What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29258197
PubMed Central
PMC5751337
DOI
10.3390/ijms18122736
PII: ijms18122736
Knihovny.cz E-zdroje
- Klíčová slova
- auxin, auxin distribution, auxin signalling, auxin transport, direct visualization, indirect visualization, receptor, sensor,
- MeSH
- Arabidopsis metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- vývoj rostlin fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyseliny indoloctové MeSH
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
Zobrazit více v PubMed
Davies P.J. Plant Hormones—Biosynthesis, Signal Transduction, Action! 3rd ed. Springer; London, UK: 2010. pp. 16–35.
Korasick D.A., Westfall C.S., Lee S.G., Nanao M.H., Dumas R., Hagen G., Guilfoyle T.J., Jez J.M., Strader L.C. Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proc. Natl. Acad. Sci. USA. 2014;111:5427–5432. doi: 10.1073/pnas.1400074111. PubMed DOI PMC
Wang R., Estelle M. Diversity and specificity: Auxin perception and signaling through the TIR1/AFB pathway. Curr. Opin. Plant Biol. 2014;21:51–58. doi: 10.1016/j.pbi.2014.06.006. PubMed DOI PMC
Powers S.K., Strader L.C. Up in the air: Untethered Factors of Auxin Response. F1000Research. 2016;5 doi: 10.12688/f1000research.7492.1. PubMed DOI PMC
Löbler M., Klämbt D. Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. Purification by immunological methods and characterization. J. Biol. Chem. 1985;260:9848–9853. PubMed
Jones A.M., Venis M.A. Photoaffinity labeling of indole-3-acetic acid-binding proteins in maize. Proc. Natl. Acad. Sci. USA. 1989;86:6153–6156. doi: 10.1073/pnas.86.16.6153. PubMed DOI PMC
Gao Y., Zhang Y., Zhang D., Dai X., Estelle M., Zhao Y. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc. Natl. Acad. Sci. USA. 2015;112:2275–2280. doi: 10.1073/pnas.1500365112. PubMed DOI PMC
Paque S., Weijers D. Q&A: Auxin: The plant molecule that influences almost anything. BMC Biol. 2016;14:67. doi: 10.1186/s12915-016-0291-0. PubMed DOI PMC
Spaepen S., Vanderleyden J., Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007;31:425–448. doi: 10.1111/j.1574-6976.2007.00072.x. PubMed DOI
Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI
Pěnčík A., Simonovik B., Petersson S.V., Henyková E., Simon S., Greenham K., Zhang Y., Kowalczyk M., Estelle M., Zažímalová E., et al. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell. 2013;25:3858–3870. doi: 10.1105/tpc.113.114421. PubMed DOI PMC
Normanly J. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb. Perspect. Biol. 2010;2:a001594. doi: 10.1101/cshperspect.a001594. PubMed DOI PMC
Ludwig-Müller J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011;62:1757–1773. doi: 10.1093/jxb/erq412. PubMed DOI
Reemmer J., Murphy A.S. Intercellular Transport of Auxin. In: Zažímalová E., Petrášek J., Benková E., editors. Auxin and Its Role in Plant Development. 1st ed. Volume 33. Springer; London, UK: 2014. pp. 75–101.
Swarup R., Péret B. AUX/LAX family of auxin influx carriers—An overview. Front. Plant Sci. 2012;3:225. doi: 10.3389/fpls.2012.00225. PubMed DOI PMC
Adamowski M., Friml J. PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC
Do T.H.T., Martinoia E., Lee Y. Functions of ABC transporters in plant growth and development. Curr. Opin. Plant Biol. 2018;41:32–38. doi: 10.1016/j.pbi.2017.08.003. PubMed DOI
Barbez E., Kubeš M., Rolčík J., Béziat C., Pěnčík A., Wang B., Rosquete M.R., Zhu J., Dobrev P.I., Lee Y., et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature. 2012;485:119–122. doi: 10.1038/nature11001. PubMed DOI
Vieten A., Sauer M., Brewer P.B., Friml J. Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci. 2007;12:160–168. doi: 10.1016/j.tplants.2007.03.006. PubMed DOI
Grunewald W., Friml J. The march of the PINs: Developmental plasticity by dynamic polar targeting in plant cells. EMBO J. 2010;29:2700–2714. doi: 10.1038/emboj.2010.181. PubMed DOI PMC
Petrášek J., Friml J. Auxin transport routes in plant development. Development. 2009;136:2675–2688. doi: 10.1242/dev.030353. PubMed DOI
Bennett M.J., Marchant A., Green H.G., May S.T., Ward S.P., Millner P.A., Walker A.R., Schulz B., Feldmann K.A. Arabidopsis AUX1 Gene: A Permease-Like Regulator of Root Gravitropism. Science. 1996;273:948–950. doi: 10.1126/science.273.5277.948. PubMed DOI
Stone B.B., Stowe-Evans E.L., Harper R.M., Brandon Celaya R., Ljung K., Sandberg G., Liscum E. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol. Plant. 2008;1:129–144. doi: 10.1093/mp/ssm013. PubMed DOI
Swarup K., Benková E., Swarup R., Casimiro I., Péret B., Yang Y., Parry G., Nielsen E., De Smet I., Vanneste S., et al. The auxin influx carrier LAX3 promotes lateral root emergence. Nat. Cell Biol. 2008;10:946–954. doi: 10.1038/ncb1754. PubMed DOI
Jones A.R., Kramer E.M., Knox K., Swarup R., Bennett M.J., Lazarus C.M., Leyser H.M.O., Grierson C.S. Auxin transport through non-hair cells sustains root-hair development. Nat. Cell Biol. 2009;11:78–84. doi: 10.1038/ncb1815. PubMed DOI PMC
Peer W.A., Murphy A.S. Flavonoids and auxin transport: Modulators or regulators? Trends Plant Sci. 2007;12:556–563. doi: 10.1016/j.tplants.2007.10.003. PubMed DOI
Steenackers W., Klíma P., Quareshy M., Cesarino I., Kumpf R.P., Corneillie S., Araújo P., Viaene T., Goeminne G., Nowack M.K., et al. cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor that Promotes Lateral Root Formation. Plant Physiol. 2017;173:552–565. doi: 10.1104/pp.16.00943. PubMed DOI PMC
Brown D.E., Rashotte A.M., Murphy A.S., Normanly J., Tague B.W., Peer W.A., Taiz L., Mudaye G.K. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. Plant Physiol. 2001;126:524–535. doi: 10.1104/pp.126.2.524. PubMed DOI PMC
Kuhn B.M., Geisler M., Bigler L., Ringli C. Flavonols Accumulate Asymmetrically and Affect Auxin Transport in Arabidopsis. Plant Physiol. 2011;156:585–595. doi: 10.1104/pp.111.175976. PubMed DOI PMC
