Surface-Induced Phase of Tyrian Purple (6,6'-Dibromoindigo): Thin Film Formation and Stability

. 2016 Jul 06 ; 16 (7) : 3647-3655. [epub] 20160517

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27418882

The appearance of surface-induced phases of molecular crystals is a frequently observed phenomenon in organic electronics. However, despite their fundamental importance, the origin of such phases is not yet fully resolved. The organic molecule 6,6'-dibromoindigo (Tyrian purple) forms two polymorphs within thin films. At growth temperatures of 150 °C, the well-known bulk structure forms, while at a substrate temperature of 50 °C, a surface-induced phase is observed instead. In the present work, the crystal structure of the surface-induced polymorph is solved by a combined experimental and theoretical approach using grazing incidence X-ray diffraction and molecular dynamics simulations. A comparison of both phases reveals that π-π stacking and hydrogen bonds are common motifs for the intermolecular packing. In-situ temperature studies reveal a phase transition from the surface-induced phase to the bulk phase at a temperature of 210 °C; the irreversibility of the transition indicates that the surface-induced phase is metastable. The crystallization behavior is investigated ex-situ starting from the sub-monolayer regime up to a nominal thickness of 9 nm using two different silicon oxide surfaces; island formation is observed together with a slight variation of the crystal structure. This work shows that surface-induced phases not only appear for compounds with weak, isotropic van der Waals bonds, but also for molecules exhibiting strong and highly directional hydrogen bonds.

Zobrazit více v PubMed

Xu Z.-X.; Xiang H.-F.; Roy V. A. L.; Chui S. S.-Y.; Wang Y.; Lai P. T.; Che C.-M. Appl. Phys. Lett. 2009, 95, 123305.10.1063/1.3233961. DOI

Głowacki E. D.; Voss G.; Sariciftci N. S. Adv. Mater. 2013, 25, 6783–6780. 10.1002/adma.201302652. PubMed DOI

Robb M. J.; Ku S. Y.; Brunetti F. G.; Hawker C. J. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1263–1271. 10.1002/pola.26531. DOI

Irimia-Vladu M.; Głowacki E. D.; Voss G.; Bauer S.; Sariciftci N. S. Mater. Today 2012, 15, 340–346. 10.1016/S1369-7021(12)70139-6. DOI

Głowacki E. D.; Irimia-Vladu M.; Kaltenbrunner M.; Gsiorowski J.; White M. S.; Monkowius U.; Romanazzi G.; Suranna G. P.; Mastrorilli P.; Sekitani T.; Bauer S.; Someya T.; Torsi L.; Sariciftci N. S. Adv. Mater. 2013, 25, 1563–1569. 10.1002/adma.201204039. PubMed DOI

Desiraju G. R.; Gavezzotti A. Acta Crystallogr., Sect. B: Struct. Sci. 1989, 45, 473–482. 10.1107/S0108768189003794. DOI

Paulus E. F.; Leusen F. J. J.; Schmidt M. U. CrystEngComm 2007, 9, 131–143. 10.1039/B613059C. DOI

Jones A. O. F.; Chattopadhyay B.; Geerts Y. H.; Resel R. Adv. Funct. Mater. 2016, 26, 2233–2255. 10.1002/adfm.201503169. DOI

Forrest S. R. Chem. Rev. 1997, 97, 1793–1896. 10.1021/cr941014o. PubMed DOI

Witte G.; Woll C. J. Mater. Res. 2004, 19, 1889–1916. 10.1557/JMR.2004.0251. DOI

Schreiber F. Phys. Status Solidi A 2004, 201, 1037–1054. 10.1002/pssa.200404334. DOI

Resel R. J. Phys.: Condens. Matter 2008, 20, 184009.10.1088/0953-8984/20/18/184009. DOI

Villagomez C. J.; Guillermet O.; Goudeau S.; Ample F.; Xu H.; Coudret C.; Bouju X.; Zambelli T.; Gauthier S. J. Chem. Phys. 2010, 132, 074705.10.1063/1.3314725. PubMed DOI

Scherwitzl B.; Resel R.; Winkler A. J. Chem. Phys. 2014, 140, 184705.10.1063/1.4875096. PubMed DOI PMC

Fukunaga H.; Fedorov D. G.; Chiba M.; Nii K.; Kitaura K. J. Phys. Chem. A 2008, 112, 10887–10894. 10.1021/jp804943m. PubMed DOI

He X. B.; Cai J. M.; Shi D. X.; Wang Y.; Gao H.-J. J. Phys. Chem. C 2008, 112, 7138–7144. 10.1021/jp0767359. DOI

