Surface-Induced Phase of Tyrian Purple (6,6'-Dibromoindigo): Thin Film Formation and Stability
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27418882
PubMed Central
PMC4937453
DOI
10.1021/acs.cgd.6b00104
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The appearance of surface-induced phases of molecular crystals is a frequently observed phenomenon in organic electronics. However, despite their fundamental importance, the origin of such phases is not yet fully resolved. The organic molecule 6,6'-dibromoindigo (Tyrian purple) forms two polymorphs within thin films. At growth temperatures of 150 °C, the well-known bulk structure forms, while at a substrate temperature of 50 °C, a surface-induced phase is observed instead. In the present work, the crystal structure of the surface-induced polymorph is solved by a combined experimental and theoretical approach using grazing incidence X-ray diffraction and molecular dynamics simulations. A comparison of both phases reveals that π-π stacking and hydrogen bonds are common motifs for the intermolecular packing. In-situ temperature studies reveal a phase transition from the surface-induced phase to the bulk phase at a temperature of 210 °C; the irreversibility of the transition indicates that the surface-induced phase is metastable. The crystallization behavior is investigated ex-situ starting from the sub-monolayer regime up to a nominal thickness of 9 nm using two different silicon oxide surfaces; island formation is observed together with a slight variation of the crystal structure. This work shows that surface-induced phases not only appear for compounds with weak, isotropic van der Waals bonds, but also for molecules exhibiting strong and highly directional hydrogen bonds.
Department of Physics Humboldt Universität zu Berlin Brook Taylor Straße 6 12489 Berlin Germany
Physical Chemistry Johannes Kepler University Linz Altenbergerstraße 69 4040 Linz Austria
Zobrazit více v PubMed
Xu Z.-X.; Xiang H.-F.; Roy V. A. L.; Chui S. S.-Y.; Wang Y.; Lai P. T.; Che C.-M. Appl. Phys. Lett. 2009, 95, 123305.10.1063/1.3233961. DOI
Głowacki E. D.; Voss G.; Sariciftci N. S. Adv. Mater. 2013, 25, 6783–6780. 10.1002/adma.201302652. PubMed DOI
Robb M. J.; Ku S. Y.; Brunetti F. G.; Hawker C. J. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1263–1271. 10.1002/pola.26531. DOI
Irimia-Vladu M.; Głowacki E. D.; Voss G.; Bauer S.; Sariciftci N. S. Mater. Today 2012, 15, 340–346. 10.1016/S1369-7021(12)70139-6. DOI
Głowacki E. D.; Irimia-Vladu M.; Kaltenbrunner M.; Gsiorowski J.; White M. S.; Monkowius U.; Romanazzi G.; Suranna G. P.; Mastrorilli P.; Sekitani T.; Bauer S.; Someya T.; Torsi L.; Sariciftci N. S. Adv. Mater. 2013, 25, 1563–1569. 10.1002/adma.201204039. PubMed DOI
Desiraju G. R.; Gavezzotti A. Acta Crystallogr., Sect. B: Struct. Sci. 1989, 45, 473–482. 10.1107/S0108768189003794. DOI
Paulus E. F.; Leusen F. J. J.; Schmidt M. U. CrystEngComm 2007, 9, 131–143. 10.1039/B613059C. DOI
Jones A. O. F.; Chattopadhyay B.; Geerts Y. H.; Resel R. Adv. Funct. Mater. 2016, 26, 2233–2255. 10.1002/adfm.201503169. DOI
Forrest S. R. Chem. Rev. 1997, 97, 1793–1896. 10.1021/cr941014o. PubMed DOI
Witte G.; Woll C. J. Mater. Res. 2004, 19, 1889–1916. 10.1557/JMR.2004.0251. DOI
Schreiber F. Phys. Status Solidi A 2004, 201, 1037–1054. 10.1002/pssa.200404334. DOI
Resel R. J. Phys.: Condens. Matter 2008, 20, 184009.10.1088/0953-8984/20/18/184009. DOI
Villagomez C. J.; Guillermet O.; Goudeau S.; Ample F.; Xu H.; Coudret C.; Bouju X.; Zambelli T.; Gauthier S. J. Chem. Phys. 2010, 132, 074705.10.1063/1.3314725. PubMed DOI
Scherwitzl B.; Resel R.; Winkler A. J. Chem. Phys. 2014, 140, 184705.10.1063/1.4875096. PubMed DOI PMC
Fukunaga H.; Fedorov D. G.; Chiba M.; Nii K.; Kitaura K. J. Phys. Chem. A 2008, 112, 10887–10894. 10.1021/jp804943m. PubMed DOI
He X. B.; Cai J. M.; Shi D. X.; Wang Y.; Gao H.-J. J. Phys. Chem. C 2008, 112, 7138–7144. 10.1021/jp0767359. DOI
Lüftner D.; Refaely-Abramson S.; Pachler M.; Resel R.; Ramsey M. G.; Kronik L.; Puschnig P. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 075204.10.1103/PhysRevB.90.075204. DOI
Wagner T.; Györök M.; Huber D.; Zeppenfeld P.; Głowacki E. D. J. Phys. Chem. C 2014, 118, 10911–10920. 10.1021/jp502148x. PubMed DOI PMC
Gorelik T. E.; Schmidt M. U.; Kolb U.; Billinge S. J. L. Microsc. Microanal. 2015, 21, 459–471. 10.1017/S1431927614014561. PubMed DOI
Scherwitzl B.; Röthel C.; Jones A. O. F.; Kunert B.; Salzmann I.; Resel R.; Leising G.; Winkler A. J. Phys. Chem. C 2015, 119, 20900–20910. 10.1021/acs.jpcc.5b04089. PubMed DOI PMC
Süsse P.; Krampe C. Naturwissenschaften 1979, 66, 110.10.1007/BF00373504. DOI
Larsen S.; Wätjen F. Acta Chem. Scand., Ser. A 1980, 34, 171–176.