Santelia D., Henrichs S., Vincenzetti V., Sauer M., Bigler L., Klein M., Bailly A., Lee Y., Friml J., Geisler M., et al. Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J. Biol. Chem. 2008;283:31218–31226. doi: 10.1074/jbc.M710122200. PubMed DOI PMC
Peer W.A., Bandyopadhyay A., Blakeslee J.J., Makam S.N., Chen R.J., Masson P.H., Murphy A.S. Variation in Expression and Protein Localization of the PIN Family of Auxin Efflux Facilitator Proteins in Flavonoid Mutants with Altered Auxin Transport in Arabidopsis thaliana. Plant Cell. 2004;16:1898–1911. doi: 10.1105/tpc.021501. PubMed DOI PMC
Geisler M., Blakeslee J.J., Bouchard R., Lee O.R., Vincenzetti V., Bandyopadhyay A., Titapiwatanakun B., Peer W.A., Bailly A., Richards E.L., et al. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 2005;44:179–194. doi: 10.1111/j.1365-313X.2005.02519.x. PubMed DOI
Blakeslee J.J., Bandyopadhyay A., Lee O.R., Mravec J., Titapiwatanakun B., Sauer M., Makam S.N., Cheng Y., Bouchard R., Adamec J., et al. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell. 2007;19:131–147. doi: 10.1105/tpc.106.040782. PubMed DOI PMC
Grunewald W., De Smet I., Lewis D.R., Löfke C., Jansen L., Goeminne G., Bosschea R.V., Karimi M., De Rybela B., Vanholmea B., et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc. Natl. Acad. Sci. USA. 2011;109:1554–1559. doi: 10.1073/pnas.1121134109. PubMed DOI PMC
Lewis D.R., Ramirez M.V., Miller N.D., Vallabhaneni P., Ray W.K., Helm R.F., Winkel B.S.J., Muday G.K. Auxin and Ethylene Induce Flavonol Accumulation through Distinct Transcriptional Networks. Plant Physiol. 2011;156:144–164. doi: 10.1104/pp.111.172502. PubMed DOI PMC
Titapiwatanakun B., Murphy A.S. Post-transcriptional regulation of auxin transport proteins: Cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition. J. Exp. Bot. 2009;60:1093–1107. doi: 10.1093/jxb/ern240. PubMed DOI
Li Y., Hagen G., Guilfoyle T. An Auxin-Responsive Promoter Is Differentially Induced by Auxin Gradients during Tropisms. Plant Cell. 1991;3:1167–1175. doi: 10.1105/tpc.3.11.1167. PubMed DOI PMC
Larkin P.J., Gibson J.M., Mathesius U., Weinman J.J., Gartner E., Hall E., Tanner G.J., Rolfe B.G., Djordjevic M.A. Transgenic white clover. Studies with the auxin-responsive promoter, GH3, in root gravitropism and lateral root development. Transgenic Res. 1996;5:443–450. doi: 10.1007/BF01968942. PubMed DOI
Ballas N., Wong L.M., Theologist A. Identification of the Auxin-responsive Element, AuxRE, in the Primary indoleacetic Acid-inducible Gene, PS-IAA4/5, of Pea (Pisum sativum) J. Mol. Biol. 1993;233:580–596. doi: 10.1006/jmbi.1993.1537. PubMed DOI
Ballas N., Wong L.M., Ke M., Theologis A. Two auxin-responsive domains interact positively to induce expression of the early indoleacetic acid-inducible gene PS-IAA4/5. Proc. Natl. Acad. Sci. USA. 1995;92:3483–3487. doi: 10.1073/pnas.92.8.3483. PubMed DOI PMC
Oono Y., Chen Q.G., Overvoorde P.J., Köhler C., Theologis A. age Mutants of Arabidopsis exhibit altered auxin-regulated gene expression. Plant Cell. 1998;10:1649–1662. doi: 10.1105/tpc.10.10.1649. PubMed DOI PMC
Armstrong J.I., Yuan S., Dale J.M., Tanner V.N., Theologis A. Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2004;101:14978–14983. doi: 10.1073/pnas.0404312101. PubMed DOI PMC
Ulmasov T., Murfett J., Hagen G., Guilfoyle T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. 1997;9:1963–1971. doi: 10.1105/tpc.9.11.1963. PubMed DOI PMC
Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI
Hagen G., Martin G., Li Y., Guilfoyle T.J. Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol. Biol. 1991;17:567–579. doi: 10.1007/BF00040658. PubMed DOI
Hagen G., Guilfoyle T.J. Rapid induction of selective transcription by auxins. Mol. Cell. Biol. 1985;5:1197–1203. doi: 10.1128/MCB.5.6.1197. PubMed DOI PMC
Ulmasov T., Liu Z.B., Hagen G., Guilfoyle T.J. Composite structure of auxin response elements. Plant Cell. 1995;7:1611–1623. doi: 10.1105/tpc.7.10.1611. PubMed DOI PMC
Liu Z.B., Ulmasov T., Shi X., Hagen G., Guilfoyle T.J. Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell. 1994;6:645–657. doi: 10.1105/tpc.6.5.645. PubMed DOI PMC
Li Y., Liu Z.B., Shi X., Hagen G., Guilfoyle T.J. An auxin-inducible element in soybean SAUR promoters. Plant Physiol. 1994;106:37–43. doi: 10.1104/pp.106.1.37. PubMed DOI PMC
Sabatini S., Beis D., Wolkenfelt H., Murfett J., Guilfoyle T., Malamy J., Benfey P., Leyser O., Bechtold N., Weisbeek P., et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell. 1999;99:463–472. doi: 10.1016/S0092-8674(00)81535-4. PubMed DOI
Friml J., Benková E., Blilou I., Wisniewska J., Hamann T., Ljung K., Woody S., Sandberg G., Scheres B., Jürgens G., et al. AtPIN4 mediates sink driven auxin gradients and patterning in Arabidopsis roots. Cell. 2002;108:661–673. doi: 10.1016/S0092-8674(02)00656-6. PubMed DOI
Heisler M.G., Ohno C., Das P., Sieber P., Reddy G.V., Long J.A., Meyerowitz E.M. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 2005;15:1899–1911. doi: 10.1016/j.cub.2005.09.052. PubMed DOI
Gallavotti A., Yang Y., Schmidt R.J., Jackson D. The Relationship between Auxin Transport and Maize Branching. Plant Physiol. 2008;147:1913–1923. doi: 10.1104/pp.108.121541. PubMed DOI PMC
Marin E., Jouannet V., Herz A., Lokerse A.S., Weijers D., Vaucheret H., Nussaume L., Crespi M.D., Maizel A. miR390, Arabidopsis TAS3 tasiRNAs, and Their AUXIN RESPONSE FACTOR Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth. Plant Cell. 2010;22:1104–1117. doi: 10.1105/tpc.109.072553. PubMed DOI PMC
Moreno-Risueno M.A., Van Norman J.M., Moreno A., Zhang J., Ahnert S.E., Benfey P.N. Oscillating Gene Expression Determines Competence for Periodic Arabidopsis Root Branching. Science. 2010;329:1306–1311. doi: 10.1126/science.1191937. PubMed DOI PMC
Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell. 2003;115:591–602. doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI
