miR-29c-3p Attenuates beta-Amyloid-Induced Neurotoxicity in Alzheimer's Disease Through Regulating beta-Site Amyloid Precursor Protein-Cleaving Enzyme 1

. 2023 Dec 31 ; 72 (6) : 833-841.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38215068

The aberrantly expressed microRNAs (miRNAs) including miR-29c-3p have been reported in the brains of Alzheimer's disease (AD) patients in recent researches. Nevertheless, the functional role and underlying molecular mechanism of miR-29c-3p in AD pathogenesis are still not well elucidated. The purpose of this study was to examine whether miR-29c-3p regulated beta-Ameyloid (Abeta)-induced neurotoxicity by targeting beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1). The expressions of miR 29c 3p and BACE1 mRNA and protein levels in Abeta-treated PC12 cellular AD model were examined by qRT-PCR and western blot analyses. Luciferase reporter assay verified the potential target of miR 29c 3p. Cell viability, apoptosis, and caspase-3 activity in PC12 cells were detected by the MTT assay, flow cytometry, and caspase-3 activity assay, respectively. Our results indicated that miR-29c-3p downregulation and BACE1 upregulation existed in the cellular AD model of PC12 cells. Moreover, miR-29c-3p directly inhibited BACE1 expression. miR-29c-3p overexpression and BACE1 knockdown strengthened Abeta-induced cell apoptosis, and caspase-3 activity in PC12 cells, which was partially eliminated by over-expression of BACE1. Conversely, BACE1 knockdown reversed the miR-29c-3p inhibition- mediated inhibitory effect on Abeta-induced cell toxicity, apoptosis, and caspase-3 activity in PC12 cells. Considering, miR-29c-3p attenuated Abeta-induced neurotoxicity through targeting BACE1 in an cellular AD model of PC12, providing a potential therapeutic target for AD treatment.

Zobrazit více v PubMed

François M, Fenech MF, Thomas P, Hor M, Rembach A, Martins RN, et al. High Content, Multi-Parameter Analyses in Buccal Cells to Identify Alzheimer’s Disease. Curr Alzheimer Res. 2016;13:787–799. doi: 10.2174/1567205013666160315112151. PubMed DOI

Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298:789–791. doi: 10.1126/science.1074069. PubMed DOI

Chinchalongporn V, Shukla M. Melatonin ameliorates Aβ-induced alteration of βAPP-processing secretases via the melatonin receptor through the Pin1/GSK3β/NF-κB pathway in SH-SY5Y cells. J Pineal Res. 2018;64:e12470. doi: 10.1111/jpi.12470. PubMed DOI

Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 2011;3:83–92. PubMed PMC

Im HI, Kenny PJ. MicroRNAs in neuronal function and dysfunction. Trends Neurosci. 2012;35:325–334. doi: 10.1016/j.tins.2012.01.004. PubMed DOI PMC

Wang M, Qin L, Tang B. MicroRNAs in Alzheimer’s disease. Front Genet. 2019;10:153. doi: 10.3389/fgene.2019.00153. PubMed DOI PMC

Zhu H, Wang L, Wang M, Song B. MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res Bull. 2012;88:596. doi: 10.1016/j.brainresbull.2012.05.018. PubMed DOI

Dehghani R, Rahmani F, Rezaei N. MicroRNA in Alzheimer’s disease revisited: implications for major neuropathological mechanisms. Rev Neurosci. 2017;11:80. PubMed

Chen Z, Li Y, Zhang H, Huang P, Luthra R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010;29:4362–4368. doi: 10.1038/onc.2010.193. PubMed DOI

Lema C, Cunningham MJ. MicroRNAs and their implications in toxicological research. Toxicol Lett. 2010;198:100–105. doi: 10.1016/j.toxlet.2010.06.019. PubMed DOI

Liu X, Yu J, Jiang L, Wang A, Shi F, Ye H, Zhou X. MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics. 2009;6:131–139. PubMed PMC

Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA. 2008;105:6415–6420. doi: 10.1073/pnas.0710263105. PubMed DOI PMC

Wu Y, Xu J, Xu J, Cheng J, Jiao D, Zhou C, et al. Lower Serum Levels of miR-29c-3p and miR-19b-3p as Biomarkers for Alzheimer’s Disease. Tohoku J Exp Med. 2010;242:129–136. doi: 10.1620/tjem.242.129. PubMed DOI

Bai WD, Ye XM, Zhang MY, Zhu HY, Xi WJ, Huang X, et al. MiR-200c suppresses TGF-β signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer. Int J Cancer. 2014;135:1356–1368. doi: 10.1002/ijc.28782. PubMed DOI

Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012;15:349–357. doi: 10.1038/nn.3028. PubMed DOI

Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007;18:297–300. doi: 10.1097/WNR.0b013e3280148e8b. PubMed DOI

Fedotova J, Soultanov V, Nikitina T, Roschin V, Ordyan N, Hritcu L. Cognitive-enhancing activities of the polyprenol preparation Ropren® in gonadectomized β-amyloid (25–35) rat model of Alzheimer’s disease. Physiol Behav. 2016;157:55–62. doi: 10.1016/j.physbeh.2016.01.035. PubMed DOI

Patel AA, Ganepola GAP, Rutledge JR, Chang DH. The potential role of dysregulated miRNAs in Alzheimer’s disease pathogenesis and progression. J Alzheimers Dis. 2019;67:1123–1145. doi: 10.3233/JAD-181078. PubMed DOI

Yang G, Song Y, Zhou X, Deng Y, Liu T, Weng G, et al. MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol Med Rep. 2015;12:3081–3088. doi: 10.3892/mmr.2015.3728. PubMed DOI

Crunkhorn S. Alzheimer disease: BACE1 inhibitor reduces β-amyloid production in humans. Nat Rev Drug Discov. 2016;16:18. doi: 10.1038/nrd.2016.272. PubMed DOI

Zhao J, Fu Y, Yasvoina M, Shao P, Hitt B, O’Connor T, et al. Beta-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer’s disease pathogenesis. J Neurosci. 2007;27:3639–3649. doi: 10.1523/JNEUROSCI.4396-06.2007. PubMed DOI PMC

Hampel H, Shen Y. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a biological candidate marker of Alzheimer’s disease. Scand J Clin Lab Invest. 2009;69:8–12. doi: 10.1080/00365510701864610. PubMed DOI

Barão S, Moechars D, Lichtenthaler SF, De SB. BACE1 physiological functions may limit its use as therapeutic target for Alzheimer’s disease. Trends Neurosci. 2016;39:158–169. doi: 10.1016/j.tins.2016.01.003. PubMed DOI

Gong G, An F, Wang Y, Bian M, Yu LJ, Wei C. miR-15b represses BACE1 expression in sporadic Alzheimer’s disease. Oncotarget. 2017;8:91551–9155. doi: 10.18632/oncotarget.21177. PubMed DOI PMC

Li J, Wang H. miR-15b reduces amyloid-β accumulation in SH-SY5Y cell line through targeting NF-κB signaling and BACE1. Biosci Rep. 2018:38. doi: 10.1042/BSR20180051. PubMed DOI PMC

Liu CG, Wang JL, Li L, Wang PC. MicroRNA-384 regulates both amyloid precursor protein and β-secretase expression and is a potential biomarker for Alzheimer’s disease. Int J Mol Med. 2014;34:160–166. doi: 10.3892/ijmm.2014.1780. PubMed DOI

Du X, Huo X, Yang Y, Hu Z, Botchway BOA, Jiang Y, et al. MiR-124 downregulates BACE 1 and alters autophagy in APP/PS1 transgenic mice. Toxicol Lett. 2017;280:195–205. doi: 10.1016/j.toxlet.2017.08.082. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...