Berberine Exerts Neuroprotective Effects in Alzheimer's Disease by Switching Microglia M1/M2 Polarization Through PI3K-AKT Signaling
Language English Country Czech Republic Media print
Document type Journal Article
PubMed
40126149
PubMed Central
PMC11995938
DOI
10.33549/physiolres.935410
PII: 935410
Knihovny.cz E-resources
- MeSH
- Alzheimer Disease * metabolism drug therapy pathology MeSH
- Berberine * pharmacology therapeutic use MeSH
- Phosphatidylinositol 3-Kinases * metabolism MeSH
- Humans MeSH
- Microglia * drug effects metabolism MeSH
- Mice MeSH
- Neuroprotective Agents * pharmacology MeSH
- Cell Polarity drug effects MeSH
- Proto-Oncogene Proteins c-akt * metabolism MeSH
- Signal Transduction * drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Berberine * MeSH
- Phosphatidylinositol 3-Kinases * MeSH
- Neuroprotective Agents * MeSH
- Proto-Oncogene Proteins c-akt * MeSH
Berberine (BBR), a small molecule protoberberine isoquinoline alkaloid, is easy to cross the blood-brain barrier and is a potential drug for neurodegenerative diseases. Here, we explored the role and molecular mechanism of BBR in Alzheimer's disease (AD) progression. Weighted gene co-expression network analysis (WGCNA) was conducted to determine AD pathology-associated gene modules and differentially expressed genes (DEGs) were also identified. GO and KEGG analyses were performed for gene function and signaling pathway annotation. Cell counting kit-8 (CCK8) assay was applied to analyze cell viability. Immunofluorescence (IF) staining assay was conducted to measure the levels of polarization markers. The production of inflammatory cytokines was analyzed by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) were detected using a ROS detection kit and a MMP Detection Kit (JC-1), respectively. AD pathology-associated DEGs were applied for GO function annotation and KEGG enrichment analysis, and the results uncovered that AD pathology was related to immune and inflammation. Lipopolysaccharide (LPS) exposure induced the M1 phenotype of microglia, and BBR suppressed LPS-induced M1 polarization and induced microglia toward M2 polarization. Through co-culture of microglia and neuronal cells, we found that BBR exerted a neuro-protective role by attenuating the injury of LPS-induced HMC3 on SH-SY5Y cells. Mechanically, BBR switched the M1/M2 phenotypes of microglia by activating PI3K-AKT signaling. In summary, BBR protected neuronal cells from activated microglia-mediated neuro-inflammation by switching the M1/M2 polarization in LPS-induced microglia via activating PI3K-AKT signaling. Key words Alzheimer's Disease, Berberine, Microglia polarization, Neuroinflammation, PI3K-AKT signaling.
See more in PubMed
Rapaka D, Adiukwu PC, Challa SR, Bitra VR. Interplay Between Astroglial Endocannabinoid System and the Cognitive Dysfunction in Alzheimer’s Disease. Physiol Res. 2023;72:575–586. doi: 10.33549/physiolres.935156. PubMed DOI PMC
Wang X, Li M, Hu Y. miR-29c-3p Attenuates beta-Amyloid-Induced Neurotoxicity in Alzheimer’s Disease Through Regulating beta-Site Amyloid Precursor Protein-Cleaving Enzyme 1. Physiol Res. 2023;72:833–841. doi: 10.33549/physiolres.935084. PubMed DOI PMC
Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci. 2021;276:119129. doi: 10.1016/j.lfs.2021.119129. PubMed DOI
Laurent C, Buée L, Blum D. Tau and neuroinflammation: What impact for Alzheimer’s Disease and Tauopathies? Biomed J. 2018;41:21–33. doi: 10.1016/j.bj.2018.01.003. PubMed DOI PMC
Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353:777–783. doi: 10.1126/science.aag2590. PubMed DOI
Joseph B, Venero JL. A brief overview of multitalented microglia. Methods Mol Biol. 2013;1041:3–8. doi: 10.1007/978-1-62703-520-0_1. PubMed DOI
Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11:775–787. doi: 10.1038/nri3086. PubMed DOI
Ji Q, Zhu F, Liu X, Li Q, Su SB. Recent Advance in Applications of Proteomics Technologies on Traditional Chinese Medicine Research. Evid Based Complement Alternat Med. 2015;2015:983139. doi: 10.1155/2015/983139. PubMed DOI PMC
Zeng K, Li M, Hu J, Mahaman YAR, Bao J, Huang F, Xia Y, et al. Ginkgo biloba Extract EGb761 Attenuates Hyperhomocysteinemia-induced AD Like Tau Hyperphosphorylation and Cognitive Impairment in Rats. Curr Alzheimer Res. 2018;15:89–99. doi: 10.2174/1567205014666170829102135. PubMed DOI
Zhou L, Tan S, Shan YL, Wang YG, Cai W, Huang XH, Liao XY, et al. Baicalein improves behavioral dysfunction induced by Alzheimer’s disease in rats. Neuropsychiatric Dis Treat. 2016;12:3145–3152. doi: 10.2147/NDT.S117469. PubMed DOI PMC
Ortiz LM, Lombardi P, Tillhon M, Scovassi AI. Berberine, an epiphany against cancer. Molecules. 2014;19:12349–12367. doi: 10.3390/molecules190812349. PubMed DOI PMC
Rui R, Yang H, Liu Y, Zhou Y, Xu X, Li C, Liu S. Effects of Berberine on Atherosclerosis. Front Pharmacol. 2021;12:764175. doi: 10.3389/fphar.2021.764175. PubMed DOI PMC
Jin Y, Khadka DB, Cho WJ. Pharmacological Effects Of Berberine And Its Derivatives: A Patent Update. Expert Opin Ther Pat. 2016;26:229–243. doi: 10.1517/13543776.2016.1118060. PubMed DOI
Jiang W, Li S, Li X. Therapeutic potential of berberine against neurodegenerative diseases. Sci China Life Sci. 2015;58:564–569. doi: 10.1007/s11427-015-4829-0. PubMed DOI PMC
Chen Y, Chen Y, Liang Y, Chen H, Ji X, Huang M. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed Pharmacother. 2020;121:109670. doi: 10.1016/j.biopha.2019.109670. PubMed DOI
Ye C, Liang Y, Chen Y, Xiong Y, She Y, Zhong X, Chen H, Huang M. Berberine Improves Cognitive Impairment by Simultaneously Impacting Cerebral Blood Flow and β-Amyloid Accumulation in an APP/tau/PS1 Mouse Model of Alzheimer’s Disease. Cells. 2021;10:1161. doi: 10.3390/cells10051161. PubMed DOI PMC
Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016;12:719–732. doi: 10.1016/j.jalz.2016.02.010. PubMed DOI
Brigas HC, Ribeiro M, Coelho JE, Gomes R, Gomez-Murcia V, Carvalho K, Faivre E, et al. IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease. Cell Rep. 2021;36:109574. doi: 10.1016/j.celrep.2021.109574. PubMed DOI
Jayaraman A, Htike TT, James R, Picon C, Reynolds R. TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer’s disease hippocampus. Acta Neuropathol Commun. 2021;9:159. doi: 10.1186/s40478-021-01264-w. PubMed DOI PMC
Nichols MR, St-Pierre MK, Wendeln AC, Makoni NJ, Gouwens LK, Garrad EC, Sohrabi M, et al. Inflammatory mechanisms in neurodegeneration. J Neurochem. 2019;149:562–581. doi: 10.1111/jnc.14674. PubMed DOI PMC
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17:157–172. doi: 10.1038/s41582-020-00435-y. PubMed DOI
Dang Y, Mu Y, Wang K, Xu K, Yang J, Zhu Y, Luo B. Papaverine inhibits lipopolysaccharide-induced microglial activation by suppressing NF-κB signaling pathway. Drug Des Devel Ther. 2016;10:851–859. doi: 10.2147/DDDT.S97380. PubMed DOI PMC
Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer’s Disease and Parkinson’s Disease. Front Pharmacol. 2021;12:648636. doi: 10.3389/fphar.2021.648636. PubMed DOI PMC
