cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BB/L009366
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
27837086
PubMed Central
PMC5210711
DOI
10.1104/pp.16.00943
PII: pp.16.00943
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis účinky léků růst a vývoj MeSH
- cinnamáty chemie metabolismus farmakologie MeSH
- cyklin B genetika metabolismus MeSH
- geneticky modifikované rostliny MeSH
- isomerie MeSH
- kořeny rostlin účinky léků růst a vývoj metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- mechy účinky léků růst a vývoj MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny Qa-SNARE genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- Selaginellaceae účinky léků růst a vývoj MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cinnamáty MeSH
- cinnamic acid MeSH Prohlížeč
- CycB1 protein, Arabidopsis MeSH Prohlížeč
- cyklin B MeSH
- KNOLLE protein, Arabidopsis MeSH Prohlížeč
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- proteiny Qa-SNARE MeSH
Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis.
Department of Plant Biotechnology and Bioinformatics Ghent University B 9052 Gent Belgium
Department of Plant Biotechnology and Bioinformatics Ghent University B 9052 Gent Belgium ;
Department of Plant Systems Biology VIB B 9052 Gent Belgium
Department of Plant Systems Biology VIB B 9052 Gent Belgium ;
Institute of Experimental Botany Czech Academy of Sciences CZ 16502 Prague Czech Republic
Institute of Experimental Botany Czech Academy of Sciences CZ 16502 Prague Czech Republic ;
Institute of Science and Technology Austria 3400 Klosterneuburg Austria
Institute of Science and Technology Austria 3400 Klosterneuburg Austria ;
School of Life Sciences University of Warwick Coventry CV4 7AL United Kingdom
School of Life Sciences University of Warwick Coventry CV4 7AL United Kingdom ;
Zobrazit více v PubMed
Åberg B. (1961) Studies on plant growth regulator XVIII. Some β-substituted acrylic acids. Ann Roy Agric Coll Sweden 27: 99–123
Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27: 20–32 PubMed PMC
Beeckman T, Engler G (1994) An easy technique for the clearing of histochemically stained plant tissue. Plant Mol Biol Rep 12: 37–42
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602 PubMed
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39–44 PubMed
Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54: 519–546 PubMed
Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. Plant Physiol 126: 524–535 PubMed PMC
Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, et al. (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482: 103–106 PubMed
Buer CS, Kordbacheh F, Truong TT, Hocart CH, Djordjevic MA (2013) Alteration of flavonoid accumulation patterns in transparent testa mutants disturbs auxin transport, gravity responses, and imparts long-term effects on root and shoot architecture. Planta 238: 171–189 PubMed
Calderón Villalobos LI, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, et al. (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8: 477–485 PubMed PMC
Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Shooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennet M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13: 843–852 PubMed PMC
Chen YL, Huang ST, Sun FM, Chiang YL, Chiang CJ, Tsai CM, Wang CJ (2011) Transformation of cinnamic acid from trans- to cis-form raises a notable bactericidal and synergistic activity against multiple-drug resistant Mycobacterium tuberculosis. Eur J Pharm Sci 43: 188–194 PubMed
Colón-Carmona A, You R, Haimovitch-Gal T, Doerner P (1999) Technical advance: spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J 20: 503–508 PubMed
De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, Audenaert D, Van Campenhout J, Overvoorde P, Jansen L, Vanneste S, et al. (2010) A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr Biol 20: 1697–1706 PubMed
Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532–541 PubMed
Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9: 109–119 PubMed
Ding Z, Galván-Ampudia CS, Demarsy E, Łangowski Ł, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, et al. (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13: 447–452 PubMed
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426: 147–153 PubMed
Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29: 153–168 PubMed
Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakum B, Peer WA, Bailly A, Richards EL, et al. (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44: 179–194 PubMed
González-Carranza ZH, Elliott KA, Roberts JA (2007) Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. J Exp Bot 58: 3719–3730 PubMed
Haagen-Smit SAJ, Went FW (1935) A physiological analysis of the growth substance. Proceedings. Koninklijke Akademie van Wetenschappen te Amsterdam 38: 852–857
Hitchcock AE. (1935) Indole-3-n-propionic acid as a growth hormone and quantitative measurement of plant response. In Contributions of the Boyce Thompson Institute, Vol 7 Boyce Thompson Institute for Plant Research, Yonkers, NY, pp 87–95