Lüftner D.; Refaely-Abramson S.; Pachler M.; Resel R.; Ramsey M. G.; Kronik L.; Puschnig P. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 075204.10.1103/PhysRevB.90.075204. DOI

Wagner T.; Györök M.; Huber D.; Zeppenfeld P.; Głowacki E. D. J. Phys. Chem. C 2014, 118, 10911–10920. 10.1021/jp502148x. PubMed DOI PMC

Gorelik T. E.; Schmidt M. U.; Kolb U.; Billinge S. J. L. Microsc. Microanal. 2015, 21, 459–471. 10.1017/S1431927614014561. PubMed DOI

Scherwitzl B.; Röthel C.; Jones A. O. F.; Kunert B.; Salzmann I.; Resel R.; Leising G.; Winkler A. J. Phys. Chem. C 2015, 119, 20900–20910. 10.1021/acs.jpcc.5b04089. PubMed DOI PMC

Süsse P.; Krampe C. Naturwissenschaften 1979, 66, 110.10.1007/BF00373504. DOI

Larsen S.; Wätjen F. Acta Chem. Scand., Ser. A 1980, 34, 171–176.

Klimovich I. V.; Leshanskaya L. I.; Troyanov S. I.; Anokhin D. V.; Novikov D. V.; Piryazev A. A.; Ivanov D. A.; Dremova N. N.; Troshin P. A. J. Mater. Chem. C 2014, 2, 7621–7631. 10.1039/C4TC00550C. DOI

Voss G.; Gerlach H. Chem. Ber. 1989, 122, 1199–1201. 10.1002/cber.19891220628. DOI

Sitter H.; Andreev A.; Matt G.; Sariciftci N. S. Synth. Met. 2003, 138, 9–13. 10.1016/S0379-6779(02)01306-1. DOI

Kanbur Y.; Irimia-Vladu M.; Głowacki E. D.; Voss G.; Baumgartner M.; Schwabegger G.; Leonat L.; Ullah M.; Sarica H.; Erten-Ela S.; Schwödiauer R.; Sitter H.; Küçükyavuz Z.; Bauer S.; Sariciftci N. S. Org. Electron. 2012, 13, 919–924. 10.1016/j.orgel.2012.02.006. PubMed DOI PMC

Danauskas S. M.; Li D.; Meron M.; Lin B.; Lee K. Y. C. J. Appl. Crystallogr. 2008, 41, 1187–1193. 10.1107/S0021889808032445. DOI

Smilgies D. M.; Blasini D. R. J. Appl. Crystallogr. 2007, 40, 716–718. 10.1107/S0021889807023382. DOI

Moser A.Crystal Structure Solution Based on Grazing Incidence X-ray Diffraction: Software Development and Application to Organic Films. Ph.D. Thesis, Graz University of Technology, Graz, 2012.

Kriegner D.; Wintersberger E.; Stangl J. J. Appl. Crystallogr. 2013, 46, 1162–1170. 10.1107/S0021889813017214. PubMed DOI PMC

Plimpton S. J. Comput. Phys. 1995, 117, 1–19. 10.1006/jcph.1995.1039. DOI

Vanommeslaeghe K.; Hatcher E.; Acharya C.; Kundu S.; Zhong S.; Shim J.; Darian E.; Guvench O.; Lopes P.; Vorobyov I.; MacKerell J. A. D. J. Comput. Chem. 2010, 31, 671–690. PubMed PMC

Clark S. J.; Segall M. D.; Pickard C. J.; Hasnip P. J.; Probert M. J.; Refson K.; Payne M. C. Z. Kristallogr. - Cryst. Mater. 2005, 220, 567–570. 10.1524/zkri.220.5.567.65075. DOI

Monkhorst H. J.; Pack J. D. Phys. Rev. B 1976, 13, 5188–5192. 10.1103/PhysRevB.13.5188. DOI

Tanabe K.; Shiojiri M. Dyes Pigm. 1997, 34, 121–132. 10.1016/S0143-7208(96)00070-8. DOI

Athouel L.; Froyer G.; Riou M. T. Synth. Met. 1993, 57, 4734–4739. 10.1016/0379-6779(93)90810-J. DOI

Dimitrakopoulos C. D.; Brown A. R.; Pomp A. J. Appl. Phys. 1996, 80, 2501–2508. 10.1063/1.363032. DOI

Salzmann I.; Duhm S.; Heimel G.; Rabe J. P.; Koch N.; Oehzelt M.; Sakamoto Y.; Suzuki T. Langmuir 2008, 24, 7294–7298. 10.1021/la800606h. PubMed DOI