Wang Q, Yao H, Liu W, Ya B, Cheng H, Xing Z, Wu Y. Microglia Polarization in Alzheimer’s Disease: Mechanisms and a Potential Therapeutic Target. Front Aging Neurosci. 2021;13:772717. doi: 10.3389/fnagi.2021.772717. PubMed DOI PMC
Mohanraj M, Sekar P, Liou HH, Chang SF, Lin WW. The Mycobacterial Adjuvant Analogue TDB Attenuates Neuroinflammation via Mincle-Independent PLC-γ1/PKC/ERK Signaling and Microglial Polarization. Mol Neurobiol. 2019;56:1167–1187. doi: 10.1007/s12035-018-1135-4. PubMed DOI
Han Z, Zhao H, Tao Z, Wang R, Fan Z, Luo Y, Luo Y, Ji X. TOPK Promotes Microglia/Macrophage Polarization towards M2 Phenotype via Inhibition of HDAC1 and HDAC2 Activity after Transient Cerebral Ischemia. Aging Dis. 2018;9:235–248. doi: 10.14336/AD.2017.0328. PubMed DOI PMC
Cai Z, Wang C, Yang W. Role of berberine in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2016;12:2509–2520. doi: 10.2147/NDT.S114846. PubMed DOI PMC
Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med. 2004;10:1344–1351. doi: 10.1038/nm1135. PubMed DOI
Wang X, Wang R, Xing D, Su H, Ma C, Ding Y, Du L. Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract. Life Sci. 2005;77:3058–3067. doi: 10.1016/j.lfs.2005.02.033. PubMed DOI
Wang X, Xing D, Wang W, Su H, Tao J, Du L. Pharmacokinetics of berberine in rat thalamus after intravenous administration of Coptidis rhizoma extract. Am J Chin Med. 2005;33:935–943. doi: 10.1142/S0192415X05003557. PubMed DOI
Zhang X, Zhang X, Wang C, Li Y, Dong L, Cui L, Wang L, et al. Neuroprotection of early and short-time applying berberine in the acute phase of cerebral ischemia: up-regulated pAkt, pGSK and pCREB, down-regulated NF-κB expression, ameliorated BBB permeability. Brain Res. 2012;1459:61–70. doi: 10.1016/j.brainres.2012.03.065. PubMed DOI
Fang Z, Tang Y, Ying J, Tang C, Wang Q. Traditional Chinese medicine for anti-Alzheimer’s disease: berberine and evodiamine from Evodia rutaecarpa. Chin Med. 2020;15:82. doi: 10.1186/s13020-020-00359-1. PubMed DOI PMC
Song T, Chen WD. Berberine inhibited carotid atherosclerosis through PI3K/AKTmTOR signaling pathway. Bioengineered. 2021;12:8135–8146. doi: 10.1080/21655979.2021.1987130. PubMed DOI PMC
Tong Y, Liu L, Wang R, Yang T, Wen J, Wei S, Jing M, Zou W, Zhao Y. Berberine Attenuates Chronic Atrophic Gastritis Induced by MNNG and Its Potential Mechanism. Front Pharmacol. 2021;12:644638. doi: 10.3389/fphar.2021.644638. PubMed DOI PMC
Wang L, Ma H, Xue Y, Shi H, Ma T, Cui X. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways. Exp Ther Med. 2018;15:1225–1232. doi: 10.3892/etm.2017.5575. PubMed DOI PMC
Matsuda S, Ikeda Y, Murakami M, Nakagawa Y, Tsuji A, Kitagishi Y. Roles of PI3K/AKT/GSK3 Pathway Involved in Psychiatric Illnesses. Diseases. 2019;7:22. doi: 10.3390/diseases7010022. PubMed DOI PMC
Gabbouj S, Ryhänen S, Marttinen M, Wittrahm R, Takalo M, Kemppainen S, Martiskainen H, et al. Altered Insulin Signaling in Alzheimer’s Disease Brain - Special Emphasis on PI3K-Akt Pathway. Front Neurosci. 2019;13:629. doi: 10.3389/fnins.2019.00629. PubMed DOI PMC
Buccellato FR, D’Anca M, Serpente M, Arighi A, Galimberti D. The Role of Glymphatic System in Alzheimer’s and Parkinson’s Disease Pathogenesis. Biomedicines. 2022;10:2261. doi: 10.3390/biomedicines10092261. PubMed DOI PMC
Liu J, Guo Y, Zhang C, Zeng Y, Luo Y, Wang G. Clearance Systems in the Brain, From Structure to Function. Front Cell Neurosci. 2021;15:729706. doi: 10.3389/fncel.2021.729706. PubMed DOI PMC