Hocking MB. (1969) Photochemical and thermal isomerizations of cis- and trans-cinnamic acids, and their photostationary state. Can J Chem 47: 4567–4576
Kim JY, Henrichs S, Bailly A, Vincenzetti V, Sovero V, Mancuso S, Pollmann S, Kim D, Geisler M, Nam HG (2010) Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem 285: 23309–23317 PubMed PMC
Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Marinoia E (2011) Plant ABC transporters. The Arabidopsis Book 9: e0153. PubMed PMC
Koepfli JB, Thimann KB, Went FW (1938) Plant hormones: structure and physiological activity. I. J Biol Chem 122: 763–780
Kumpf RP, Shi CL, Larrieu A, Stø IM, Butenko MA, Péret B, Riiser ES, Bennett MJ, Aalen RB (2013) Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proc Natl Acad Sci USA 110: 5235–5240 PubMed PMC
Lee S, Sundaram S, Armitage L, Evans JP, Hawkes T, Kepinski S, Ferro N, Napier RM (2014) Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation. ACS Chem Biol 9: 673–682 PubMed PMC
Letham DS. (1978) Naturally occurring plant growth regulators other than the principle hormones of higher plants. In Letham DS, Goodwin PB, Higgins TJV, eds, Phytohormones and Related Compounds: A Comprehensive Treatise, Vol 1 Elsevier/North Holland Biomedical Press, Amsterdam, pp 349–417
Lewis DR, Muday GK (2009) Measurement of auxin transport in Arabidopsis thaliana. Nat Protoc 4: 437–451 PubMed
Liu C, Xu Z, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5: 621–630 PubMed PMC
Lukowitz W, Mayer U, Jürgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84: 61–71 PubMed
Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329: 1306–1311 PubMed PMC
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30: 2785–2791 PubMed PMC
Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell-line as the Hela-cell in the cell biology of higher-plants. Int Rev Cytol 132: 1–30
Novák O, Hényková E, Sairanen I, Kowalczyk M, Pospíšil T, Ljung K (2012) Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J 72: 523–536 PubMed
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19: 118–130 PubMed PMC
Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14: 399–408 PubMed
Petrášek J, Cerná A, Schwarzerová K, Elckner M, Morris DA, Zazímalová E (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131: 254–263 PubMed PMC
Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136: 2675–2688 PubMed
Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanová M, et al. (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312: 914–918 PubMed
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612 PubMed
Romano CP, Hein MB, Klee HJ (1991) Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev 5: 438–446 PubMed
Santelia D, Henrichs S, Vincenzetti V, Sauer M, Bigler L, Klein M, Bailly A, Lee Y, Friml J, Geisler M, et al. (2008) Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem 283: 31218–31226 PubMed PMC
Schalk M, Cabello-Hurtado F, Pierrel MA, Atanossova R, Saindrenan P, Werck-Reichhart D (1998) Piperonylic acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: a new tool to control the flux of metabolites in the phenylpropanoid pathway. Plant Physiol 118: 209–218 PubMed PMC
Seifertová D, Skůpa P, Rychtář J, Laňková M, Pařezová M, Dobrev PI, Hoyerová K, Petrášek J, Zažímalová E (2014) Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells. J Plant Physiol 171: 429–437 PubMed
Tan Z, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640–645 PubMed
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31: 455–461 PubMed PMC
Van de Wouwer D, Vanholme R, Decou R, Goeminne G, Audenaert D, Nguyen L, Höfer R, Pesquet E, Vanholme B, Boerjan W (2016) Chemical genetics uncovers novel inhibitors of lignification. Plant Physiol 172: 198–220 PubMed PMC
Van Overbeek J, Blondeau R, Horne V (1951) Trans-cinnamic acid as an anti-auxin. Am J Bot 38: 589–595
Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136: 1005–1016 PubMed
Vogt T. (2010) Phenylpropanoid biosynthesis. Mol Plant 3: 2–20 PubMed
Went FW. (1939) Analysis and integration of various auxin effects. II. Proceedings. Koninklijke Akademie van Wetenschappen te Amsterdam 42: 731–739
Wong WS, Guo D, Wang XL, Yin ZQ, Xia B, Li N (2005) Study of cis-cinnamic acid in Arabidopsis thaliana. Plant Physiol Biochem 43: 929–937 PubMed
Yang XX, Choi HW, Yang SF, Li N (1999) A UV-light activated cinnamic acid isomer regulates plant growth and gravitropism via an ethylene receptor-independent pathway. Aust J Plant Physiol 26: 325–335 PubMed
Yin R, Han K, Heller W, Albert A, Dobrev PI, Zažímalová E, Schäffner AR (2014) Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol 201: 466–475 PubMed PMC
Yin ZQ, Wong WS, Ye WC, Li N (2003) Biologically active cis-cinnamic acid occurs naturally in Brassica parachinensis. Chin Sci Bull 48: 555–558
Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination
What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo