2018;15:1225–1232. doi: 10.3892/etm.2017.5575. PubMed DOI PMC

Matsuda S, Ikeda Y, Murakami M, Nakagawa Y, Tsuji A, Kitagishi Y. Roles of PI3K/AKT/GSK3 Pathway Involved in Psychiatric Illnesses. Diseases. 2019;7:22. doi: 10.3390/diseases7010022. PubMed DOI PMC

Gabbouj S, Ryhänen S, Marttinen M, Wittrahm R, Takalo M, Kemppainen S, Martiskainen H, et al. Altered Insulin Signaling in Alzheimer’s Disease Brain - Special Emphasis on PI3K-Akt Pathway. Front Neurosci. 2019;13:629. doi: 10.3389/fnins.2019.00629. PubMed DOI PMC

Buccellato FR, D’Anca M, Serpente M, Arighi A, Galimberti D. The Role of Glymphatic System in Alzheimer’s and Parkinson’s Disease Pathogenesis. Biomedicines. 2022;10:2261. doi: 10.3390/biomedicines10092261. PubMed DOI PMC

Liu J, Guo Y, Zhang C, Zeng Y, Luo Y, Wang G. Clearance Systems in the Brain, From Structure to Function. Front Cell Neurosci. 2021;15:729706. doi: 10.3389/fncel.2021.729706. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...