Boer D.R., Freire-Rios A., van den Berg W.A.M., Saaki T., Manfield I.W., Kepinski S., López-Vidrieo I., Franco-Zorrilla J.M., de Vries S.C., Solano R., et al. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell. 2014;156:577–589. doi: 10.1016/j.cell.2013.12.027. PubMed DOI
Korber H., Strizhov N., Staiger D., Feldwisch J., Olsson O., Sandberg G., Palme K., Schell J., Koncz C. T-DNA gene 5 of Agrobacterium modulates auxin response by autoregulated synthesis of a growth hormone antagonist in plants. EMBO J. 1991;10:3983–3991. PubMed PMC
Liao C.Y., Smet W., Brunoud G., Yoshida S., Vernoux T., Weijers D. Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods. 2015;12:207–210. doi: 10.1038/nmeth.3279. PubMed DOI PMC
Scarpella E., Marcos D., Friml J., Berleth T. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 2006;20:1015–1027. doi: 10.1101/gad.1402406. PubMed DOI PMC
Perrot-Rechenmann C. Cellular responses to auxin: Division versus expansion. Cold Spring Harb. Perspect. Biol. 2010;2:a001446. doi: 10.1101/cshperspect.a001446. PubMed DOI PMC
Vernoux T., Brunoud G., Farcot E., Morin V., van den Daele H., Legrand J., Oliva M., Das P., Larrieu A., Wells D., et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol. Syst. Biol. 2011;7:1–15. doi: 10.1038/msb.2011.39. PubMed DOI PMC
Tan X., Calderon-Villalobos L.I.A., Sharon M., Zheng C., Robinson C.V., Estelle M., Zheng N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature. 2007;446:640–645. doi: 10.1038/nature05731. PubMed DOI
Brunoud G., Wells D.M., Oliva M., Larrieu A., Mirabet V., Burrow A.H., Beeckman T., Kepinski S., Traas J., Bennett M.J., et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature. 2012;482:103–106. doi: 10.1038/nature10791. PubMed DOI
Band L.R., Wells D.M., Larrieu A., Sun J., Middleton A.M., French A.P., Brunoud G., Sato E.M., Wilson M.H., Peret B., et al. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc. Natl. Acad. Sci. USA. 2012;109:4668–4673. doi: 10.1073/pnas.1201498109. PubMed DOI PMC
Pernisova M., Prat T., Grones P., Harustiakova D., Matonohova M., Spichal L., Nodzynski T., Friml J., Hejatko J. Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis. New Phytol. 2016;212:497–509. doi: 10.1111/nph.14049. PubMed DOI
Von Wangenheim D., Hauschild R., Friml J. Light Sheet Fluorescence Microscopy of Plant Roots Growing on the Surface of a Gel. J. Vis. Exp. 2017 doi: 10.3791/55044. PubMed DOI PMC
Wend S., Bosco C.D., Kämpf M.M., Ren F., Palme K., Weber W., Dovzhenko A., Zurbriggen M.D. A quantitative ratiometric sensor for time-resolved analysis of auxin dynamics. Sci. Rep. 2013;3:2052. doi: 10.1038/srep02052. PubMed DOI PMC
Rademacher E.H., Möller B., Lokerse A.S., Llavata-Peris C.I., van Den Berg W., Weijers D. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J. 2011;68:597–606. doi: 10.1111/j.1365-313X.2011.04710.x. PubMed DOI
Abel S., Oeller P.W., Theologist A. Early auxin-induced genes encode short-lived nuclear proteins. Biochemistry. 1994;91:326–330. doi: 10.1073/pnas.91.1.326. PubMed DOI PMC
Gray W.M., Kepinski S., Rouse D., Leyser O., Estelle M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature. 2001;414:271–276. doi: 10.1038/35104500. PubMed DOI
Swarup R., Friml J., Marchant A., Ljung K., Sandberg G., Palme K., Bennett M. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 2001;15:2648–2653. doi: 10.1101/gad.210501. PubMed DOI PMC
Tian Q., Uhlir N.J., Reed J.W. Arabidopsis SHY2/IAA3 Inhibits Auxin-Regulated Gene Expression. Plant Cell. 2002;14:301–319. doi: 10.1105/tpc.010283. PubMed DOI PMC
Weijers D., Benkova E., Jäger K.E., Schlereth A., Hamann T., Kientz M., Wilmoth J.C., Reed J.W., Jürgens G. Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J. 2005;24:1874–1885. doi: 10.1038/sj.emboj.7600659. PubMed DOI PMC
Ploense S.E., Wu M.F., Nagpal P., Reed J.W. A gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning. Development. 2009;136:1509–1517. doi: 10.1242/dev.025932. PubMed DOI PMC
De Rybel B., Vassileva V., Parizot B., Demeulenaere M., Grunewald W., Audenaert D., Van Campenhout J., Overvoorde P., Jansen L., Vanneste S., et al. A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr. Biol. 2010;20:1697–1706. doi: 10.1016/j.cub.2010.09.007. PubMed DOI
Müller C.J., Valdés A.E., Wang G., Ramachandran P., Beste L., Uddenberg D., Carlsbecker A. PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis. Plant Physiol. 2016;170:956–970. doi: 10.1104/pp.15.01204. PubMed DOI PMC
Winkler M., Niemeyer M., Hellmuth A., Janitza P., Christ G., Samodelov S.L., Wilde V., Majovsky P., Trujillo M., Zurbriggen M.D., et al. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nat. Commun. 2017;8:15706. doi: 10.1038/ncomms15706. PubMed DOI PMC
Piya S., Shrestha S.K., Binder B., Stewart C.N., Hewezi T. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis. Front. Plant Sci. 2014;5:744. doi: 10.3389/fpls.2014.00744. PubMed DOI PMC
Kasahara H. Current aspects of auxin biosynthesis in plants. Biosci. Biotechnol. Biochem. 2016;80:34–42. doi: 10.1080/09168451.2015.1086259. PubMed DOI
Stepanova A.N., Robertson-Hoyt J., Yun J., Benavente L.M., Xie D.Y., Doležal K., Schlereth A., Jürgens G., Alonso J.M. TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development. Cell. 2008;133:177–191. doi: 10.1016/j.cell.2008.01.047. PubMed DOI
Cheng Y., Dai X., Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006;20:1790–1799. doi: 10.1101/gad.1415106. PubMed DOI PMC
Cheng Y., Dai X., Zhao Y. Auxin Synthesized by the YUCCA Flavin Monooxygenases Is Essential for Embryogenesis and Leaf Formation in Arabidopsis. Plant Cell. 2007;19:2430–2439. doi: 10.1105/tpc.107.053009. PubMed DOI PMC
Robert H.S., Grones P., Stepanova A.N., Robles L.M., Lokerse A.S., Alonso J.M., Weijers D., Friml J. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. Biol. 2013;23:2506–2512. doi: 10.1016/j.cub.2013.09.039. PubMed DOI