Neuhold A.; Brandner H.; Ausserlechner S. J.; Lorbek S.; Neuschitzer M.; Zojer E.; Teichert C.; Resel R. Org. Electron. 2013, 14, 479–487. 10.1016/j.orgel.2012.11.016. PubMed DOI PMC

Werzer O.; Stadlober B.; Haase A.; Oehzelt M.; Resel R. Eur. Phys. J. B 2008, 66, 455–459. 10.1140/epjb/e2008-00452-x. DOI

Smilgies D. M. Rev. Sci. Instrum. 2002, 73, 1706–1710. 10.1063/1.1461876. DOI

Baker J. L.; Jimison L. H.; Mannsfeld S.; Volkman S.; Yin S.; Subramanian V.; Salleo A.; Alivisatos A. P.; Toney M. F. Langmuir 2010, 26, 9146–9151. 10.1021/la904840q. PubMed DOI

Pedireddi V. R.; Reddy S.; Goud B. S.; Craig D. C.; Rae A. D.; Desiraju G. R. J. Chem. Soc., Perkin Trans. 2 1994, 2, 2353–2360. 10.1039/p29940002353. DOI

Schiefer S.; Huth M.; Dobrinevski A.; Nickel B. J. Am. Chem. Soc. 2007, 129, 10316–10317. 10.1021/ja0730516. PubMed DOI

Salzmann I.; Opitz R.; Rogaschewski S.; Rabe J. P.; Koch N.; Nickel B. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75, 174108.10.1103/PhysRevB.75.174108. DOI

Moser A.; Salzmann I.; Oehzelt M.; Neuhold A.; Flesch H.-G.; Ivanco J.; Pop S.; Toader T.; Zahn D. R. T.; Smilgies D.-M.; Resel R. Chem. Phys. Lett. 2013, 574, 51–55. 10.1016/j.cplett.2013.04.053. DOI

Kowarik S.; Gerlach A.; Sellner S.; Cavalcanti L.; Konovalov O.; Schreiber F. Appl. Phys. A: Mater. Sci. Process. 2009, 95, 233–239. 10.1007/s00339-008-5012-2. DOI

Lercher C.; Röthel C.; Roscioni O. M.; Geerts Y. H.; Shen Q.; Teichert C.; Fischer R.; Leising G.; Sferrazza M.; Gbabode G.; Resel R. Chem. Phys. Lett. 2015, 630, 12–17. 10.1016/j.cplett.2015.04.027. PubMed DOI PMC

Jones A. O. F.; Geerts Y. H.; Karpinska J.; Kennedy A. R.; Resel R.; Röthel C.; Ruzie C.; Werzer O.; Sferrazza M. ACS Appl. Mater. Interfaces 2015, 7, 1868–1873. 10.1021/am5075908. PubMed DOI

Wedl B.; Resel R.; Leising G.; Kunert B.; Salzmann I.; Oehzelt M.; Koch N.; Vollmer A.; Duhm S.; Werzer O.; Gbabode G.; Sferrazza M.; Geerts Y. H. RSC Adv. 2012, 2, 4404–4414. 10.1039/c2ra20272g. DOI

Dimitrakopoulos C. D.; Malenfant P. R. L. Adv. Mater. 2002, 14, 99–117. 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9. DOI

Lorch C.; Banerjee R.; Frank C.; Dieterle J.; Hinderhofer A.; Gerlach A.; Schreiber F. J. Phys. Chem. C 2015, 119, 819–825. 10.1021/jp510321k. DOI

Moser A.; Novak J.; Flesch H.-G.; Djuric T.; Werzer O.; Haase A.; Resel R. Appl. Phys. Lett. 2011, 99, 221911.10.1063/1.3665188. DOI

de Oteyza D. G.; Barrena E.; Osso J. O.; Sellner S.; Dosch H. J. Am. Chem. Soc. 2006, 128, 15052–15053. 10.1021/ja064641r. PubMed DOI

Viani L.; Risko C.; Toney M. F.; Breiby D. W.; Bredas J. L. ACS Nano 2014, 8, 690–700. 10.1021/nn405399n. PubMed DOI

Diao Y.; Lenn K. M.; Lee W.-Y.; Blood-Forsythe M. A.; Xu J.; Mao Y.; Kim Y.; Reinspach J. A.; Park S.; Aspuru-Guzik A.; Xue G.; Clancy P.; Bao Z.; Mannsfeld S. C. B. J. Am. Chem. Soc. 2014, 136, 17046–17057. 10.1021/ja507179d. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...