Klimovich I. V.; Leshanskaya L. I.; Troyanov S. I.; Anokhin D. V.; Novikov D. V.; Piryazev A. A.; Ivanov D. A.; Dremova N. N.; Troshin P. A. J. Mater. Chem. C 2014, 2, 7621–7631. 10.1039/C4TC00550C. DOI
Voss G.; Gerlach H. Chem. Ber. 1989, 122, 1199–1201. 10.1002/cber.19891220628. DOI
Sitter H.; Andreev A.; Matt G.; Sariciftci N. S. Synth. Met. 2003, 138, 9–13. 10.1016/S0379-6779(02)01306-1. DOI
Kanbur Y.; Irimia-Vladu M.; Głowacki E. D.; Voss G.; Baumgartner M.; Schwabegger G.; Leonat L.; Ullah M.; Sarica H.; Erten-Ela S.; Schwödiauer R.; Sitter H.; Küçükyavuz Z.; Bauer S.; Sariciftci N. S. Org. Electron. 2012, 13, 919–924. 10.1016/j.orgel.2012.02.006. PubMed DOI PMC
Danauskas S. M.; Li D.; Meron M.; Lin B.; Lee K. Y. C. J. Appl. Crystallogr. 2008, 41, 1187–1193. 10.1107/S0021889808032445. DOI
Smilgies D. M.; Blasini D. R. J. Appl. Crystallogr. 2007, 40, 716–718. 10.1107/S0021889807023382. DOI
Moser A.Crystal Structure Solution Based on Grazing Incidence X-ray Diffraction: Software Development and Application to Organic Films. Ph.D. Thesis, Graz University of Technology, Graz, 2012.
Kriegner D.; Wintersberger E.; Stangl J. J. Appl. Crystallogr. 2013, 46, 1162–1170. 10.1107/S0021889813017214. PubMed DOI PMC
Plimpton S. J. Comput. Phys. 1995, 117, 1–19. 10.1006/jcph.1995.1039. DOI
Vanommeslaeghe K.; Hatcher E.; Acharya C.; Kundu S.; Zhong S.; Shim J.; Darian E.; Guvench O.; Lopes P.; Vorobyov I.; MacKerell J. A. D. J. Comput. Chem. 2010, 31, 671–690. PubMed PMC
Clark S. J.; Segall M. D.; Pickard C. J.; Hasnip P. J.; Probert M. J.; Refson K.; Payne M. C. Z. Kristallogr. - Cryst. Mater. 2005, 220, 567–570. 10.1524/zkri.220.5.567.65075. DOI
Monkhorst H. J.; Pack J. D. Phys. Rev. B 1976, 13, 5188–5192. 10.1103/PhysRevB.13.5188. DOI
Tanabe K.; Shiojiri M. Dyes Pigm. 1997, 34, 121–132. 10.1016/S0143-7208(96)00070-8. DOI
Athouel L.; Froyer G.; Riou M. T. Synth. Met. 1993, 57, 4734–4739. 10.1016/0379-6779(93)90810-J. DOI
Dimitrakopoulos C. D.; Brown A. R.; Pomp A. J. Appl. Phys. 1996, 80, 2501–2508. 10.1063/1.363032. DOI
Salzmann I.; Duhm S.; Heimel G.; Rabe J. P.; Koch N.; Oehzelt M.; Sakamoto Y.; Suzuki T. Langmuir 2008, 24, 7294–7298. 10.1021/la800606h. PubMed DOI
Neuhold A.; Brandner H.; Ausserlechner S. J.; Lorbek S.; Neuschitzer M.; Zojer E.; Teichert C.; Resel R. Org. Electron. 2013, 14, 479–487. 10.1016/j.orgel.2012.11.016. PubMed DOI PMC
Werzer O.; Stadlober B.; Haase A.; Oehzelt M.; Resel R. Eur. Phys. J. B 2008, 66, 455–459. 10.1140/epjb/e2008-00452-x. DOI