Chen Q., Dai X., de-Paoli H., Cheng Y., Takebayashi Y., Kasahara H., Kamiya Y., Zhao Y. Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in Arabidopsis Roots. Plant Cell Physiol. 2014;55:1072–1079. doi: 10.1093/pcp/pcu039. PubMed DOI PMC
Petrášek J., Mravec J., Bouchard R., Blakeslee J.J., Abas M., Seifertová D., Wisniewska J., Tadele Z., Kubeš M., Covanová M., et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science. 2006;312:914–918. doi: 10.1126/science.1123542. PubMed DOI
Zažímalová E., Murphy A.S., Yang H., Hoyerova K., Hošek P. Auxin Transporters—Why So Many? Cold Spring Harb. Perspect. Biol. 2010;2:a001552. doi: 10.1101/cshperspect.a001552. PubMed DOI PMC
Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M., Palme K., Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433:39–44. doi: 10.1038/nature03184. PubMed DOI
Vieten A., Vanneste S., Wis J., Benková E., Benjamins R., Beeckman T., Luschnig C. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development. 2005;132:4521–4531. doi: 10.1242/dev.02027. PubMed DOI
Xu J. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell Polarity. Plant Cell. 2005;17:525–536. doi: 10.1105/tpc.104.028449. PubMed DOI PMC
Zadnikova P., Petrasek J., Marhavy P., Raz V., Vandenbussche F., Ding Z., Schwarzerova K., Morita M.T., Tasaka M., Hejatko J., et al. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development. 2010;137:607–617. doi: 10.1242/dev.041277. PubMed DOI
Mravec J., Skůpa P., Bailly A., Hoyerová K., Křeček P., Bielach A., Petrášek J., Zhang J., Gaykova V., Stierhof Y.-D., et al. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature. 2009;459:1136–1140. doi: 10.1038/nature08066. PubMed DOI
Bender R.L., Fekete M.L., Klinkenberg P.M., Hampton M., Bauer B., Malecha M., Lindgren K., Maki J.A., Perera M.A.D.N., Nikolau B.J., et al. PIN6 is required for nectary auxin response and short stamen development. Plant J. 2013;74:893–904. doi: 10.1111/tpj.12184. PubMed DOI
Sawchuk M.G., Edgar A., Scarpella E. Patterning of leaf vein networks by convergent auxin transport pathways. PLoS Genet. 2013;9:e1003294. doi: 10.1371/journal.pgen.1003294. PubMed DOI PMC
Dal Bosco C., Dovzhenko A., Liu X., Woerner N., Rensch T., Eismann M., Eimer S., Hegermann J., Paponov I.A., Ruperti B., et al. The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. Plant J. 2012;71:860–870. doi: 10.1111/j.1365-313X.2012.05037.x. PubMed DOI
Ding Z., Wang B., Moreno I., Dupláková N., Simon S., Carraro N., Reemmer J., Pěnčík A., Chen X., Tejos R., et al. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat. Commun. 2012;3:941. doi: 10.1038/ncomms1941. PubMed DOI
Wabnik K., Robert H.S., Smith R.S., Friml J. Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr. Biol. 2013;23:2513–2518. doi: 10.1016/j.cub.2013.10.038. PubMed DOI
Dubrovsky J.G., Sauer M., Napsucialy-Mendivil S., Ivanchenko M.G., Friml J., Shishkova S., Celenza J., Benkova E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl. Acad. Sci. USA. 2008;105:8790–8794. doi: 10.1073/pnas.0712307105. PubMed DOI PMC
Hay A. ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development. 2006;133:3955–3961. doi: 10.1242/dev.02545. PubMed DOI
Barkoulas M., Hay A., Kougioumoutzi E., Tsiantis M. A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat. Genet. 2008;40:1136–1141. doi: 10.1038/ng.189. PubMed DOI
Pernisova M., Klima P., Horak J., Valkova M., Malbeck J., Soucek P., Reichman P., Hoyerova K., Dubova J., Friml J., et al. Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc. Natl. Acad. Sci. USA. 2009;106:3609–3614. doi: 10.1073/pnas.0811539106. PubMed DOI PMC
Hejátko J., Blilou I., Brewer P.B., Friml J., Scheres B., Benková E. In situ hybridization technique for mRNA detection in whole mount Arabidopsis samples. Nat. Protoc. 2006;1:1939–1946. doi: 10.1038/nprot.2006.333. PubMed DOI
Sauer M., Paciorek T., Benková E., Friml J. Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat. Protoc. 2006;1:98–103. doi: 10.1038/nprot.2006.15. PubMed DOI
Gälweiler L., Guan C., Müller A., Wisman E., Mendgen K., Yephremov A., Palme K. Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue. Science. 1998;282:2226–2230. doi: 10.1126/science.282.5397.2226. PubMed DOI
Müller A., Guan C., Gälweiler L., Tänzler P., Huijser P., Marchant A., Parry G., Bennett M., Wisman E., Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998;17:6903–6911. doi: 10.1093/emboj/17.23.6903. PubMed DOI PMC
Friml J., Wiśniewska J., Benková E., Mendgen K., Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature. 2002;415:806–809. doi: 10.1038/415806a. PubMed DOI
Krouk G., Lacombe B., Bielach A., Perrine-Walker F., Malinska K., Mounier E., Hoyerova K., Tillard P., Leon S., Ljung K., et al. Nitrate-Regulated Auxin Transport by NRT1.1 Defines a Mechanism for Nutrient Sensing in Plants. Dev. Cell. 2010;18:927–937. doi: 10.1016/j.devcel.2010.05.008. PubMed DOI
Ohmiya A., Hayashi T. Immuno-gold localization of IAA in leaf cells of Prunus persica at different stages of development. Physiol. Plant. 1992;85:439–445. doi: 10.1111/j.1399-3054.1992.tb05809.x. DOI
Thomas C., Bronner R., Molinier J., Prinsen E., Van Onckelen H., Hahne G. Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta. 2002;215:577–583. doi: 10.1007/s00425-002-0791-8. PubMed DOI
Chen D., Ren Y., Deng Y., Zhao J. Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities. J. Exp. Bot. 2010;61:1853–1867. doi: 10.1093/jxb/erq056. PubMed DOI PMC
Nishimura T., Toyooka K., Sato M., Matsumoto S., Lucas M.M., Strnad M., Baluška F., Koshiba T. Immunohistochemical observation of indole-3-acetic acid at the IAA synthetic maize coleoptile tips. Plant Signal. Behav. 2011;6:2013–2022. doi: 10.4161/psb.6.12.18080. PubMed DOI PMC
Dong N., Wang Q., Zhang J., Pei D. Immunohistochemical localization of indole-3-acetic acid during induction of adventitious root formation from cotyledon explants of walnut. J. Am. Soc. Hortic. Sci. 2011;136:315–319.
Petersson S.V., Johansson A.I., Kowalczyk M., Makoveychuk A., Wang J.Y., Moritz T., Grebe M., Benfey P.N., Sandberg G., Ljung K. An Auxin Gradient and Maximum in the Arabidopsis Root Apex Shown by High-Resolution Cell-Specific Analysis of IAA Distribution and Synthesis. Plant Cell. 2009;21:1659–1668. doi: 10.1105/tpc.109.066480. PubMed DOI PMC
Geisler M., Wang B., Zhu J. Auxin transport during root gravitropism: Transporters and techniques. Plant Biol. 2014;16:50–57. doi: 10.1111/plb.12030. PubMed DOI
Lewis D.R., Muday G.K. Measurement of auxin transport in Arabidopsis thaliana. Nat. Protoc. 2009;4:437–451. doi: 10.1038/nprot.2009.1. PubMed DOI
Petrášek J., Laňková M., Zažímalová E. Determination of Auxin Transport Parameters on the Cellular Level. Methods Mol. Biol. 2014;1056:241–253. doi: 10.1007/978-1-62703-592-7. PubMed DOI
Pernet J.J., Pilet P.E. Indoleacetic acid movement in the root cap. Planta. 1976;128:183–184. doi: 10.1007/BF00390322. PubMed DOI
Davies P.J., Mitchell E.K. Transport of indoleacetic acid in intact roots of Phaseolus coccineus. Planta. 1972;105:139–154. doi: 10.1007/BF00385573. PubMed DOI
Mitchell E.K., Davies P.J. Evidence for Three Different Systems of Movement of Indoleacetic Acid in Intact Roots of Phaseolus coccineus. Physiol. Plant. 1975;33:290–294. doi: 10.1111/j.1399-3054.1975.tb03171.x. PubMed DOI
Nagao M., Ohwaki Y. Auxin transport in the elongation zone of Vicia roots. Bot. Mag. Tokyo. 1968;81:44–45. doi: 10.15281/jplantres1887.81.44. DOI
Tsurumi S., Ohwaki Y. Transport of 14C-labeled indoleacetic acid in Vicia root segments. Plant Cell Physiol. 1978;19:1195–1206.
McCready C.C. The polarity of auxin movement in segments excised from Phaseolus vulgaris L. In: Wightman F., Setterfield G., editors. Biochemistry and Physiology of Plant Growth Substances. Runge Press; Ottawa, ON, Canada: 1968. pp. 1005–1023.
Smith C.W., Jacobs W.P. The movement of I4C-IAA in the hypocotyl of Phaseolus vulgaris. Am. J. Bot. 1969;56:492–497. doi: 10.2307/2440642. DOI
Goldsmith M.H.M. The Polar Transport of Auxin. Annu. Rev. Plant Physiol. 1977;28:439–478. doi: 10.1146/annurev.pp.28.060177.002255. DOI
Boot K.J.M., Hille S.C., Libbenga K.R., Peletier L.A., Van Spronsen P.C., Van Duijn B., Offringa R. Modelling the dynamics of polar auxin transport in inflorescence stems of Arabidopsis thaliana. J. Exp. Bot. 2016;67:649–666. doi: 10.1093/jxb/erv471. PubMed DOI PMC
Ohwaki Y., Tsurumi S. Auxin, transport and growth in intact roots of Vicia faba. Plant Cell Physiol. 1976;17:1329–1342. doi: 10.1093/oxfordjournals.pcp.a075396. DOI
Okada K., Ueda J., Komaki M.K., Bell C.J., Shimura Y. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell. 1991;3:677–684. doi: 10.1105/tpc.3.7.677. PubMed DOI PMC
Rashotte A.M., Brady S.R., Reed R.C., Ante S.J., Muday G.K. Basipetal Auxin Transport Is Required for Gravitropism in Roots of Arabidopsis. Plant Physiol. 2000;122:481–490. doi: 10.1104/pp.122.2.481. PubMed DOI PMC
Rashotte A.M., Poupart J., Waddell C.S., Muday G.K. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiol. 2003;133:761–772. doi: 10.1104/pp.103.022582. PubMed DOI PMC
Muday G.K., Brady S.R., Argueso C., Deruère J., Kieber J.J., DeLong A. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling. Plant Physiol. 2006;141:1617–1629. doi: 10.1104/pp.106.083212. PubMed DOI PMC
Marchant A., Kargul J., May S.T., Muller P., Delbarre A., Perrot-Rechenmann C., Bennett M.J. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J. 1999;18:2066–2073. doi: 10.1093/emboj/18.8.2066. PubMed DOI PMC
Casimiro I., Marchant A., Bhalerao R.P., Beeckman T., Dhooge S., Swarup R., Graham N., Inzé D., Sandberg G., Casero P.J., et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell. 2001;13:843–852. doi: 10.1105/tpc.13.4.843. PubMed DOI PMC
Murphy A., Peer W.A., Taiz L. Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta. 2000;211:315–324. doi: 10.1007/s004250000300. PubMed DOI
Noh B., Bandyopadhyay A., Peer W.A., Spalding E.P., Murphy A.S. Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature. 2003;423:999–1002. doi: 10.1038/nature01716. PubMed DOI
Geisler M., Murphy A.S. The ABC of auxin transport: The role of p-glycoproteins in plant development. FEBS Lett. 2006;580:1094–1102. doi: 10.1016/j.febslet.2005.11.054. PubMed DOI
Lewis D.R., Miller N.D., Splitt B.L., Wu G., Spalding E.P. Separating the Roles of Acropetal and Basipetal Auxin Transport on Gravitropism with Mutations in Two Arabidopsis Multidrug Resistance-Like ABC Transporter Genes. Plant Cell. 2007;19:1838–1850. doi: 10.1105/tpc.107.051599. PubMed DOI PMC
Chen R., Hilson P., Sedbrook J., Rosen E., Caspar T., Masson P.H. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Plant Biol. 1998;95:15112–15117. doi: 10.1073/pnas.95.25.15112. PubMed DOI PMC
Delbarre A., Muller P., Imhoff V., Guern J. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta. 1996;198:532–541. doi: 10.1007/BF00262639. PubMed DOI
Seifertová D., Skůpa P., Rychtář J., Laňková M., Pařezová M., Dobrev P.I., Hoyerová K., Petrášek J., Zažímalová E. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells. J. Plant Physiol. 2014;171:429–437. doi: 10.1016/j.jplph.2013.09.026. PubMed DOI
Simon S., Kubeš M., Baster P., Robert S., Dobrev P.I., Friml J., Petrášek J., Zažímalová E. Defining the selectivity of processes along the auxin response chain: A study using auxin analogues. New Phytol. 2013;200:1034–1048. doi: 10.1111/nph.12437. PubMed DOI
Hošek P., Kubeš M., Laňková M., Dobrev P.I., Klíma P., Kohoutová M., Petrášek J., Hoyerová K., Jiřina M., Zažímalová E. Auxin transport at cellular level: New insights supported by mathematical modelling. J. Exp. Bot. 2012;63:3815–3827. doi: 10.1093/jxb/ers074. PubMed DOI PMC
Paciorek T., Zažímalová E., Ruthardt N., Petrášek J., Stierhof Y.D., Kleine-Vehn J., Morris D.A., Emans N., Jürgens G., Geldner N., et al. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature. 2005;435:1251–1256. doi: 10.1038/nature03633. PubMed DOI
Petrášek J., Elčkner M., Morris D., Zažímalová E. Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells. Planta. 2002;216:302–308. doi: 10.1007/s00425-002-0845-y. PubMed DOI
Carrier D.J., Abu Bakar N.T., Lawler K., Dorrian J.M., Haider A., Bennett M.J., Kerr I.D. Heterologous expression of a membrane-spanning auxin importer: Implications for functional analyses of auxin transporters. Int. J. Plant Genom. 2009;2009:848145. doi: 10.1155/2009/848145. PubMed DOI PMC
Yang H., Murphy A.S. Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J. 2009;59:179–191. doi: 10.1111/j.1365-313X.2009.03856.x. PubMed DOI
Bouchard R., Bailly A., Blakeslee J.J., Oehring S.C., Vincenzetti V., Lee O.R., Paponov I., Palme K., Mancuso S., Murphy A.S., et al. Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J. Biol. Chem. 2006;281:30603–30612. doi: 10.1074/jbc.M604604200. PubMed DOI
Multani D.S., Briggs S.P., Chamberlin M.A., Blakeslee J.J., Murphy A.S., Johal G.S. Loss of an MDR Transporter in Compact Stalks of Maize br2 and Sorghum dw3 Mutants. Science. 2003;302:81–84. doi: 10.1126/science.1086072. PubMed DOI
Yang Y., Hammes U.Z., Taylor C.G., Schachtman D.P., Nielsen E. High-Affinity Auxin Transport by the AUX1 Influx Carrier Protein. Curr. Biol. 2006;16:1123–1127. doi: 10.1016/j.cub.2006.04.029. PubMed DOI
Blakeslee J.J., Murphy A.S. Microscopic and Biochemical Visualization of Auxins in Plant Tissues. Methods Mol. Biol. 2016;1398:37–53. doi: 10.1007/978-1-4939-3356-3_5. PubMed DOI
Sauer M., Robert S., Kleine-Vehn J. Auxin: Simply complicated. J. Exp. Bot. 2013;64:2565–2577. doi: 10.1093/jxb/ert139. PubMed DOI
Rigal A., Ma Q., Robert S. Unraveling plant hormone signaling through the use of small molecules. Front. Plant Sci. 2014;5:373. doi: 10.3389/fpls.2014.00373. PubMed DOI PMC
Malachowska-Ugarte M., Sperduto C., Ermolovich Y.V., Sauchuk A.L., Jurášek M., Litvinovskaya R.P., Straltsova D., Smolich I., Zhabinskii V.N., Drašar P., et al. Brassinosteroid-BODIPY conjugates: Design, synthesis, and properties. Steroids. 2015;102:53–59. doi: 10.1016/j.steroids.2015.07.002. PubMed DOI
Prandi C., Ghigo G., Occhiato E.G., Scarpi D., Begliomini S., Lace B., Alberto G., Artuso E., Blangetti M. Tailoring fluorescent strigolactones for in vivo investigations: A computational and experimental study. Org. Biomol. Chem. 2014;12:2960–2968. doi: 10.1039/C3OB42592D. PubMed DOI
Enciso A.E., Garzoni M., Pavan G.M., Simanek E.E. Influence of linker groups on the solubility of triazine dendrimers. New J. Chem. 2015;39:1247–1252. doi: 10.1039/C4NJ00917G. DOI
Bieleszová K., Pařízková B., Kubeš M., Husičková A., Kubala M., Sedlářová M., Doležal K., Strnad M., Novák O., Žukauskaite A. New fluorescently labeled auxins exhibit promising anti-auxin activity. N. Biotechnol. 2017 Under review. PubMed
Lace B., Prandi C. Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones. Mol. Plant. 2016;9:1099–1118. doi: 10.1016/j.molp.2016.06.011. PubMed DOI
Li J., Zhu J.J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst. 2013;138:2506–2515. doi: 10.1039/c3an36705c. PubMed DOI
Wegner K.D., Hildebrandt N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 2015;44:4792–4834. doi: 10.1039/C4CS00532E. PubMed DOI
Cao Y., Wei J., Liao Q., Yu Y., Lin B. In situ fluorescence labelling of jasmonic acid binding sites in plant tissues with cadmium-free quantum dots. IET Nanobiotechnol. 2015;9:35–42. doi: 10.1049/iet-nbt.2014.0002. PubMed DOI
Lavis L.D., Thomas J., Rutkoski A., Ronald T. Raines Tuning the pKa of Fluorescein to Optimize Binding Assays. Anal. Chem. 2007;79:6775–6782. doi: 10.1021/ac070907g. PubMed DOI PMC
Panchuk-Voloshina N., Haugland R.P., Bishop-Stewart J., Bhalgat M.K., Millard P.J., Mao F., Leung W.-Y., Haugland R.P. Alexa Dyes, a Series of New Fluorescent Dyes that Yield Exceptionally Bright, Photostable Conjugates. J. Histochem. Cytochem. 1999;47:1179–1188. doi: 10.1177/002215549904700910. PubMed DOI
Lavis L.D., Raines R.T. Bright Ideas for Chemical Biology. ACS Chem. Biol. 2008;3:142–155. doi: 10.1021/cb700248m. PubMed DOI PMC
Beija M., Afonso C.A.M., Martinho J.M.G. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 2009;38:2410–2433. doi: 10.1039/b901612k. PubMed DOI
Hayashi K.-I., Nakamura S., Fukunaga S., Nishimura T., Jenness M.K., Murphy A.S., Motose H., Nozaki H., Furutani M., Aoyama T. Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc. Natl. Acad. Sci. USA. 2014;111:11557–11562. doi: 10.1073/pnas.1408960111. PubMed DOI PMC
Muir R.M., Fujita T., Hansch C. Structure-activity relationship in the auxin activity of mono-substituted phenylacetic acids. Plant Physiol. 1967;42:1519–1526. doi: 10.1104/pp.42.11.1519. PubMed DOI PMC
Kaethner T.M. Conformational change theory for auxin structure-activity relationships. Nature. 1977;267:19–23. doi: 10.1038/267019a0. DOI
Calderon-Villalobos L.I., Tan X., Zheng N., Estelle M. Auxin Perception-Structural Insights. Cold Spring Harb. Perspect. Biol. 2010;2:a005546. doi: 10.1101/cshperspect.a005546. PubMed DOI PMC
Grossmann K. Auxin herbicides: Current status of mechanism and mode of action. Pest Manag. Sci. 2010;66:113–120. doi: 10.1002/ps.1860. PubMed DOI
Muscolo A., Sidari M., Francioso O., Tugnoli V., Nardi S. The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. J. Chem. Ecol. 2007;33:115–129. doi: 10.1007/s10886-006-9206-9. PubMed DOI
Sokołowska K., Kizińska J., Szewczuk Z., Banasiak A. Auxin conjugated to fluorescent dyes—A tool for the analysis of auxin transport pathways. Plant Biol. 2014;16:866–877. doi: 10.1111/plb.12144. PubMed DOI
Tsuda E., Yang H., Nishimura T., Uehara Y., Sakai T., Furutani M., Koshiba T., Hirose M., Nozaki H., Murphy A.S., et al. Alkoxy-auxins are selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1 transporters. J. Biol. Chem. 2011;286:2354–2364. doi: 10.1074/jbc.M110.171165. PubMed DOI PMC
Mancuso S., Marras A.M., Magnus V., Baluška F. Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode. Anal. Biochem. 2005;341:344–351. doi: 10.1016/j.ab.2005.03.054. PubMed DOI
McLamore E.S., Diggs A., Calvo Marzal P., Shi J., Blakeslee J.J., Peer W.A., Murphy A.S., Porterfield D.M. Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J. 2010;63:1004–1016. doi: 10.1111/j.1365-313X.2010.04300.x. PubMed DOI
Tanaka H., Dhonukshe P., Brewer P.B., Friml J. Spatiotemporal asymmetric auxin distribution: A means to coordinate plant development. Cell. Mol. Life Sci. 2006;63:2738–2754. doi: 10.1007/s00018-006-6116-5. PubMed DOI PMC
Grahm L. Measurements of Geoelectric and Anxin-Induced Potentials in Coleoptiles with a Refined Vibrating Electrode Technique. Physiol. Plant. 1964;17:231–261. doi: 10.1111/j.1399-3054.1964.tb08155.x. DOI
Johnsson A. Photoinduced Lateral Potentials in Zea mays. Physiol. Plant. 1965;18:574–576. doi: 10.1111/j.1399-3054.1965.tb06918.x. DOI
Bailly A., Sovero V., Vincenzetti V., Santelia D., Bartnik D., Koenig B.W., Mancuso S., Martinoia E., Geisler M. Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J. Biol. Chem. 2008;283:21817–21826. doi: 10.1074/jbc.M709655200. PubMed DOI
Kim J.-Y., Henrichs S., Bailly A., Vincenzetti V., Sovero V., Mancuso S., Pollmann S., Kim D., Geisler M., Nam H.-G. Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J. Biol. Chem. 2010;285:23309–23317. doi: 10.1074/jbc.M110.105981. PubMed DOI PMC
Santelia D., Vincenzetti V., Azzarello E., Bovet L., Fukao Y., Düchtig P., Mancuso S., Martinoia E., Geisler M. MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett. 2005;579:5399–5406. doi: 10.1016/j.febslet.2005.08.061. PubMed DOI
Wang B., Bailly A., Zwiewka M., Henrichs S., Azzarello E., Mancuso S., Maeshima M., Friml J., Schulz A., Geisler M. Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell. 2013;25:202–214. doi: 10.1105/tpc.112.105999. PubMed DOI PMC
Schlicht M., Strnad M., Scanlon M.J., Mancuso S., Hochholdinger F., Palme K., Volkmann D., Menzel D., Baluska F. Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal. Behav. 2006;1:122–133. doi: 10.4161/psb.1.3.2759. PubMed DOI PMC
Knöller A.S., Blakeslee J.J., Richards E.L., Peer W.A., Murphy A.S. Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems. J. Exp. Bot. 2010;61:3689–3696. doi: 10.1093/jxb/erq180. PubMed DOI PMC
Sadanandom A., Napier R.M. Biosensors in plants. Curr. Opin. Plant Biol. 2010;13:736–743. doi: 10.1016/j.pbi.2010.08.010. PubMed DOI
Novák O., Pěnčík A., Ljung K. Identification and Profiling of Auxin and Auxin Metabolites. In: Zažímalová E., Petrášek J., Benková E., editors. Auxin and Its Role in Plant Development. 1st ed. Volume 33. Springer; London, UK: 2014. pp. 39–60.