Smilgies D. M. Rev. Sci. Instrum. 2002, 73, 1706–1710. 10.1063/1.1461876. DOI
Baker J. L.; Jimison L. H.; Mannsfeld S.; Volkman S.; Yin S.; Subramanian V.; Salleo A.; Alivisatos A. P.; Toney M. F. Langmuir 2010, 26, 9146–9151. 10.1021/la904840q. PubMed DOI
Pedireddi V. R.; Reddy S.; Goud B. S.; Craig D. C.; Rae A. D.; Desiraju G. R. J. Chem. Soc., Perkin Trans. 2 1994, 2, 2353–2360. 10.1039/p29940002353. DOI
Schiefer S.; Huth M.; Dobrinevski A.; Nickel B. J. Am. Chem. Soc. 2007, 129, 10316–10317. 10.1021/ja0730516. PubMed DOI
Salzmann I.; Opitz R.; Rogaschewski S.; Rabe J. P.; Koch N.; Nickel B. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75, 174108.10.1103/PhysRevB.75.174108. DOI
Moser A.; Salzmann I.; Oehzelt M.; Neuhold A.; Flesch H.-G.; Ivanco J.; Pop S.; Toader T.; Zahn D. R. T.; Smilgies D.-M.; Resel R. Chem. Phys. Lett. 2013, 574, 51–55. 10.1016/j.cplett.2013.04.053. DOI
Kowarik S.; Gerlach A.; Sellner S.; Cavalcanti L.; Konovalov O.; Schreiber F. Appl. Phys. A: Mater. Sci. Process. 2009, 95, 233–239. 10.1007/s00339-008-5012-2. DOI
Lercher C.; Röthel C.; Roscioni O. M.; Geerts Y. H.; Shen Q.; Teichert C.; Fischer R.; Leising G.; Sferrazza M.; Gbabode G.; Resel R. Chem. Phys. Lett. 2015, 630, 12–17. 10.1016/j.cplett.2015.04.027. PubMed DOI PMC
Jones A. O. F.; Geerts Y. H.; Karpinska J.; Kennedy A. R.; Resel R.; Röthel C.; Ruzie C.; Werzer O.; Sferrazza M. ACS Appl. Mater. Interfaces 2015, 7, 1868–1873. 10.1021/am5075908. PubMed DOI
Wedl B.; Resel R.; Leising G.; Kunert B.; Salzmann I.; Oehzelt M.; Koch N.; Vollmer A.; Duhm S.; Werzer O.; Gbabode G.; Sferrazza M.; Geerts Y. H. RSC Adv. 2012, 2, 4404–4414. 10.1039/c2ra20272g. DOI
Dimitrakopoulos C. D.; Malenfant P. R. L. Adv. Mater. 2002, 14, 99–117. 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9. DOI
Lorch C.; Banerjee R.; Frank C.; Dieterle J.; Hinderhofer A.; Gerlach A.; Schreiber F. J. Phys. Chem. C 2015, 119, 819–825. 10.1021/jp510321k. DOI
Moser A.; Novak J.; Flesch H.-G.; Djuric T.; Werzer O.; Haase A.; Resel R. Appl. Phys. Lett. 2011, 99, 221911.10.1063/1.3665188. DOI
de Oteyza D. G.; Barrena E.; Osso J. O.; Sellner S.; Dosch H. J. Am. Chem. Soc. 2006, 128, 15052–15053. 10.1021/ja064641r. PubMed DOI
Viani L.; Risko C.; Toney M. F.; Breiby D. W.; Bredas J. L. ACS Nano 2014, 8, 690–700. 10.1021/nn405399n. PubMed DOI
Diao Y.; Lenn K. M.; Lee W.-Y.; Blood-Forsythe M. A.; Xu J.; Mao Y.; Kim Y.; Reinspach J. A.; Park S.; Aspuru-Guzik A.; Xue G.; Clancy P.; Bao Z.; Mannsfeld S. C. B. J. Am. Chem. Soc. 2014, 136, 17046–17057. 10.1021/ja507179d. PubMed DOI