Porfírio S., Gomes da Silva M.D.R., Peixe A., Cabrita M.J., Azadi P. Current analytical methods for plant auxin quantification—A review. Anal. Chim. Acta. 2016;902:8–21. doi: 10.1016/j.aca.2015.10.035. PubMed DOI
Novák O., Napier R., Ljung K. Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches. Annu. Rev. Plant Biol. 2017;68:323–348. doi: 10.1146/annurev-arplant-042916-040812. PubMed DOI
Tarkowská D., Novák O., Floková K., Tarkowski P., Turečková V., Grúz J., Rolčík J., Strnad M. Quo vadis plant hormone analysis? Planta. 2014;240:55–76. doi: 10.1007/s00425-014-2063-9. PubMed DOI
Liu X., Hegeman A.D., Gardner G., Cohen J.D. Protocol: High-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods. 2012;8:31. doi: 10.1186/1746-4811-8-31. PubMed DOI PMC
Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI
Uggla C., Moritz T., Sandberg G., Sundberg B. Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. USA. 1996;93:9282–9286. doi: 10.1073/pnas.93.17.9282. PubMed DOI PMC
Immanen J., Nieminen K., Smolander O.P., Kojima M., Alonso Serra J., Koskinen P., Zhang J., Elo A., Mähönen A.P., Street N., et al. Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity. Curr. Biol. 2016;26:1990–1997. doi: 10.1016/j.cub.2016.05.053. PubMed DOI
Jin X., Wang R.-S., Zhu M., Jeon B.W., Albert R., Chen S., Assmann S.M. Abscisic Acid-Responsive Guard Cell Metabolomes of Arabidopsis Wild-Type and gpa1 G-Protein Mutants. Plant Cell. 2013;25:4789–4811. doi: 10.1105/tpc.113.119800. PubMed DOI PMC
Bargmann B.O.R., Vanneste S., Krouk G., Nawy T., Efroni I., Shani E., Choe G., Friml J., Bergmann D.C., Estelle M., et al. A map of cell type-specific auxin responses. Mol. Syst. Biol. 2014;9:688. doi: 10.1038/msb.2013.40. PubMed DOI PMC
Rosquete R.M., Barbez E., Kleine-Vehn J. Cellular auxin homeostasis: Gatekeeping is housekeeping. Mol. Plant. 2012;5:772–786. doi: 10.1093/mp/ssr109. PubMed DOI
Uslu V.V., Grossmann G. The biosensor toolbox for plant developmental biology. Curr. Opin. Plant Biol. 2016;29:138–147. doi: 10.1016/j.pbi.2015.12.001. PubMed DOI
Zhou Y., Xu Z., Wang M., Meng X., Yin H. Electrochemical immunoassay platform for high sensitivity detection of indole-3-acetic acid. Electrochim. Acta. 2013;96:66–73. doi: 10.1016/j.electacta.2013.02.046. DOI
Yin H., Xu Z., Zhou Y., Wang M., Ai S. An ultrasensitive electrochemical immunosensor platform with double signal amplification for indole-3-acetic acid determinations in plant seeds. Analyst. 2013;138:1851–1857. doi: 10.1039/c3an36526c. PubMed DOI
Sun B., Chen L., Xu Y., Liu M., Yin H., Ai S. Ultrasensitive photoelectrochemical immunoassay of indole-3-acetic acid based on the MPA modified CdS/RGO nanocomposites decorated ITO electrode. Biosens. Bioelectron. 2014;51:164–169. doi: 10.1016/j.bios.2013.07.027. PubMed DOI
Li J., Wu Z.-Y., Xiao L.-T., Zeng G.-M., Huang G.-H., Shen G.-L., Yu R.-Q. A novel piezoelectric biosensor for the detection of phytohormone beta-indole acetic acid. Anal. Sci. 2002;18:403–407. doi: 10.2116/analsci.18.403. PubMed DOI
Wei C., Zhou H., Chen C., Li Z., Zhou J. On-Line Monitoring 1H-Indole-3-Acetic Acid in Plant Tissues Using Molecular Imprinting Monolayer Techniques on a Surface Plasmon Resonance Sensor. Anal. Lett. 2011;44:2911–2921. doi: 10.1080/00032719.2011.582552. DOI
Li J., Yin W., Tan Y., Pan H. A sensitive electrochemical molecularly imprinted sensor based on catalytic amplification by silver nanoparticles for 3-indoleacetic acid determination. Sens. Actuators B Chem. 2014;197:109–115. doi: 10.1016/j.snb.2014.02.068. DOI
Hernández P., Galán F., Nieto O., Hernández L. Direct determination of indole-3-acetic acid in plant tissues by electroanalytical techniques using a carbon paste modified with OV-17 electrode. Electroanalysis. 1994;6:577–583. doi: 10.1002/elan.1140060708. DOI
Wu K., Sun Y., Hu S. Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode. Sens. Actuators B Chem. 2003;96:658–662. doi: 10.1016/j.snb.2003.07.011. DOI
Sandberg G. Presence of indole-3-acetic acid in chloroplasts of Nicotiana tabacum and Pinus sylvestris. Planta. 1990;180:562–568. doi: 10.1007/BF02411455. PubMed DOI
Polanská L., Vičánková A., Nováková M., Malbeck J., Dobrev P.I., Brzobohatý B., Vaňková R., Macháčková I. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J. Exp. Bot. 2007;58:637–649. doi: 10.1093/jxb/erl235. PubMed DOI
Wells D.M., Laplaze L., Bennett M.J., Vernoux T. Biosensors for phytohormone quantification: Challenges, solutions, and opportunities. Trends Plant Sci. 2013;18:244–249. doi: 10.1016/j.tplants.2012.12.005. PubMed DOI
Okumoto S., Jones A., Frommer W.B. Quantitative Imaging with Fluorescent Biosensors. Annu. Rev. Plant Biol. 2012;63:663–706. doi: 10.1146/annurev-arplant-042110-103745. PubMed DOI
Reddy G.V., Gordon S.P., Meyerowitz E.M. Unravelling developmental dynamics: Transient intervention and live imaging in plants. Nat. Rev. Mol. Cell Biol. 2007;8:491–501. doi: 10.1038/nrm2188. PubMed DOI
Kirchhelle C., Moore I. A Simple Chamber for Long-term Confocal Imaging of Root and Hypocotyl Development. J. Vis. Exp. 2017;123:55331. doi: 10.3791/55331. PubMed DOI PMC
Von Wangenheim D., Hauschild R., Fendrych M., Barone V., Friml J. Live Tracking of Moving Samples in Confocal Microscopy for Vertically Grown Plant Roots. eLife. 2017;6:e26792. doi: 10.7554/eLife.26792. PubMed DOI PMC
Maizel A., von Wangenheim D., Federici F., Haseloff J., Stelzer E.H.K. High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J. 2011;68:377–385. doi: 10.1111/j.1365-313X.2011.04692.x. PubMed DOI
Ovečka M., Vaškebová L., Komis G., Luptovčiak I., Smertenko A., Šamaj J. Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat. Protoc. 2015;10:1234–1247. doi: 10.1038/nprot.2015.081. PubMed DOI
Grossmann G., Guo W.-J., Ehrhardt D.W., Frommer W.B., Sit R.V., Quake S.R., Meier M. The RootChip: An Integrated Microfluidic Chip for Plant Science. Plant Cell. 2011;23:4234–4240. doi: 10.1105/tpc.111.092577. PubMed DOI PMC
Grossmann G., Meier M., Cartwright H.N., Sosso D., Quake S.R., Ehrhardt D.W., Frommer W.B. Time-lapse Fluorescence Imaging of Arabidopsis Root Growth with Rapid Manipulation of The Root Environment Using The RootChip. J. Vis. Exp. 2012;65:4290. doi: 10.3791/4290. PubMed DOI PMC
Evans C.L., Xie X.S. Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 2008;1:883–909. doi: 10.1146/annurev.anchem.1.031207.112754. PubMed DOI
Freudiger C.W., Min W., Saar B.G., Lu S., Holtom G.R., Tsai J.C., Kang J.X., Xie X.S. Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science. 2013;322:1857–1861. doi: 10.1126/science.1165758. PubMed DOI PMC
Auxins and Cytokinins-The Role of Subcellular Organization on Homeostasis